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Abstract: A copper/Q235 steel/copper composite block with excellent bonding interfaces was
prepared by explosive welding which was a promising technique to fabricate laminates. The mi-
crostructure and mechanical properties of the interfaces were investigated via the tensile-shear test,
optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and electron
back-scattered diffraction (EBSD). The results showed that the shear strength of the upper-interface
and lower-interfaces of the welded copper/steel are higher than ~235 MPa and ~222 MPa, respec-
tively. The specimens failed fully within the copper and not at the bonding interface. It was attributed
to: (1) no cavities and cracks at the interface; (2) the interface formed a metallurgical bonding in-
cluding numerous ultra-fine grains (UFGs) which can significantly improve the plastic deformation
coordination at the interface and inhibit the generation of micro-cracks.

Keywords: copper/steel/copper composite; explosive welding; microstructure; shear behavior;
interface

1. Introduction

Copper-steel composite laminates combine the excellent electrical/thermal conductiv-
ity of pure copper with the high strength and corrosion resistance of steel, and have a wide
application in many fields, such as nuclear island cooling systems, vacuum chamber heat
exchange systems, copper electrolytic refining equipment [1–3]. Good metallurgical bond-
ing of copper and steel has been challenging due to the large melting point difference and
low mutual solubility. Traditional copper/steel composite laminate preparation methods
mainly include accumulative rolling [4], diffusion welding [5], magnetron sputtering [6],
and casting [7]. Compared with the processes mentioned above, explosive welding is
an effective process to weld two or more dissimilar laminates, when there are distinct
differences in metal properties such as melting point, strength and so on [8]. Explosive
welding is a metallurgical process that uses the shock wave generated by the explosion
of explosives to subject the metal to a high-speed impact and bond it in a short period of
time. Of course, there are many factors that can affect the quality of welding, such as the
falling speed of the flyer plate, static angle, bending angle, burst speed of the explosive, the
thickness and nature of the flyer plate and substrate [9,10].

The bonding interface has a decisive influence on the mechanical properties of the
welded composites. This is because failure often occurs near the weld interface. The
development of industry also places higher desire on explosive welding: (1) revealing
failure mechanisms of composite materials at the welded interface; (2) improving the
bonding strength of welded composite materials.
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Presently, most studies on explosive welding are focused on the wave morphology,
bonding strength, and microstructure at the interface of two welded dissimilar metals [10–12].
The bonding interface of explosive welding is often wavy, and the periodic fluctuation of
shear stress is considered to be an important factor [13]. Gao et al. [14] investigated the
effect of stand-off distance on the bonding strength and microstructure of Al/Ni sheets,
and found that with the increasing of stand-off distance, the welded interface becomes
more undulating, showing in turn straight, wavy and continuously melted. Zhou et al. [8]
employed tensile shear test with in-situ scanning electron microscope (SEM) to investi-
gate the interfacial bonding properties of the Q235/TA2 composite plate and micro-cracks
generation and propagation in the welded interface. The results suggested that failure
of the interface is the combination of the cavities, micro-cracks, and brittle intermetallic
compounds. Under the tensile-shear condition, micro-cracks develop at the welded inter-
face, associate, and subsequently develop along the interface wave direction. In order to
increase the interfacial bonding of explosive welding, friction stir processing (FSP) was
used as a means of optimization [11]. The FSP not only reduces defects at the interface,
but introduces the formation of nano-grains during stirring, which significantly improves
the bonding strength of the interface. Ismail et al. [15] found that the addition of carbon
nanotubes (CNTs) between two plates increases the resistance of the solder joint to the blast
wave. Based on the above studies, it can obviously be found that many efforts were devoted
to exploit the interfacial microstructures and improve the interface bonding strength for the
explosive welded composite with two kinds of dissimilar metals. In general, relatively little
effort has been devoted to fabricate multi-layered composites via explosive welding, espe-
cially for a widely used copper-steel composite, while the microstructure and properties of
the weld interfaces are worth exploring.

In this work, a three-layered copper/Q235 steel/copper block was fabricated by an
explosive welding technique. The interfacial microstructure and shear behavior of the
copper/Q235 steel/copper block were clearly explored and revealed.

