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Abstract: Incinerated waste fly ash is a toxic solid, which can cause serious harm to the environment.
CO2-cured incinerated waste fly ash may be useful in decreasing the toxicity of waste fly ash and
improving the corresponding mechanical properties of cement-based material with incinerated waste
fly ash. Meanwhile, this technology can play a certain role in reducing the content of CO2 in the
atmosphere. In this study, the influence of CO2-cured incinerated waste fly ash on the rheological
parameters (the slump flow and plastic viscosity) and the setting time of fresh reactive powder cement
concrete (RPC) is investigated. The flexural and compressive strengths of hardened RPC standard
cured for 1 day, 3 days, and 28 days are measured. The leached amounts of Cr and Zn immersed
in water for 6 months are measured. The scanning electron microscope photos, thermogravimetric
analysis curves, and mercury intrusion curves are obtained. Our results show that the slump flow, the
setting time, and the flexural and compressive strengths increased, and the plastic viscosity decreased
by adding the waste fly ash with the maximum varying rates of 12.1%, 41.7%, 41.3%, and 61.2%,
respectively. CO2 curing on the waste fly ash can increase the setting time and the flexural and
compressive strengths with the maximum varying rates of 19.2%, 13.1%, and 14.2%. The effect of
CO2-cured waste fly ash on the mechanical strengths of RPC is quite limited.

Keywords: CO2-cured; incinerated waste fly ash; rheological parameters; mechanical properties;
scanning electron microscope

1. Introduction

Environmental protection, energy conservation, and the rationality of resources have
become important topics in today’s society [1,2]. However, with the progress of science and
technology, the development of the economy, and the continuous improvement of human
material demand, a large amount of domestic garbage has been produced. Traditional
domestic waste is incinerated and landfilled [3,4]. The incinerated waste fly ash contains a
certain amount of toxic metal elements, which may pollute soil and water [5,6]. A lot of
efforts have to be made to solve this problem.

The application of incineration waste fly ash (WFA) in production practice provides
ideas for treating this solid waste [7]. Mandpe has confirmed that the WFA can be used
in the production of fertilizers [8]. As pointed out in some journals, the WFA possesses a
large amount of cementious active substances, which may be advantageous to the mechan-
ical performances of cement-based materials. Ferraro has reported that the lightweight
aggregates made from municipal solid WFA through single and double-step pelletiza-
tion processes show better mechanical strengths than the lightweight aggregates made
by clay [9]. The volcanic ash effect of WFA can improve the mechanical strength and the
durability of cement concrete [10]. Cui et al. [11] has reported that the reasonable addition
(5%~25% by mass ratio of total binder materials) of WFA can improve the mechanical
strengths of reactive powder cement concrete (RPC). Meanwhile, the corrosion resistance
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of reinforced RPC is increased by mixing the WFA [12]. These things considered, when the
RPC with WFA is cured in higher curing temperatures, the mechanical strengths are signifi-
cantly improved. Even though the incinerated WFA is proven to improve the mechanical
strength and corrosion resistance of RPC or other cement-based materials, the problem of
toxic release during use has always puzzled many researchers [13]. Based on this reason,
methods to reduce the toxicity of WFA need to be developed.

