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Abstract: Ternary heterojunction photocatalysts can improve the transport and separation of pho-
togenerated electrons and holes, which could promote their reduction and oxidation properties for
environmental and energy applications. In this research, the ternary photocatalyst Ti3C2@TiO2/g-C3N4

was successfully synthesized via direct electrostatic self-assembly during hydrothermal process. Ti3C2

MXene was used to optimize the interfacial carrier transport and separation between the interfaces. The
obtained ternary heterostructured photocatalyst had a higher photocatalytic degradation performance
for removing rhodamine B (RhB) and 4-chlorophenol (4-CP). The synergistic effect of heterojunction
between g-C3N4 and TiO2 and Schottky barrier presented among TiO2 and Ti3C2 suppressed the recom-
bination of the photogenerated electron–hole pairs. Moreover, the Ti3C2 can serve as an active site for
the adsorption and activation of organic pollutants resulting from sufficient functional groups (F− here).

Keywords: Ti3C2; g-C3N4; heterojunction; photocatalyst; 4-chlorophenol

1. Introduction

Industrial wastewater seriously affects the environment due to its high concentrations
of organic pollutants and substantial toxicity [1–4]. Semiconductor photocatalysis has been
widely used to treat industrial wastewater because of its high efficiency, low consumption
and environmental friendliness [5–10]. The photocatalysis reaction process involves the
excitation, separation, transport and recombination of electron-hole pairs [11,12]. Con-
structing heterogeneous structures can separate photogenerated carriers, prolonging the
lifetime of photogenerated electron–hole pairs with increased reduction and oxidation
activities [13–18].

Two-dimensional (2D) materials own unique layered structures and excellent chemical
stability, and many researchers have focused on them [19–23]. Among all 2D layered
materials, g-C3N4 has demonstrated excellent activity in the photolytic aqua-hydrogen and
photocatalytic degradation of organic pollutants due to other excellent optical absorption
capabilities and suitable band positions [24–27]. However, the spontaneous recombination
of generated electron-hole pairs significantly limits the applications of g-C3N4 in practi-
cal photocatalysis [28]. Therefore, the fabrication of heterogeneous photocatalysts with
other semiconductors can effectively prevent the recombination of generated electron-hole
pairs leading to the promoted overall efficiency [29–31]. Various g-C3N4-based hetero-
geneous nanostructures have been synthesized to improve the separation efficiency of
photogenerated electron-hole pairs through rapid charge transfer at the interfaces [32–37].

MXene, as a new 2D transition metal carbide or carbon-nitride, was obtained by
etching the A-layer in MAX using hydrofluoric acid to obtain the MXene phase [38–41].
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Ti3C2, the most common MXene, possesses a two-dimensional graphene-like structure,
leading to its capabilities such as excellent light absorption, electrical conductivity and
good hydrophilicity [42–44]. Thus, it has been used as a cocatalyst for photocatalysis
reactions. Ti3C2 can also effectively enhance light absorption and promote the separation
of photogenerated carriers by forming Schottky junctions [45–47]. MXene-based photocat-
alysts have been investigated in many different photocatalytic applications, such as the
degradation of organic contaminants [48,49], water splitting [50,51], CO2 reduction [52,53],
NOx removal [54] and N2 fixation [55–57].

Our previous research showed TiB2-TiO2@g-C3N4 (TBCN) ternary heterojunction
composites with promoted photocatalytic degradation performances for RhB and 4-CP
removal [58]. Herein, new Ti3C2@TiO2/g-C3N4 (TC-TBCN) ternary heterostructured pho-
tocatalysts were synthesized through the direct electrostatic self-assembly of TBCN with
Ti3C2 via a hydrothermal process; the addition of Ti3C2 could effectively enhance light
absorption and promote the transfer of photogenerated carriers by forming Schottky junc-
tions with TBCN. The morphology, pore structure, phase composition, optical properties
and photocatalytic performances of the TC-TBCN photocatalysts were investigated. The
obtained ternary Ti3C2@TiO2/g-C3N4 photocatalysts could effectively improve the separa-
tion and migration efficiency of photogenerated charges, and its large surface active sites
and effective interfacial charge transfer showed a better photodegradation performance
for both rhodamine B (RhB) and 4-chlorophenol (4-CP), providing an essential idea for
degrading pollutants and treating organic wastewater. Finally, we propose the mechanism
of the photocatalytic degradation of such ternary photocatalysts.