2. Experimental

Ordinary carbon structural steel plates (Q235, C-0.125, Si-0.072, Mn-0.145, P-0.017,
S-0.015, Fe-balance in wt.%) and pure copper (Fe-0.003, Si-0.028, S-0.004, Cu-balance in
wt.%) plates were selected. All plates had the same dimensions in 110 × 110 × 3 mm3.
The commonly used parallel type preparation was employed to prepare copper/Q235
steel/copper composite as schematically revealed in Figure 1a above and all explosions
took place in a sand pool. An ammonium nitrate fuel oil (ANFO) mixture having a
density of 0.90 g/cm3 was selected as the explosive material. The explosive material with a
detonation velocity of 2200 m/s and a thickness of 65 mm was placed on a Cu plate. The
stand-off distance was 6 mm. Under the action of the explosion, the flyer plate near the
detonation point was accelerated to collide with the lower plate at an angle and forming a
welded interface, as shown in Figure 1a below. After explosive welding, the thicknesses
of the three plates from top to bottom were ~2.65 mm (copper), ~2.9 mm (Q235 steel) and
~2.9 mm (copper), respectively, two interfaces were referred to as upper-interface and
lower-interface.

The mechanical properties and microstructure of explosion welded composites tend to
differ along the direction of explosive wave propagation, especially the position near and
far from the detonation point. Therefore, the samples used in this experiment were strictly
cut from the same position of the composite. All mechanical tests and microstructure
observations were performed on samples cut in the direction perpendicular to explosion
direction from laminates.

X-ray diffraction (XRD) measurements were carried out on a Bruker AXS D8 diffrac-
tometer with Cu Kα radiation. The 2θ angle was selected from 40◦ to 100◦ and the scanning
speed was 6◦ min−1. Electron back-scattered diffraction (EBSD) analysis was performed on
a field emission SEM (Quant 250FEG, FEI, America) equipped with a fully automatic Ox-
ford Instruments Aztec2.0 EBSD system (Channel 5 Software, Oxford Instruments, England,
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Oxford). The scanning step size and accelerate voltage were 1.5 µm and 20 kV, respectively.
The fracture surfaces of specimens were also investigated by this equipment.
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Figure 1. Schematic diagram of the experimental setup for explosive bonding process (a) and double
notched tensile-shear specimen (b); the tensile-shear specimens (c).

The tensile-shear tests on the explosion-welded upper-interface and lower-interface
were performed using an AGS-X100KN electronic universal tester (Shimadzu, Kyoto, Japan)
with a movement speed of 1 mm/min. Tensile-shear specimens with a thickness of 1 mm
were cut as parallel to the bonding interface from the explosively welded copper and Q235
steel plates by wire-electrode cutting and processed according to the standard of American
Society for Testing and Materials (ASTM A265-03), as shown in Figure 1b,c. The specimens
were notched with a width of 1 mm at two edges. It should be noticed that in this study, the
form of the interface close to the explosive layer varies more significantly with the upper
copper plate than with the interface far from the explosive layer. Both shear strength of
the upper-interface and lower-interface of the bonding composites were considered in this
work. During tensile-shear tests, the load was continuously applied to the specimen until
failure fully occurred.

3. Results and Discussion

As shown in Figure 2a,b, the metallographic results of the initial microstructure
indicate that pure copper has equiaxed grains with a mean size of ~17 µm, and Q235
steel (mean grain size of ~14 µm) is composed of a homogeneous mixture of ~90% ferrite
(white part in Figure 2b) and ~10% pearlite (black part in Figure 2b). It is well known that
pearlite is a mechanical mixture of alternating lamellar ferrite and Fe3C [16,17]. According
to the XRD results (Figure 2c), there is no other types of tissue in the matrix of both pure
copper and Q235 steel. It should be noted that by comparing the PDF card (PDF#06-0696),
the four diffraction peaks in the figure corresponded to the (110), (200), (211) and (220)
diffraction peaks of the ferrite. This is mainly because the Fe3C in the matrix was too small,
so there was no obvious diffraction peak. The XRD results for the ND (normal direction
of rolling) plane of the copper plate are shown in Figure 2c (marked in red). Compared
with the XRD spectra of standard annealed copper (PDF#65-9743), it can be found that
the (110) and (100) diffraction peaks at the ND plane have an increased percentage of
intensity. This is attributed to the fact that copper sheets in the rolled state usually have a
strong brass texture ({110}<112>) which indicates that the {110} crystalline plane parallel to
the ND plane and the <112> crystal direction parallel to the RD (rolling direction). After
annealing treatment, although the grains recrystallize and become equiaxed, part of the
crystallographic orientation of grains is inherited [18].
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Figure 2. Optical microscope images of pure copper (a) and Q235 steel (b) in the initial state, X-ray
diffraction analysis on the copper and steel plates (c).

