

Article

Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina

Xin Liang¹, Cheng Hua¹, Mingrui Zhang¹, Yu Zheng¹, Shijie Song², Meng Cai², Yu Huang², Can He² and Xiaoqiang Fan^{2,*}

> 1 AVIC Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610073, China

2 Key Laboratory of Advanced Technologies of Materials (Ministry of Education),

School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Correspondence: fxq@home.swjtu.edu.cn

Abstract: Aluminum alloys with low density and high specific strength have been widely used in marine engineering. Epoxy coatings, a simple and economical protection strategy, have been applied on alloy surfaces to prolong service life. However, a pure epoxy coating cannot provide long-term protection for metals in the marine environment. Hence, in this work, nano-alumina (nano-Al₂O₃) modified by polyethyleneimine (PEI) were added into epoxy coatings to enhance anticorrosion properties. Using Fourier transform infrared spectroscopy (FTIR), we found that the molecular chain of PEI was successfully grafted on the surface of nano-Al₂O₃, and the cross profile of coatings indicated that the modified nano-Al₂O₃ uniformly dispersed in the epoxy coating. Electrochemical impedance spectroscopy (EIS) results demonstrate that the coating resistance of the modified epoxy nanocomposite coating was 10 times higher than that of the pure epoxy coating after 3 days of immersion in 3.5 wt.% NaCl solution. Meanwhile, the surface morphologies and EDS-mapping of substrates after EIS testing show that the substrate coated with modified epoxy nanocomposite coating had the smallest amount of corrosion products. These results show that this modified epoxy nanocomposite coating has excellent anticorrosion performance.

Keywords: epoxy coating; nano-Al₂O₃; functionalization; corrosion resistance; electrochemistry

1. Introduction

Aluminum and its alloys have been widely applied in various fields, such as aerospace, automobile, and ocean engineering, by virtue of their low density and high stiffness-weight ratios [1,2]. However, aluminum alloys are susceptible to aggressive media in most corrosive environments, especially in the marine environment, resulting in huge economic losses and safety problems [3,4]. Thus, various strategies have been adopted to retard the corrosion rate of alloys, including microarc oxidation [5,6], organic coatings [7,8], chemical conversion coating [9,10], and so on [11–13].

Organic coatings have been widely applied to prevent metal corrosion due to their simplicity and bargain price [14–16]. Among all organic coatings, epoxy coatings are the most widely used resin matrix owing to low shrinkage, strong adhesion to substrate, and superior chemical resistance [17–19]. However, because of the volatilization of solvents during curing, epoxy coatings inevitably have micropores and defects, thus allowing corrosive media to reach the substrate through these defects and cause corrosion [20,21]. Moreover, with increase in service time, corrosive media destroy the coating structure and form corrosion channels, thus causing corrosion of the substrate [22,23]. The anticorrosion property of the epoxy coating is easily degraded over the service lifespan due to these shortcomings. Hence, improving the protection performance of epoxy coatings to satisfy the requirement of severe corrosion fields is of great importance.

Fortunately, much research has reported that nanomaterials can enhance the anticorrosion performance of coatings [24-26]. The integrity of the coating is improved because

Citation: Liang, X.; Hua, C.; Zhang, M.; Zheng, Y.; Song, S.; Cai, M.; Huang, Y.; He, C.; Fan, X. Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina. Coatings 2023, 13, 561. https://doi.org/10.3390/ coatings13030561

Received: 20 February 2023 Revised: 28 February 2023 Accepted: 2 March 2023 Published: 6 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

the micropores within the coating are filled by the nanomaterials [7]. In addition, the diffusion of corrosion media is hindered by the addition of nanomaterials, delaying the arrival of corrosion ions to the substrate [27]. Nano alumina (nano-Al₂O₃) has been widely used in the coating protection field because of its superior hardness, chemical stability, low price, and excellent corrosion resistance [28–30]. However, nano-Al₂O₃ has hydrophilic surfaces decorated with hydroxyl groups, and the nanoparticles can easily adhere to each other through hydrogen bonding, leading to irregular agglomerations. Additionally, high surface energy is another reason for the agglomeration of nano-Al₂O₃ and the disadvantage of poor compatibility with coatings limit the application of nano-Al₂O₃ in coatings. Therefore, in order to obtain a nanocomposite coating with uniform nanofiller distribution, it is urgent to solve the agglomeration phenomenon of nanomaterials.