2. Materials and Methods
2.1. Chemicals

Titanium aluminum carbide (Ti3AlC2) powders were purchased from Laizhou Kai
Ceramic Materials Co., Ltd. (Yantai, China). Hydrofluoric acid (HF, 40%), titanium boride
(TiB2), melamine (C6H6N6, ≥ 99.0%), anhydrous ethanol (C2H5OH), rhodamine B (RhB),
4-chlorophenol (4-CP), silver nitrate (AgNO3), isopropyl alcohol (IPA), benzoquinone (BQ)
and disodium ethylenediaminetetraacetate (EDTA-2Na) were all purchased from Aladdin
Chemical Reagent Co., Ltd. (Shanghai, China). All chemical reagents were of analytical
grade (AG) and used without other treatments in our experiments.

2.2. Synthesis of Catalysts
2.2.1. Synthesis of TBCN

Our previous research reported on TiB2-TiO2@g-C3N4 (TBCN) composites with core-
shell structures, the synthesis process of which is presented in Figure 1 [58]. The mass ratio
of TiB2 to melamine was 1:100 in this experiment. Firstly, 0.1 g TiB2 and 10 g melamine
powders were ground for 10 min to form a uniform mixed powder. Then, the obtained
gray powder was transferred to a crucible with a cover and wrapped using aluminum foil,
and then it was calcinated at 550 ◦C for 5 h in a muffle furnace in air. g-C3N4 was grown in
situ on the TiB2 surface, making a g-C3N4 coating on the TiB2 core, and the products were
obtained after washing and drying, here named TBCN.

2.2.2. Synthesis of Ti3C2

As shown in Figure 1, 1.0 g of Ti3AlC2 powder (MAX phase) was put in a PTFE reactor;
then, 20 mL of a 40% HF solution was added for etching the Al layer. The solution was
stirred for 3 days at room temperature. Then, the pH of the obtained suspension could be
tuned to pH ≥ 6 using lots of deionized (DI) water. Finally, the resulting black Ti3C2Fx
powder was dried in an oven after washing with ethanol through centrifugation for use in
the next step.
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Figure 1. Schematic of the synthesis process for TC-TBCN composite.

2.2.3. Synthesis of TC-TBCN

The TC-TBCN was synthesized via a hydrothermal process, as shown in Figure 1,
where 0.2 g of TBCN powder and a given amount of Ti3C2Fx powder were added into
60 mL of DI water under stirring, followed by ultrasonication to obtain the dispersed
suspension. Then, the suspension was transferred to a Teflon-lined stainless-steel autoclave
and maintained at 120 ◦C for 12 h. A solid yellow powder deposited at the bottom was
collected and washed thoroughly with deionized water after the autoclave cooled down.
The final TC-TBCN products were obtained after drying in a vacuum drying oven. The
mass ratios of Ti3C2Fx and TBCN were 0 wt%, 1 wt%, 2.5 wt%, 5 wt% and 10wt%, and were
designated as 1-TBCN, 1TC-TBCN, 2.5TC-TBCN, 5TC-TBCN and 10TC-TBCN, respectively.