CO2 curing on raw materials and cement concrete is proven to improve the correspond-
ing mechanical strength [14]. The long-term performances of alkali-activated cementitious
materials, magnesium oxysulfate paste, ceramisite cement concrete, and RPC are improved
by CO2 curing [15–17]. The flexural and compressive strengths of RPC are increased to
113.4%~136.1% and 115.8%~141.3% of the standard cured RPC through the use of CO2
curing for 24 h with the CO2 concentration of 8% by volume of the total air [18]. More-
over, CO2 curing can effectively improve the corrosion resistance of the inner steel bars of
RPC [19,20]. When CO2 curing is provided in the RPC, the mechanical strengths’ loss rates
are 13.1%~25.6%, after 300 NaCl freeze–thaw cycles, while the mechanical strengths’ loss
rates are 26.8%~37.1% after 30 NaCl dry–wet alternations. However, when the standard cur-
ing is provided, the corresponding strengths’ loss rates are 33.6%~45.3% and 41.2%~43.8.1%
after 300 NaCl freeze–thaw cycles and 30 NaCl dry-wet alternations [21,22]. CO2 curing is
proven to solidify toxic substances in some solid wastes [23]. If CO2 curing is used in the
waste fly ash, the toxicity is likely to be reduced. The CO2-cured waste fly ash may improve
the mechanical properties and reduce the toxicity of raw materials [24,25]. Meanwhile,
the application of CO2 in the WFA provides another way to consume this hazardous gas.
However, few journals have reported on this topic.

In this research, the WFA is cured by CO2 for 24 h. The slump flow, plastic viscosity,
and setting time of fresh RPC paste is combined with the WFA, whose mass ratio by
the total mass of mineral admixtures are 0%, 25%, 50%, 75%, and 100%, respectively.
The corresponding flexural strength, compressive strength, and the drying shrinkage are
measured. The scanning electron microscope photos, thermogravimetric analysis curves,
and mercury intrusion curves are applied in revealing the mechanism of macro performance.
This study will contribute to reducing the content of hazardous waste, reducing exhaust
gas pollution, and improving the environment.

2. Experimental Section
2.1. Raw Materials

The granulated blast furnace slag powder (GGBS) and superfine silica fume (SF)
were provided by Lingshou County Qiangdong Mineral Products Processing Factory,
Shijiazhuan, China. Additionally, the SF showed a specific surface area of 14.8 m2/g and a
density of 2.2 g/cm3. The density and the specific surface area of the GGBS were 2.91 g/cm3

and 436.2 m2/g, respectively. Incinerated waste fly ash manufactured by the Shanghai
waste incineration plant was used. The incinerated waste fly ash was obtained after the
incineration process. The incinerated waste fly ash (WFA) was cured in the TH-2 concrete
carbonization test box with 8% CO2, which was provided by Shengshi Huike Testing
Equipment Co., Ltd., Shanghai, China. The WFA was raw ash, which was directly used
after firing. Some WFA was cured in the TH-2 concrete carbonization test box for 1 day. The
ordinary Portland (P·O) cement was offered to us by Wenshui County Sunshine Cement
Co., Ltd., Luliang, China. P·O cement showed the strength grade of 42.5 MPa, normal
cement. The ultrafine Grade I fly ash. provided by Nanjing Hongqian Environmental
Protection Engineering Co., Ltd., Nanjing, China, was used in this study. Lingshou Tuolin
(Shijiazhuang, China) mineral products processing plant’s quartz sands with the particle
sizes of 0.68~1.21 mm, 0.33~0.61 mm and 0.14~0.31 mm were used as aggregate in this
study. A polycarboxylic water-reducing agent with a water-reducing rate of 40% was used
for adjusting the fresh RPC’s flowability. Tables 1 and 2 show the chemical composition
and particle size distribution of powder materials, respectively.
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Table 1. The particle size distribution of the cementitious materials (%).

Types
Particle Size/µm

0.3 0.6 1 4 8 64 360

WFA 0.14 0.51 2.3 17.4 31.2 97.3 100
P·O cement 0.1 0.31 2.6 15.1 28.7 93.5 100

GGBS 0.04 0.12 3.3 19.4 35.2 98.2 100
SF 31.3 58.5 82.4 100 100 100 100

Quartz sand 0 0 0 0 0.04 21 100

Table 2. The chemical composition of the cementitious materials (%).

