E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, P. Optical Waves in Layered Media; Wiley: New York, NY, USA, 1988; 406p. [Google Scholar]
- Dai, X.; Xiang, Y.; Wen, S.; He, H. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. J. Appl. Phys. 2011, 109, 053104. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Y.; Wen, S.; Yong, J.; Fan, D. Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors. J. Appl. Phys. 2011, 110, 073111. [Google Scholar] [CrossRef]
- Belousov, S.; Bogdanova, M.; Deinega, A.; Eyderman, S.; Valuev, I.; Lozovik, Y.; Polischuk, I.; Potapkin, B.; Ramamurthi, B.; Deng, T.; et al. Using metallic photonic crystals as visible light sources. Phys. Rev. B 2012, 86, 174201. [Google Scholar] [CrossRef]
- Howell, I.R.; Li, C.; Colella, N.S.; Ito, K.; Watkins, J.J. Strain-tunable one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing. ACS Appl. Mater. Interfaces 2015, 7, 3641–3646. [Google Scholar] [CrossRef]
- Gorelik, V.S.; Kapaev, V.V. Electromagnetic-field amplification in finite one-dimensional photonic crystals. J. Exp. Theor. Phys. 2016, 123, 373–381. [Google Scholar] [CrossRef]
- Yushkanov, A.A.; Zverev, N.V. Quantum Electron Plasma in One-Dimensional Metallic-Dielectric Photonic Crystal. Opt. Spectrosc. 2017, 122, 202–206. [Google Scholar]
- Belyakov, V.A.; Sonin, A.S. Optics of Cholesteric Liquid Crystals; Nauka: Moscow, Russia, 1982; 359p. (In Russian) [Google Scholar]
- Shabanov, V.F.; Vetrov, S.Y.; Shabanov, A.V. Optics of Real Photonic Crystals. Liquid Crystal Defects, Inhomogeneities; Siberian Branch of RAS: Novosibirsk, Russia, 2005; 239p, ISBN 5-7692-0737-X. (In Russian) [Google Scholar]
- Belyaev, V.V.; Chilaya, G.S. Liquid Crystals at the Beginning of the XXI Century; MRSU: Moscow, Russia, 2017; 142p. (In Russian) [Google Scholar]
- Chepeleva, D.S.; Yakovleva, A.S.; Murauski, A.A.; Kukhta, I.N.; Muravsky, A.A. Phototunable selective reflection of cholesteric liquid crystals. Doklady BGUIR 2019, 7, 28–30. [Google Scholar] [CrossRef]
- Park, S.; Stinson, V.P.; Boreman, G.D.; Hofmann, T. Terahertz anisotropic response of additively manufactured one-dimensional photonic crystals. Opt. Lett. 2021, 46, 3396–3399. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, Z.; Gao, X.; Wang, Q.; Yuan, J.; Liu, Y.; Jiang, L. Terahertz nonreciprocal and functionality-switchable devices based on dielectric multilayers integrated with graphene and VO2. Opt. Lett. 2022, 47, 678–681. [Google Scholar] [CrossRef]
- Lu, F.; Gong, L.; Kuai, Y.; Tang, X.; Xiang, Y.; Wang, P.; Zhang, D. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal. Photonics Res. 2022, 10, 14–20. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.; Sun, L.; Song, Z.; Lu, Y.; Li, B. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals. Photonics Res. 2022, 10, 786–792. [Google Scholar] [CrossRef]
- Zeng, X.; He, W.; Frosz, M.H.; Geilen, A.; Roth, P.; Wong, G.K.L.; Russell, P.S.J.; Stiller, B. Stimulated Brillouin scattering in chiral photonic crystal fiber. Photonics Res. 2022, 10, 711–718. [Google Scholar] [CrossRef]
- Faramarzi, S.; Hervieuxa, P.-A.; Bigota, J.-Y. Temperature dependence of longitudinal and transverse dielectric functions of inhomogeneous Fermi systems in the local density approximation. J. Optoelectron. Adv. Mater. 2005, 7, 3083–3092. [Google Scholar]
- Jones, W.E.; Kliewer, K.L.; Fuchs, R. Nonlocal Theory of the Optical Properties of Thin Metallic Films. Phys. Rev. 1969, 178, 1201–1203. [Google Scholar] [CrossRef]
- Paredes-Juarez, A.; Diaz-Monge, F.; Makarov, N.M.; Perez-Rodriguez, F. Nonlocal effects in the electrodynamics of metallic slabs. JETP Lett. 2010, 90, 623–627. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Surface plasma oscillations in thin metallic films. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2012, 2, 116–121. (In Russian) [Google Scholar]
- Yushkanov, A.A.; Zverev, N.V. Quantum Electron Plasma, Visible and Ultraviolet P-wave and Thin Metallic Film. Phys. Lett. A 2017, 381, 679–684. [Google Scholar] [CrossRef]
- Zverev, N.V.; Yushkanov, A.A. Quantum electron plasma and P-wave interaction with thin graphite layer. In PHYSICAL ELECTRONICS: Proceedings of the X All-Russian Conference FE-2018; DSU: Makhachkala, Russia, 2018; pp. 149–153. ISBN 978-5-9913-0156-5. (In Russian) [Google Scholar]
- Zotov, A.A.; Zverev, N.V. Longitudinal Plasmons in a Thin Flat Conductive Film. J. Phys. Conf. Ser. 2021, 2056, 012020. [Google Scholar] [CrossRef]
- Bedrikova, E.A.; Golovlyova, S.D.; Zverev, N.V.; Kondakova, A.V. Optical coefficients of the one-dimensional metal-dielectric photonic crystal. In Topical Problems of the Mathematics, Physics and Mathematical Education: Proceedings of the Mathematical Analysis and Geometry Department at MRSU; MRSU: Moscow, Russia, 2020; pp. 28–37. ISBN 978-5-7017-3339-6. (In Russian) [Google Scholar]
- Zverev, N.V. Surface Impedances of a Flat Layer of a Medium with a Mirror-Symmetric Dielectric Response Function. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2018, 1, 23–37. (In Russian) [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. Theor. Math. Phys. 2013, 175, 559–569. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach. Theor. Math. Phys. 2014, 178, 130–141. [Google Scholar] [CrossRef]
- Alabina, Y.F.; Bugrimov, A.L.; Latyshev, A.V.; Yushkanov, A.A. Longitudinal dielectric permeability of the quantum Maxwell collisional plasma. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2013, 3, 6–20. (In Russian) [Google Scholar]
- Alexandrov, A.F.; Bogdankevich, L.S.; Rukhadze, A.A. Principles of Plasma Electrodynamics; Springer: Berlin/Heidelberg, Germany, 1984; 490p. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186. [Google Scholar] [CrossRef]
- Grigoriev, I.S.; Meilikhov, E.Z. (Eds.) Handbook of Physical Quantities; CRC Press: Boca Raton, FL, USA, 1997; 1548p, ISBN 978-0849328619. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyaev, V.; Zverev, N.; Abduev, A.; Zotov, A. E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings 2023, 13, 712. https://doi.org/10.3390/coatings13040712
Belyaev V, Zverev N, Abduev A, Zotov A. E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings. 2023; 13(4):712. https://doi.org/10.3390/coatings13040712
Chicago/Turabian StyleBelyaev, Victor, Nikolai Zverev, Aslan Abduev, and Alexander Zotov. 2023. "E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials" Coatings 13, no. 4: 712. https://doi.org/10.3390/coatings13040712
APA StyleBelyaev, V., Zverev, N., Abduev, A., & Zotov, A. (2023). E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings, 13(4), 712. https://doi.org/10.3390/coatings13040712