2.3. Characterization

The morphologies of the obtained products were conducted on scanning electron
microscopy (SEM, FEI Quanta FEG 250, Hillsboro, OR, USA) and transmission electron
microscopy (TEM, JEOL JEM-2100, Tokyo, Japan). An X-ray diffraction spectrometer
(XRD, Bruker D8 ADVANCE, Karlsruhe, Germany) was used to determine the crystal
phases. The synthesized photocatalysts’ surface composition and elemental chemistry
were measured on an X-ray photoelectron spectrometer (XPS, Thermo Scientific K-Alpha+,
Waltham, MA, USA) equipped with a monochromatic Al K α X-ray source (1486.6 eV).
The XPS spectra were calibrated with the C1s peak of amorphous carbon (284.6 eV) and
fitted using XPSPEAK 4.1 software. The UV-Vis absorption spectra were obtained with a
UV-Vis spectrophotometer (UV-Vis, Shimadzu UV2600, Kyoto, Japan). A specific surface
area analyzer (JW-BK200B, Beijing JWGB Sci&Tech Co., Ltd., Beijing, China) was used to
determine the Nitrogen adsorption-desorption isotherms, and the specific surface area and
pore size distribution were obtained based on the Brunauer-Emmett-Teller (BET) method
and Barret-Joyner-Halenda (BJH) method. Fourier transform infrared spectra (FTIR) were
obtained using a FTIR spectrophotometer (Thermo Scientific Nicolet iS50, Waltham, MA,
USA), equipped with an ATR accessory.

2.4. Photocatalytic Performance Measurements

RhB and 4-CP were used as target pollutants to evaluate the photocatalytic ability
of the obtained photocatalysts in a Pyrex reactor with a volume of 57.5 mL. The detailed
experiment was as follows: In total, 20 mg of the photocatalyst was dispersed in 36 mL
DI water under sonication for 2 min; then, 4 mL of 100 ppm RhB or 4-CP solution was
added and stirred in the dark for 30 min to establish an adsorption-desorption equilibrium
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of the pollutants. The light source for the photoreaction was a 300 W Xe lamp equipped
with a VisREF filter (350 nm–780 nm). The reacted solution was magnetically stirred during
the photocatalytic reaction. In total, 1.0 mL sample suspensions were taken from the reactor
intermittently in specific time intervals and filtered through a 0.22 µm pore-sized PTFE syringe
filter to determine the removal rate of the pollutants. A UV–Vis spectrophotometer (Shimadzu
UV2600, Kyoto, Japan) was used to determine the absorbance of the resulting RhB solution
at the characteristic wavelength (554 nm). The changes in absorbance values quantitatively
were used to calculate the degradation percentage. In contrast, the 4-CP concentration was
determined on a high-performance liquid chromatography system (HPLC, LC-2030Plus,
Shimadzu, Kyoto, Japan) equipped with a Shim Pack C18 column using a UV-Vis detector
(measurement details: column temperature: 35 ◦C; mobile phase: acetonitrile-0.1 vol. % acetic
acid 60:40 (v:v); flow rate: 1.0 mL/min; detect wavelength: 280 nm). Incidentally, the Cl−

was also determined using the ion chromatograph (IC, Shine CIC-D120, Qingdao, China)
equipped with a Shine SH-AC-3 column with conductivity detection (measurement details:
mobile phase: column temperature: 35 ◦C; 2.4 mM Na2CO3 + 1.0 mM NaHCO3 aqueous
solution; flow rate: 1.0 mL/min; current: 30 mA;). Finally, photocatalytic efficiency was
calculated according to the concentration changing (C/C0), where C and C0 are the measured
and initial concentrations of RhB and 4-CP, respectively. The final degradation efficiency of
RhB could be calculated according to the Lambert-Beer law.

3. Results
3.1. Structure Characterization
3.1.1. Structure and Composition of Ti3C2

Scanning electron microscopy (SEM) was used to investigate the morphologies of the
MAX and MXene phases. As shown in Figure 2, the Ti3AlC2 powders were measured with
any other treatments. As shown in Figure 2a, the original Ti3AlC2 MAX possessed an irreg-
ular blocky layered structure. After HF etching, the Ti3C2 MXene exhibited a nanosheet-like
layer structure, with some thin nanosheets clearly shown in Figure 2b, which was signifi-
cantly different from the MAX phase, indicating that the HF etching could remove the Al
atom layer sandwiched in between the MAX layers [59].
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Figure 2. SEM images of Ti3AlC2 before (a) and after (b) HF etching for 72 h.