Types SiO2 Al2O3 FexOy MgO CaO SO3 K2O Na2O Ti2O CdO Cr2O3PbO CuO ZnO Loss on
Ignition

WFA 22.4 4.4 0.9 - 20.2 9.56 6 4.3 10.2 0.07 0.09 0.09 0.09 0.5 21.2
P·O cement 20.8 5.6 3.8 1.8 62.1 2.8 - - - - - - - - 3.1

GGBS 34 14.9 0.5 9.8 36.9 0.3 3.6 - - - - - - - -
SF 90.8 0.21 0.62 0.23 0.44 0.2 7.5 - - - - - - - -

Quartz sand 99.8 - 0.2 - - - - - - - - - - - -

2.2. Sample Manufacturing

Table 3 shows the mixing proportions of the RPC specimens. All powder materials
were put into UJZ-15 and stirred for 30 s. After that, the uniformly mixed solution with
a water-reducing agent and water was added and mixed for another 210 s. Once the
mixing was finished, the fresh RPC paste was applied in the measurement of the slump
flow, plastic viscosity, and yield shear stress. After the measurement of the fresh RPC
paste’s working properties, the specimens with size of 40 × 40 × 160 mm3 were prepared
for the determination of flexural strength, compressive strength, and drying shrinkage
rate. Meanwhile, specimens with a size of 100 × 100 × 100 mm3 were applied in the
measurement of leaching of the toxic metal ions. The manufacturing process of RPC
specimens are shown in Figure 1.

Table 3. Mixture design of RPC per one cubic meter (kg).

Water P·O Cement WFA SF GGBS Quartz Sand Water-Reducer

244.4 740.7 0 370.3 111.1 977.9 16.3
244.4 740.7 92.6 277.7 111.1 977.9 16.3
244.4 740.7 185.2 185.2 111.1 977.9 16.3
244.4 740.7 277.7 92.6 111.1 977.9 16.3
244.4 740.7 370.3 0 111.1 977.9 16.3
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2.3. Measurement of Basic Performances

The jumping table method is used for measuring the slump flow of the fresh RPC paste.
The Brookfield rotational rheometer (Beiying Electronic Technology Co., Ltd., Shanghai,
China) was used for testing the plastic viscosity and yield shear stress. ZKS-100 mortar
setting time tester (North China Road Construction Instrument, Cangzhou, China) was used
to obtain the setting time of fresh RPC paste. The measuring process can refer to Chinese
standard JGJ/T70-2009 and references [26–28]. The flexural and compressive strengths of
specimens cured in the standard curing environment (temperature of 20 ± 2 ◦C and relative
humility of 98.4%) were tested by carbon material bending and a compression machine
provided by Jinan Liling Testing Machine Co., Ltd., Jinan, China. The flexural loading
speed and the compressive loading speed were 0.05 kN/s and 2.4 kN/s, respectively. The
sample manufacturing and measuring processes are described in GB/T 17671-1999 Chinese
standard [29]. The shrinkage rod with an ATORN electronic dial indicator manufactured
by Henderson Machinery Technology Co., Ltd., Beijing, China, supporting the middle of
one end of the rectangular specimen, was applied in the measurement of dry shrinkage
rate. When the specimen’s length varied, the value of the length change was read out by the
dial indicator. Then, the dry shrinkage rate was obtained. Before the leaching measurement
of the toxic metal ions was obtained, specimens were immersed in deionized water for
6 months. The deionized water, immersing the specimens each month, was moved to the
RIS Intrepid ER/S ICP atomic emission spectrometer for the measurement of toxic metal
ions. In this investigation, the average of six specimens’ testing parameters were used in
each experiment. Figure 2 shows the measuring process of mechanical strength.
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2.4. Thermal Analysis and Scanning Electron Microscope

The WFA and the harden RPC specimens with incinerated WFA were prepared for the
measurement of the thermogravimetric (TG) analysis and the scanning electron microscope
(SEM). Before the TG analysis, all samples were ground into powder and moved to the
WCR-123 microcomputer differential thermal analyzer (Beiguang Hongyuan Instrument
Co., Ltd., Beijing, China) to obtain the thermogravimetric curves. After being sprayed gold,
samples were moved to the FEI Quanta200 field emission scanning electron microscope
(Shousi Zhixin Technology Co., Ltd., Beijing, China) in order to acquire SEM photos.