Figure 3a shows the metallographic results of the welded sandwich copper/Q235
steel/copper composites which indicates that the bonding interfaces have high quality
joining without defects in forms of pores and micro-cracks. As with other other explosively
dissimilar welded joints [2,19,20], upper-interface and lower-interface both have wavy
morphology. When the explosion energy is certain, with the increase in stand-off distance,
straight, wavy and continuously melted interface will be obtained in order [14]. The
flyer plate is in an accelerated state before it touches the substrate, thus, when the stand-
off distance is larger, the kinetic energy of the flyer plate will be transformed into heat
energy near the interface [3,11,14]. Such sinusoidal shape of the interfaces can hinder the
propagation of cracks and increase the strength of the welded dissimilar layers [20,21]. The
upper-interface is more undulating than the lower-interface, and the measured average
wavelength and amplitude of the upper-interface waves are 290 ± 20 µm and 75 ± 5 µm,
respectively, those of the lower-interface are 231 ± 18 µm and 41 ± 3 µm. It may be due to
the fact that the upper-interface has higher energy. In addition, there is a small amount of
penetration at the upper interface, and it can be found from the energy dispersive X-ray
detector (EDX) results (marked by black arrows in Figure 3b). This phenomenon suggests
that the vortex is a melted zone. This could be attributed to the following reasons. Despite
the fact that the copper has a very high value of heat conductivity, there was not enough
time for the heat generated by the collision to be transferred to other position with lower
temperatures at the moment of the explosion. The rapidly increasing temperature resulted
in part of the copper and Q235 steel in the bonding interface to melt. The melting points
of copper and steel are 1083 ◦C and 1500 ◦C, respectively. As a result, a number of the
most severely deformed copper microstructures melted in the first place, and more liquid
copper was mixed with the soften or even molten iron, which can be evidenced by the fact
that copper occupies more volume fraction in the vortex region. Then, under the action
of the shock wave, the molten copper and steel mixed together and flowed with the wave
crest, and finally converge to the vortex region where the pressure in front of the wave
is lowest [1,16,19]. Greenberg et al. [22,23] found the same phenomenon in aluminium–
tantalum and copper–titanium explosive welding interfaces, vortex zones are formed near
the cusps and valleys. Due to the low impact energy, we did not find a similar vortex zone
at the lower-interface, as shown in Figure 3c.
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dispersive X-ray detector (EDX) maps and color codes.

For further understanding, the upper-interface and lower-interface are analyzed by
EBSD, as shown in Figure 4. Figure 4a,b displays the microstructures of two interfaces.
Inverse pole figure (IPF) indicates that the grains away from the interface in copper and steel
are equiaxed, and the grain size is consistent with the metallographic statistics. However,
the grains of steel have a certain selective orientation with <100> and <111> oriented
parallel to the direction of the wave crest line. This could be the inheritance of the initial
microstructure, considering the strain gradient distribution at the interface due to the
explosion [12]. Two typical areas are selected and enlarged in Figure 4c,d, respectively.
The upper-interface and lower-interface are composed of ultra-fine grains (UFGs) with
thicknesses of ~80 µm and ~50 µm (the area marked by the yellow dotted line). The
average grain size of UFG in domains of upper-interface and lower-interface are ~3.6 µm
and ~4.8 µm. Different from conventional welding techniques, the copper/Q235 steel
interface obtained via explosive welding without the appearance of coarse grains with
poor-strength which are often the site of cracks sprouting and eventually severely degrade
the mechanical properties of the welded interface. The formation of UFGs can be ascribed to
the high temperature generated during the impact at the bonding interface and subsequent
rapid cooling. The distribution of grain boundaries in Figure 4e,f suggests that the UFGs
mainly contain high angle grain boundaries (HAGBs), while the density of low angle grain
boundaries (LAGBs) is higher beyond the interface and decreases with increasing distance.
Which is consistent with the decrease in hardness gradient along the weld interface reported
in Liu et al. [12] and Zhou et al. [8]. Because high dislocation density and reduced grain
size often lead to high hardness [24,25].
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interface, respectively. The inset in (c) is color coded. For GB maps, black and cyan lines represent
high angle grain boundaries (HAGBs) > 15◦ and low angle grain boundaries (LAGBs) between 2◦

and 15◦, respectively.