Figure 3a shows the XRD patterns of the Ti3AlC2 before and after being etched in the
HF solution. The diffraction peaks of the Ti3AlC2 located at 9.5◦, 19.2◦, 35.9◦, 38.8◦ and 41.7◦
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belonged to the different crystal planes (002), (004), (101), (104) and (105), respectively. The
characteristic peaks of Ti3AlC2 located at 9.5◦ and 19.2◦ shifted to lower angles, and the
intensity was decreased after HF etching [60]. The highest diffraction peak at 38.8◦ from the
(104) crystal plane disappeared, indicating the successful preparation of Ti3C2 via a complete
Al layer etching [61]. In addition, the red curve was the XRD pattern of the Ti3C2Fx MXene
sample. The peaks matched well with those of Ti3C2Fx synthesized by others [62].
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An XPS measurement was used to investigate the elemental composition and surface
chemical environment of the Ti3C2 MXene sample. Figure 3b depicts the XPS survey spectra
of Ti3C2, which confirmed the presence of C, Ti, O and F elements. The presence of F and O
in Ti3C2 obtained from the HF etching indicated surface termination (Ti3C2(OH)2, Ti3C2Fx),
because the enhanced surface activity of Ti3C2 after the Al layer etching led to reactions
with the surrounding −O or −F [63]. Figure 3c shows the high-resolution Ti 2p XPS spectra,
the peaks were corresponding to Ti−C, indicating that the Ti−C binding signal resulted
from the Ti atoms in the interior of the MXene layers. As shown in Figure 3d, the C1s
spectra mainly exhibited two peaks ascribed to the C−C (284.6 eV) and C−Ti (281.3 eV)
bonds [61]. As shown in Figure 3e, the O1s spectra showed three peaks ascribed to Ti−O
(529.9 eV), C−O−Ti (530.9 eV) and C−Ti−OHx (531.9 eV) [64]. The F 1s spectra in Figure 3f
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showed the presence of Ti−F−C bonds located at 684.4 eV and Ti−F−Ti bonds located at
685.6 eV [65]. Overall, the surface of Ti3C2 contained −O and −F surface functional groups.