2.5. Mercury Intrusion Analysis

Mercury intrusion curves were obtained by Antonpa mercury intrusion meter pro-
vided by Antonpa (Shanghai) Trading Co., Ltd., Shanghai, China. The diameters of the
samples used in the experiment ranged from 3.1 to 5.6 mm. The samples were removed
from the cores of the specimens.
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3. Results and Discussion
3.1. Rheological Parameters and Setting Time of Fresh RPC

Figure 3 shows the slump flow of the fresh RPC. The slump flow of the fresh RPC
increased with the increasing dosages of WFA. This was attributed to the fact that the
fineness of fly ash was higher than that of the WFA. The fly ash with a larger specific surface
area could absorb more free water. Therefore, the slump flow of fresh RPC with WFA was
higher. Moreover, the CO2-cured WFA could decrease the slump flow of fresh RPC due to
the fact that the CO2 can react with alkaline substances in the WFA, forming carbonates,
resulting in the reduction of material porosity and increasing the slump flow [30–32].

Coatings 2023, 13, x FOR PEER REVIEW 5 of 14 
 

 

sprayed gold, samples were moved to the FEI Quanta200 field emission scanning electron 
microscope (Shousi Zhixin Technology Co., Ltd., Beijing, China) in order to acquire SEM 
photos. 

2.5. Mercury Intrusion Analysis 
Mercury intrusion curves were obtained by Antonpa mercury intrusion meter pro-

vided by Antonpa (Shanghai) Trading Co., Ltd., Shanghai, China. The diameters of the 
samples used in the experiment ranged from 3.1 to 5.6 mm. The samples were removed 
from the cores of the specimens. 

3. Results and Discussion 
3.1. Rheological Parameters and Setting Time of Fresh RPC 

Figure 3 shows the slump flow of the fresh RPC. The slump flow of the fresh RPC 
increased with the increasing dosages of WFA. This was attributed to the fact that the 
fineness of fly ash was higher than that of the WFA. The fly ash with a larger specific 
surface area could absorb more free water. Therefore, the slump flow of fresh RPC with 
WFA was higher. Moreover, the CO2-cured WFA could decrease the slump flow of fresh 
RPC due to the fact that the CO2 can react with alkaline substances in the WFA, forming 
carbonates, resulting in the reduction of material porosity and increasing the slump flow 
[30–32]. 

0 25 50 75 100
0

50

100

150

200

250

300

350
11.8

14.1
12.3

11.510.4

286
272

261
243

234

11.4
12.1

10.8
11.3

9.8

273
262

251
235

The incinerated waste fly ash (%)

Sl
um

p 
flo

w
 (m

m
)

 Slump flow
 Slump flow-CO2 cured

221

 
Figure 3. The slump flow of the fresh RPC. 

The plastic viscosity of the fresh RPC is shown in Figure 4. The results of the plastic 
viscosity were the opposite to the fresh RPC’s slump flow. The addition of WFA had a 
reducing effect on the plastic viscosity. Moreover, the CO2-cured WFA could further de-
crease the plastic viscosity of fresh RPC. The slump flow of fresh RPC could be increased 
by WFA with the increasing rates of 10.3%~12.1%. Additionally, the decreasing rates of 
the plastic viscosity of fresh RPC were 21.7%~47.5%. The increasing rates of slump flow 
and the decreasing rates of plastic viscosity by CO2 curing on WFA were 7.8%~11.2% and 
13.4%~31.2%. 