To investigate the interfacial bonding strength of the copper/Q235 steel/copper ex-
plosive composite, the tensile-shear test was employed, and the load-displacement curves
are shown in Figure 5. It can be found that the trend of the tensile-shear curve of the
upper-interface is basically the same as that of the lower-interface. Shear strength (τ) is
commonly used to measure the ability of a material to resist shear sliding, which is de-
fined as τ = Fmax/S, where Fmax and S are the maximum load and bonding surface area
between the two notches [8]. The corresponding shear strengths of the upper-interface
and lower-interfaces are higher than ~235 MPa and ~222 MPa, respectively. However,
the energy consumed by the upper-interface and lower-interfaces is also almost equal
during the tensile shear test because the area enclosed by the tensile-shear curve and the
displacement axis is proportional to the energy consumed by the specimen during the
deformation process [26,27].

Interestingly, the welded interfaces in the present work exhibited a different fracture
behavior during tensile shear testing than in other literature [8,14]. Usually, failure of
the welded interface occurs along the direction of the interface wave. This is due to the
presence of defects such as cavities, cracks and brittle intermetallic at the interface zone. The
discontinuities and stress concentration points can weaken the interface shear resistance [8].
However, during the experiment in this work, all fracture occurs on the copper side, the
interface of the welded joint maintains the shape before the shear test (Figure 5). Fracture
on the copper side indicates that the tensile-shear test is failed. In addition, the plastic
deformation on the copper side resulted in much more slip traces and surface relief than the
steel side which indicates that the plastic deformation during the tensile-shear test occurred
mainly on the copper side. The reason for this phenomenon is that pure copper has a low
strength. In other words, the shear strength of the upper-interface and lower-interface is
much higher than 220 MPa. No obvious micro-cracks and fragmented brittle intermetallic
compounds were found at the fracture (Figure 6a–d). From Figure 6c,d, it can be found
that the plastic deformation on the copper side mainly occurs away from the interface,
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which is due to the fact that the UFGs can increase the coordination of plastic deformation
in the local area and inhibit the generation of micro-cracks [26,27]. Thus, the explosive
welding interface obtained in this work is excellent. This can also be judged from the
fracture morphology of the fractured samples, where a large number of dimples indicate
that ductile fracture occurred, and the size of the dimples is comparable to the grain size
counted by EBSD, as shown in Figure 6e,f. Good quality of interfacial bonding will reduce
the tendency of interfacial delamination in subsequent plastic processing [2].
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4. Conclusions

In this paper, the microstructures and properties of the interface for a copper/Q235
steel/copper composite plate prepared by explosive welding are studied. The interface
between copper and Q235 steel presents a typical wavy structure with an amplitude rang-
ing between 40 and 75 µm and a wavelength from 230 to 290 µm. The shear strength of
the upper-interface and lower-interfaces of the welded copper/Q235 steel are higher than
~235 MPa and ~222 MPa, respectively. The specimens failed fully within the copper and
not at the bonding interface, which is due to three factors: (1) no cavities and cracks at the
interface; (2) the interface forms a metallurgical bonding including numerous UFGs, which
can significantly improve the plastic deformation coordination at the interface and inhibit
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the generation of micro-cracks. Explosive welding can avoid the reduction of mechanical
properties of welded joints due to defects such as coarse grains and cracks at the bonding
interface. This research provides the experimental basis for sample preparation, microstruc-
ture observation and performance testing of the interface between two or more dissimilar
metals. Furthermore, the simulation of interface microstructure and properties also has
very important guiding significance for the bonding of two or more dissimilar metals. In
addition, small-sized copper/Q235 steel/copper composite plates with excellent bonding
interface were obtained in this study, and the preparation and deformation processes of
large-sized composites suitable for engineering applications are yet to be investigated. They
are the future directions of this work.
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