3.1.2. Structure and Composition of TC-TBCN

Figure 4 shows the morphologies of the TC-TBCN samples. All samples were irreg-
ularly shaped powders, and the size of the powders was not uniform, but fine granular
materials were coated on the surface. As shown in Figure 4a,b, the size of the 0TC-TBCN
sample was smaller than that of TBCN, which indicated the partial decomposition and
recrystallization of TBCN during the hydrothermal process. Compared with TBCN, the
roughness of the obtained TC-TBCN samples significantly increased after the hydrothermal
treatment. Ti3C2 will be partially decomposed and recrystallized during the hydrothermal
process. Thus the accordion-like Ti3C2 could not be observed in the low-content samples
(1TC-TBCN and 2.5TC-TBCN), as shown in Figure 4c,d. In addition, the further increased
Ti3C2 content significantly affected the composites’ morphology. The accordion-like struc-
tures could be observed in the 5TC-TBCN and 10TC-TBCN samples, as shown in Figure 4e,f.
C3N4 and TiO2 were coated on Ti3C2. Figure 5 shows the TEM images of the 5TC-TBCN
sample. The small crystal particles with clear TiO2 lattice fringes were grown on the surface
by transforming Ti3C2 into TiO2 through a hydrothermal reaction.
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An XPS measurement was also used to investigate the surface chemical environment
of the 5TC-TBCN sample. Figure 6a depicts the XPS survey spectra of 5TC-TBCN, which
confirmed that the elements (C, N, Ti, O and F) existed in the sample. The high-resolution
Ti 2p XPS spectra in Figure 6b were shown to possess two peaks of Ti 2p3/2 and Ti 2p1/2
that were deconvoluted into two components, Ti−C and Ti−O, indicating the presence
of Ti3C2 and TiO2 in the TC-TBCN sample. The high-resolution C1s spectrum shown in
Figure 6c mainly exhibited four peaks. The peak located at 281.3 eV could be ascribed
to the C−Ti of Ti3C2, and the peaks at 284.6 eV, 286.4 eV and 288.6 eV were assigned
to the C−C, C−NH2 and N−C = N bonds in the aromatic skeleton rings of g-C3N4,
respectively. For the N1s spectrum in Figure 6d, the spectrum was fitted into three peaks,
the peak at 400.9 eV was ascribed to the C−N−H functional groups, the peaks detected
at a binding energy of 399.60 eV was ascribed to tertiary N−(C)3 and the peak observed
at 398.51 eV corresponded to the C−N = C coordination from the sp2-bonded N in the
triazine rings of g-C3N4 [58]. Moreover, the intensities of these peaks differed from those of
g-C3N4 obtained via calcination of melamine, which also indicated that the decomposition
and recrystallization of TBCN happened during the hydrothermal process. As shown in
Figure 6e, the O1s spectrum showed two peaks at 529.9 eV and 531.9 eV, ascribed to Ti−O
and H−O−H from the H2O/O2 adsorption, respectively. The Ti−O bonds confirmed the
formation of TiO2, which was consistent with the TEM data. No obvious peak in the B 1s
XPS spectrum (Figure 6f) indicated that the TiB2 remaining in the TBCN sample would react
with water during the hydrothermal process. The F 1s XPS spectrum is shown in Figure 6f,
with peak v at 685.3 eV corresponding to the Ti−F binding energy. The F 1s spectrum in
Figure 3f showed the presence of Ti−F bonds at 685.5 eV, confirming the presence of Ti3C2
remaining in the TC-TBCN sample.
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Figure 7a shows the XRD patterns of the obtained products. The diffraction peaks at
26.5◦ and 13.2◦ were consistent with the (002) and (001) planes of g-C3N4 (PDF#87–1526).
Such typical characteristics of interlayer stacking structures indicated the presence of g-
C3N4 in the TBCN and TC-TBCN samples. The characteristic diffraction peaks of TiB2 were
located at 34.1◦, 44.4◦, 61.1◦, 68.1◦ and 68.3◦, corresponding to the (100), (101), (110), (102)
and (111) planes of TiB2 (PDF#35-0741), respectively. The peaks located at 27.4◦, 54.3◦ and
56.6◦ corresponded to the (110), (211) and (220) planes of rutile (PDF#21-1276), indicating
that TiB2 could be partially oxidized into rutile TiO2 during the thermal treatment at 550 ◦C.
It should be noted here that the most prominent peak located at approximately 26~28◦

was the mixed peak from the (002) plane of g-C3N4, the (001) plane of TiB2 and the (110)
plane of rutile TiO2. Incidentally, the peak at approximately 18.0◦ was related to the carbon
phase through the calcination of melamine. All the peaks of g-C3N4, TiB2 and rutile TiO2
decreased with the Ti3C2 addition increasing, while the intensities of the peaks located at
25.3◦, 36.9◦, 48.0◦ and 53.9◦ corresponded to anatase TiO2 (PDF#21-1272) increased with
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the Ti3C2 addition increasing, indicating that the Ti3C2 or TiB2 remaining in TBCN were
partially transformed into anatase TiO2 during the hydrothermal process.
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3.1.3. N2 Sorption Isotherms and Pore Size Distributions

Figure 7b shows the products’ N2 adsorption-desorption isotherm and pore size
distribution plots. The hysteresis loop was of type A, consistent with cylindrical pores.
The isotherm’s desorption branch could be used to determine the pore size distribution
using the Barrett-Joyner-Halenda (BJH) method [58]. The detailed BET surface areas, total
pore volumes and average pore diameters of the obtained samples are shown in Table 1.
As shown in Table 1, adding TiB2 brought along the growing site for g-C3N4, enabling
the TBCN samples to process larger surface areas than g-C3N4. The addition of Ti3C2
slightly affected the surface areas, and the recrystallization of TBCN led to a shell coated
on Ti3C2. Thus, the appropriate amount of Ti3C2 addition brought about proper growing
sites, enabling an increased large surface area. 5TC-TBCN had a specific surface area of
approximately 22.034 m2/g, and the smallest average pore size among all the samples.