Figure 5 shows the setting time of the fresh RPC. The setting time increased with the 
increasing dosage of WFA. This was attributed to the fact that the fly ash could absorb a 
higher dosage of free water than that of WFA, due to the fact that a higher dosage of free 
water can increase the distance between cement particles and water [33–35]. Therefore, 
more time was taken to form a skeleton structure, which led to an increase in the setting 
time. Moreover, as observed in Figure 5, the CO2-cured WFA can increase the setting time 
of fresh RPC. This is because CO2 curing can reduce the pores of WFA, resulting in a 

Figure 3. The slump flow of the fresh RPC.

The plastic viscosity of the fresh RPC is shown in Figure 4. The results of the plastic
viscosity were the opposite to the fresh RPC’s slump flow. The addition of WFA had
a reducing effect on the plastic viscosity. Moreover, the CO2-cured WFA could further
decrease the plastic viscosity of fresh RPC. The slump flow of fresh RPC could be increased
by WFA with the increasing rates of 10.3%~12.1%. Additionally, the decreasing rates of
the plastic viscosity of fresh RPC were 21.7%~47.5%. The increasing rates of slump flow
and the decreasing rates of plastic viscosity by CO2 curing on WFA were 7.8%~11.2% and
13.4%~31.2%.
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Figure 5 shows the setting time of the fresh RPC. The setting time increased with the
increasing dosage of WFA. This was attributed to the fact that the fly ash could absorb a
higher dosage of free water than that of WFA, due to the fact that a higher dosage of free
water can increase the distance between cement particles and water [33–35]. Therefore,
more time was taken to form a skeleton structure, which led to an increase in the setting
time. Moreover, as observed in Figure 5, the CO2-cured WFA can increase the setting time
of fresh RPC. This is because CO2 curing can reduce the pores of WFA, resulting in a higher
amount of free water and eventually leading to an increase in the setting time of fresh
RPC [36]. The increased rates of setting time, caused by the increased dosage of WFA and
the CO2 curing on WFA were 16.3%~41.7% and 11.3%~19.2%, respectively.
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3.2. Mechanical Performance

The flexural and compressive strengths of RPC with WFA are shown in Figure 6a,b.
All specimens were cured for 1 day, 3 days, and 28 days. The flexural and compressive
strengths of RPC increased with the curing time, due to the increased hydration degree.
The mechanical strengths of RPC were increased by the addition of WFA, which is because
the active substances in WFA can promote the secondary hydration of cement, leading
to an increase in the hydration degree and the amount and compactness of hydration
products, resulting in higher mechanical strength [37,38]. The specimens cured for 1 day
show 35.1%~41.3% flexural strengths of the specimens cured for 28 days. Meanwhile, the
compressive strengths of specimens cured for 1 day are 48.6%~61.2% of the specimens
cured for 28 days.

The mechanical strengths of RPC with CO2-treated WFA are shown in Figure 6c,d. The
flexural strength and compressive strength were increased by adding more CO2-treated
WFA. This was ascribed to the improved secondary hydration of cement by CO2-treated in-
cinerated WFA [39,40]. The specimens cured for 1 day show 28.3%~39.2% flexural strengths
of the specimens cured for 28 days. Meanwhile, the compressive strengths of specimens
cured for 1 day are 43.4%~57.1% of the specimens cured for 28 days. Comparing Figure 6c,d
with Figure 6a,b, the flexural and compressive strengths of RPC with conventionally treated
WFA are 93.1%~97.6% and 91.2%~96.5% of the RPC with CO2-treated incinerated waste
fly ash. This can be ascribed to the forming of carbonate by CO2 curing, which can reduce
the pores of inner incinerated waste fly ash, thus improving the mechanical strengths of
RPC [41]. Generally, the increasing effect of CO2 is inapparent. This may be ascribed to
the fact that CO2 curing can decrease the pores of raw materials, which can improve the
mechanical strength [42]. However, the CO2 curing can reduce the activity of fly ash and
garbage fly ash, resulting in strength reduction.
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Figure 6. The mechanical strengths of RPC with conventionally treated incinerated waste fly ash.
(a) Flexural strength. (b) Compressive strength. (c) Flexural strength. (d) Compressive strength.