Table 1. BET surface areas, total pore volumes and average pore sizes of the obtained products.

Sample BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Size
(nm)

g-C3N4 10.937 0.096 5.223
TBCN 17.384 0.138 3.650

0TC-TBCN 16.829 0.129 3.626
1TC-TBCN 17.231 0.140 3.788

2.5TC-TBCN 16.156 0.137 3.728
5TC-TBCN 22.034 0.106 3.447
10TC-TBCN 15.828 0.142 3.659
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3.1.4. Optical Absorption Performances of the Samples

The photocatalytic performance of photocatalysts is highly dependent on the light
absorption properties of the materials. Figure 7c shows the diffuse reflection absorption
spectra of different products. The absorption in 500~1400 nm was enhanced with the increase
of Ti3C2 content, thus, improving the utilization of visible light during the photocatalytic
degradation. However, the Ti3C2 addition did not change the absorption edge of TBCN.
Combined with the SEM and XPS results analysis, the added Ti3C2 only partially converted
to TiO2, and some of them remained as the TC-TBCN products, resulting in an enhanced
absorption in 500~1400 nm. Meanwhile, more Ti3C2 would be present in the final product
with the increase in Ti3C2 addition, and, thus, the light absorption abilities in the visible
region increased. Moreover, Ti3C2 increased the light absorption and created a charge transfer
channel in the composite photocatalysts. Furthermore, the optical band gap was estimated
by applying Tauc’s equation. The curves in Figure 7d were obtained using Tauc’s formula
[(Ahν) = B(hν − Eg)n] (n = 2 for indirect transitions). The values of optical band gaps were
1.16, 2.78, 2.78 and 2.80 eV for Ti3C2, TBCN, 5TC-TBCN and C3N4, respectively.

3.2. Photocatalytic Activity

The photocatalytic performance was evaluated from the degradation of RhB and
4-CP under light irradiation in the solution. The data are presented in Figure 8a, with
the photocatalysts with different additions showing some differences after 120 min of light
irradiation, and their photocatalytic degradation activities increased first and then decreased
with the increased Ti3C2 content. Figure 8b shows the corresponding kinetic fitting curves,
which conformed to the pseudo-first-order kinetics. The degradation rate constants (k) of RhB
could be calculated from the curves and are shown in Table 2. The 5TC-TBCN displayed the
highest k value of RhB (0.01575 min−1). Thus, the addition of Ti3C2 was favorable for the
photodegradation of RhB. As expected, the photocatalytic activity of the TC-TBCN sample
was higher than that of the absolute g-C3N4 and TBCN samples due to the introduction of
Ti3C2, resulting in an enhanced light absorbance and a centered electron acceptor. The cyclic
stability of the photocatalysts during practical application was also essential. The cycling
degradation of RhB was conducted to measure the recyclability and stability of 5TC-TBCN.
As shown in Figure 8c, RhB could maintain a high removal rate, and no significant decrease
could be observed after five cycles under the same conditions. Generally, photogenerated
holes and electrons can be transferred to the catalyst surface or interface to accede to the
oxidation and reduction reactions in the photocatalytic process. Furthermore, to prove the
contribution of different reactive groups to the photocatalytic degradation of RhB, isopropyl
alcohol (IPA), benzoquinone (BQ), disodium ethylenediaminetetraacetate (EDTA-2Na) and
silver nitrate served as trapping agents for the hydroxyl groups (OH), superoxide anion (O2−),
photogenerated holes (h+) and electrons (e−), respectively. As shown in Figure 8d, the removal
efficiency of RhB decreased to 14%, 23%, 23%, 34% and 40% in the presence of IPA, EDTA-2Na,
N2, BQ and AgNO3, respectively. The degradation rate of RhB was limited in the presence of
these scavengers.

Furthermore, the stability of the sample was also confirmed by using FTIR. The
samples were obtained from a hydrothermal process, which indicated their excellent
stability in water, even hot water. Therefore, FTIR was better for checking the surface
change after the photocatalytic reaction. The FTIR spectra are shown in Figure 9. The
spectral patterns in 1100–1750 cm−1 corresponded to the aromatic C−N stretching vibration
and C=N stretching vibrations from C3N4 [33,66]. Furthermore, the tri-s-triazine unit band
was observed at approximately 810 cm−1, and the N−H stretching and O−H stretching
broad vibration bands from the adsorbed H2O were observed at 2800–3350 cm−1 [67].
There were no significant differences in the curves, indicating no great changes after the
photocatalytic reactions.
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A similar photocatalytic performance was also conducted in photocatalytic degrada-
tion (oxidation) of 4-CP, and the time profiles of the concentrations of 4-CP and Cl− are
presented in Figure 10. The measurements began after continuously stirring for 30 min
under dark conditions to reach the adsorption equilibrium. HPLC and IC were used to
determine the removal of 4-CP, and the data from HPLC and IC were consistent [68]. The
TC-TBCN samples showed a similar photocatalytic degradation (oxidation) performance
with RhB degradation, and 5TC-TBCN also showed the highest degradation efficiency of
4-CP, indicating that adding Ti3C2 was also helpful for the photodegradation of 4-CP. As
shown in Figure 10, 4-CP and Cl− concentrations were very stable after 120 min of light
irradiation alone without the presence of photocatalysts as the blank experiment, showing
that 4-CP was hardly self-degradable [10].

Coatings 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

Table 2. Degradation rate constant (k) values of RhB for different photocatalysts. 

Sample k 
g-C3N4 0.0104 
TBCN 0.01312 

0TC-TBCN 0.00974 
1TC-TBCN 0.01202 

2.5TC-TBCN 0.01291 
5TC-TBCN 0.01575 
10TC-TBCN 0.00653 

A similar photocatalytic performance was also conducted in photocatalytic degrada-
tion (oxidation) of 4-CP, and the time profiles of the concentrations of 4-CP and Cl− are 
presented in Figure 10. The measurements began after continuously stirring for 30 min 
under dark conditions to reach the adsorption equilibrium. HPLC and IC were used to 
determine the removal of 4-CP, and the data from HPLC and IC were consistent [68]. The 
TC-TBCN samples showed a similar photocatalytic degradation (oxidation) performance 
with RhB degradation, and 5TC-TBCN also showed the highest degradation efficiency of 
4-CP, indicating that adding Ti3C2 was also helpful for the photodegradation of 4-CP. As 
shown in Figure 10, 4-CP and Cl− concentrations were very stable after 120 min of light 
irradiation alone without the presence of photocatalysts as the blank experiment, showing 
that 4-CP was hardly self-degradable [10]. 

 
Figure 10. (a,b) Time profiles of 4-CP and Cl− concentration during 4-CP removal in the presence of 
different photocatalysts under light irradiations: [catalyst] = 0.5 g/L; [4-CP]0 = 10 ppm. 

4. Discussion 
The photocatalyst mechanism was investigated by adding different scavengers dur-

ing the RhB photodegradation process. The TC-TBCN samples obtained from the hydro-
thermal treatment of Ti3C2 and TBCN showed excellent photocatalytic degradation activ-
ity for RhB and 4-CP. Finally, we proposed the mechanism of TC-TBCN for photocatalysis 
based on the characterization and photocatalytic performances, as shown in Figure 11 
[58,69]. Both g-C3N4 and TiO2 could produce electrons and holes under light irradiation, 
and the addition of Ti3C2 enhanced the light absorbance capability of the TC-TBCN sam-
ples. Figure 10 delineates that the photogenerated electrons on the conduction band (CB) 
of g-C3N4 would be delivered to the CB of TiO2 and further transferred to the Ti3C2. Ti3C2 
could act as an intermediate electron acceptor for photogenerated electrons [70,71]. The 
accumulated electrons on Ti3C2 could be associated with the adsorbed oxygen reaction to 
induce the •O2− active groups for involvement in RhB and 4-CP removal. However, some 
photogenerated holes on the valence band (VB) of g-C3N4 would combine with the accu-
mulated electrons on Ti3C2. Moreover, the electric field of Ti3C2 and TiO2 caused a space 
charge layer near the Ti3C2/TiO2 interface, resulting in a bending ‘upward’ VB and CB in 

Figure 10. (a,b) Time profiles of 4-CP and Cl− concentration during 4-CP removal in the presence of
different photocatalysts under light irradiations: [catalyst] = 0.5 g/L; [4-CP]0 = 10 ppm.