The increasing rates of mechanical strengths are shown in Figures 7 and 8. As observed
in Figures 7 and 8, the increasing rates of mechanical strengths increase with the increasing
dosages of WFA and decrease with increased curing age. This is because the WFA can
improve the mechanical strengths of RPC. However, the WFA can increase the hydration
degree of cement in RPC and the improvement in earlier curing age is higher than that
in later curing age [43,44]. Additionally, the increasing rates of mechanical strengths of
RPC with CO2-cured WFA are lower than those of RPC with conventionally WFA, due
to the decreased activity of WFA by CO2 curing [45]. The increasing rates of flexural and
compressive strengths of RPC by WFA are 6.6%~65.6% and 4.6%~34.6%.
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waste fly ash.

3.3. The Leaching of Toxic Metal Elements

Figure 9 shows the leaching amount of toxic metal elements (Cr and Zn). The leaching
amount of toxic metal elements increased with the immersing time and the addition of
WFA. The CO2 curing can decrease the leaching amount of toxic metal elements by 76.1%
and 71.3%. This is because the WFA contains some toxic metal elements (Cr and Zn), which,
when immersed in the water for several months, the toxic metal elements seepage through
pores of RPC, thus increasing the content of toxic metal elements [46,47], while the CO2
curing can decrease the amount of leached toxic metal elements. Comparing Figure 9a with
Figure 9b, the amount of leached Zn is higher than that of leached Cr.
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3.4. Microscopic Analysis

Figure 10 shows the thermogravimetric analysis curves of WFA. Moreover, some WFA
is CO2-cured. As observed in Figure 10, the TG decreases in three steps. In the first step
(32.03~104.02 ◦C), the TG obviously decreases. The WFA can absorb some free water in
the air. The first reduction of TG is attributed to the evaporation of free water. Meanwhile,
as the temperature increases from 104.02 to 581.3 ◦C, the TG of WFA decreases. The CaO
in the incinerated waste fly ash can react with the water in the air, forming Ca(OH)2. The
increasing temperature can accelerate the decomposition of Ca(OH)2. Finally, when the
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temperature ranges from 581.3 to 712.4 ◦C, the TG continues to reduce due to the resolved
CaCO3, formed by the reaction of Ca(OH)2 and CO2.
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Figure 10. Thermogravimetric analysis curves of incinerated waste fly ash particles.

The SEM photos of WFA particles are shown in Figure 11. As observed from Figure 11,
the uncarbonated WFA particle shows smooth particle. However, the carbonated WFA
particle shows coarse particles. This is attributed to the formed CaCO3 via the reaction of
CaO and CO2. The CaCO3 absorbs on the surface of the WFA particle, which can prevent
the leakage of harmful substances from the WFA.
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particle (b) The carbonated incinerated waste fly ash particle.

The SEM photos of RPC with WFA are shown in Figure 12. As observed in Figure 12a,
the flocculent hydration product and crack are found in Figure 12a. As shown in Figure 12b,
the addition of carbonated WFA has improved the compactness of hydration products,
which indicates that the CO2-cured WFA can increase the mechanical strength by improving
the hydration products’ compactness. As obtained from Figures 11 and 12, more nanoscale
calcium carbonate is generated on the surface of the fly ash after carbonization. This part
of calcium carbonate can adsorb cement ions to promote the early hydration of cement
and improve early strength. Moreover, the calcium carbonate on the surface of WFA can
effectively strengthen the interface between WFA and cement, reducing the formation of
cracks. The addition of carbonized WFA reduces the content of rod-shaped hydration
products and promotes the transformation of rod-shaped products into dense products.
Therefore, the mechanical strengths of RPC are increased by adding the CO2-cured WFA.
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Figure 12. The SEM photos of RPC with incinerated waste fly ash. (a) RPC with incinerated waste
fly ash (b) RPC with 50% carbonated incinerated waste fly ash. (c) RPC with 100% carbonated
incinerated waste fly ash.

The mercury intrusion curve of RPC with WFA are shown in Figure 13. As illustrated
in Figure 13, the main pore diameter of the RPC with WFA ranges from 1.37~4.11 × 105 nm.
It can be found in Figure 13, that the increase in mass ratio of CO2-cured WFA leads to a
decrease in the total volume of pores (The curve areas can be used to characterize the total
volume of pores). Additionally, the increasing dosages of CO2-cured WFA decrease the
volume ratio of pores with a large diameter. These results indicate that CO2-cured WFA
can improve the mechanical strength of RPC.

Coatings 2023, 13, x FOR PEER REVIEW 11 of 14 
 

 

  
(a) (b) 

 
(c) 

Figure 12. The SEM photos of RPC with incinerated waste fly ash. (a) RPC with incinerated waste 
fly ash (b) RPC with 50% carbonated incinerated waste fly ash. (c) RPC with 100% carbonated in-
cinerated waste fly ash. 

The mercury intrusion curve of RPC with WFA are shown in Figure 13. As illustrated 
in Figure 13, the main pore diameter of the RPC with WFA ranges from 1.37~4.11 × 105 
nm. It can be found in Figure 13, that the increase in mass ratio of CO2-cured WFA leads 
to a decrease in the total volume of pores (The curve areas can be used to characterize the 
total volume of pores). Additionally, the increasing dosages of CO2-cured WFA decrease 
the volume ratio of pores with a large diameter. These results indicate that CO2-cured 
WFA can improve the mechanical strength of RPC. 

10 100 1000 10000 100000
0.00

0.05

0.10

0.15

0.20 RPC with WFA
 RPC with 50% CO2 cured WFA

 RPC with 100% CO2  cured WFA

 

Pore Diameter(nm)

Cu
m

ul
at

iv
e 

Po
re

 V
ol

um
e 

 (m
L/

g)

 
Figure 13. Relationship between pore size and mercury intake. Figure 13. Relationship between pore size and mercury intake.



Coatings 2023, 13, 709 12 of 14

4. Conclusions

In this study, the influence of incinerated waste fly ash and the corresponding CO2
curing on the rheological parameters and setting time of fresh RPC are systematically re-
searched. The mechanical properties and intrinsic mechanism are studied. The conclusions
can be summarized as follows:

The addition of incinerated waste fly ash can increase the slump flow of fresh RPC
with the increasing rates of 10.3%~12.1%. The increasing content of incinerated waste fly
ash can lead to decreasing the plastic viscosity with the decreasing rates of 21.7%~47.5%.
The mechanical strengths of RPC are improved by adding the incinerated waste fly ash.
The increasing rates of incinerated waste fly ash on the mechanical strengths of RPC is
decreased by the curing age. The increasing rates of flexural and compressive strengths of
RPC caused by incinerated waste fly ash are 6.6%~65.6% and 4.6%~34.6%.

The addition of CO2-cured incinerated waste fly ash can increase the slump flow and
decrease the plastic viscosity with the varying rates of 7.8%~11.2% and 13.4%~31.2%. The
addition of incinerated waste fly ash and the effect of CO2 curing on incinerated waste fly
ash can increase the setting time of fresh RPC with the varying rates of 16.3%~41.7% and
11.3%~19.2%. The CO2-cured incinerated waste fly ash can further improve the mechanical
strengths of RPC by decreasing the pore volumes and diameters.

The leaching toxic metal elements (Cr and Zn) are increased with the immersing time,
while the amount of Zn is higher than that of the leached Cr. CO2 curing can decrease the
leaching amount of toxic metal elements by 76.1% and 71.3%.
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