4. Discussion

The photocatalyst mechanism was investigated by adding different scavengers during
the RhB photodegradation process. The TC-TBCN samples obtained from the hydrothermal
treatment of Ti3C2 and TBCN showed excellent photocatalytic degradation activity for
RhB and 4-CP. Finally, we proposed the mechanism of TC-TBCN for photocatalysis based
on the characterization and photocatalytic performances, as shown in Figure 11 [58,69].
Both g-C3N4 and TiO2 could produce electrons and holes under light irradiation, and
the addition of Ti3C2 enhanced the light absorbance capability of the TC-TBCN samples.
Figure 10 delineates that the photogenerated electrons on the conduction band (CB) of
g-C3N4 would be delivered to the CB of TiO2 and further transferred to the Ti3C2. Ti3C2
could act as an intermediate electron acceptor for photogenerated electrons [70,71]. The
accumulated electrons on Ti3C2 could be associated with the adsorbed oxygen reaction
to induce the •O2

− active groups for involvement in RhB and 4-CP removal. However,
some photogenerated holes on the valence band (VB) of g-C3N4 would combine with the
accumulated electrons on Ti3C2. Moreover, the electric field of Ti3C2 and TiO2 caused
a space charge layer near the Ti3C2/TiO2 interface, resulting in a bending ‘upward’ VB
and CB in the ternary photocatalysts. The Schottky barrier at the interfaces between
TiO2 and Ti3C2 inhibited the electron-hole pair recombination, resulting in prolonged
electron lifetimes. Thus, the amounts of holes at the VB of TiO2 would react with H2O to
form hydroxyl radicals (OH) on the heterogenous photocatalyst’s surface, which could
efficiently oxidize organic pollutants via the holes at the VB of TiO2 into small intermediates,
or directly into end products (CO2 and H2O) [41,61]. The g-C3N4/TiO2 heterojunction
and Schottky barrier between TiO2 and Ti3C2 boosted the transfer and separation of
the photogenerated carriers, thus, suppressing their recombination [49]. Moreover, the
sufficient functional groups on Ti3C2Fx t could provide active sites for adsorbing and
activating organic pollutants. The enhanced charge separation efficiency could prolong
the lifetime of the photogenerated carriers and produce more active species; the abundant
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functional groups of the 5TC-TBCN sample provided more active sites, thus, efficiently
degrading RhB and 4-CP [54].
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5. Conclusions

In this research, ternary heterogeneous Ti3C2@TiO2/g-C3N4 photocatalysts were
synthesized through electrostatic self-assembly using a hydrothermal method. The obtained
ternary photocatalysts presented a higher photodegradation performance for RhB and 4-CP.
The results showed that Ti3C2 could construct n-type Schottky heterojunctions between
g-C3N4 and TiO2, accepting the photogenerated electrons from the CB of g-C3N4; the
multiple built-in electric fields also enhanced the charge transfer and suppressed the
recombination of electron-hole pairs, resulting in an enhanced charge separation efficiency.
The Schottky barrier between TiO2 and Ti3C2 could also boost the transfer and suppress
the recombination. Moreover, the sufficient functional groups in Ti3C2Fx could serve as
active sites, which was beneficial for the adsorption and activation of organic pollutants.
Thus, the 5TC-TBCN sample process enhanced the photocatalytic degradation of RhB and
4-CP. Ternary heterojunctions such as the one in this study could be efficient photocatalysts
in degrading pollutants from organic wastewater.
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