Poly-ethyleneimine (PEI) is a kind of typical Lewis base with abundant amine groups and high water solubility [31]. The special structure of this branched-chain polymer could prevent the agglomeration of nanomaterial [32]. Furthermore, the amine groups of PEI molecules can physically interact with the hydroxyl groups of nano-Al₂O₃ via hydrogen bonding action. The surface of the nano-Al₂O₃ was grafted with reactive functional groups so that they could chemically bind to the epoxy groups of the resin molecules. The interactions make the dispersion more stable, facilitating the formation of homogeneous nanocomposite. Finally, as a surface modifying agent for nano-Al₂O₃ in the epoxy-amine system, PEI has the advantage of improving the curing potential of epoxy nanocomposite coatings [15].

Hence, in this work, nano- Al_2O_3 was first functionalized with PEI and then used to prepare an Al_2O_3 -based composite epoxy coating to solve the agglomeration phenomenon of nanomaterials. Subsequently, the anticorrosion properties of the epoxy nanocomposite coating and the corresponding anticorrosion mechanisms were investigated at length. The as-prepared epoxy nanocomposite coating exhibited favorable corrosion resistance and has broad prospects in corrosion protection.

2. Materials and Methods

2.1. Materials

Epoxy resin (H228A) and matched curing agent (H228B) were purchased from Shanghai Hanzhong Chemical Co., Ltd., Shanghai, China. Nano alumina (nano-Al₂O₃), sodium hydroxide (NaOH), *N*,*N*-Dimethylformamide (DMF) and ethylene imine polymer (PEI) were provided by Aladdin, Shanghai, China. All adopted chemicals and solvents were used without further purification.

2.2. Pretreatment of Substrate

We used 6082 aluminum alloy plates with a specification of 20 mm \times 20 mm \times 5 mm as the substrates. The plates were first polished with sandpapers of 400 #, 600 #, 800 #, and 1000 # to remove the surface oxidation layer. After that, the plates were sonicated in ethyl alcohol absolute three times to remove any impurities.

2.3. Functionalization of Nano-Al₂O₃

The functionalization of nano-Al₂O₃ was prepared by using the following procedure. Firstly, the nano-Al₂O₃ was gradually added into 5 mol/L NaOH under magnetic stirring for 24 h at 25 °C. Then, the nano-Al₂O₃/NaOH solution was washed using deionized water in the centrifugal machine, followed by the nano-Al₂O₃ being dried in the vacuum freeze-drier to obtain hydroxylated nano-Al₂O₃. After that, 5 g hydroxylated nano-Al₂O₃ was added into a mixture of 5 g PEI and 5 g DMF, and the mixture was magnetically stirred for 6 h at 60 °C. Subsequently, the final mixture was washed with ethyl alcohol absolute and then dried in the vacuum freeze-drier to obtain PEI functionalized nano-Al₂O₃, which was defined as PEI-Al₂O₃.

2.4. Preparation of Composite Coatings

The composite coatings were prepared through the following steps. Firstly, 0.45 g PEI-Al₂O₃ were ultrasonically dispersed in 12 g deionized water for 30 min to obtain a homogeneous suspension. Subsequently, 5 g epoxy resin and 10 g curing agents were added into the suspension. The suspension was mechanically stirred at the speed of 2000 rpm for 10 min to obtain a homogeneous slurry. The air bubbles of slurry were immediately removed using a vacuum oven at room temperature. After that, the slurry was painted on the plates using the spray method, and then the samples were cured at room temperature for 48 h and defined as PEI-Al₂O₃/EP coating. For comparison, pure epoxy coating (EP) and Al₂O₃/EP coating were also prepared by using the same method.

2.5. Characterization

The morphology of nano-Al₂O₃ was obtained using a transmission electron microscope (TEM, JEM-2100 F, JEOL, Tokyo, Japan). The surface functional groups of nano-Al₂O₃ and PEI-Al₂O₃ were analyzed via Fourier transform infrared spectroscopy (FTIR, Nicolet iN10, Thermo Fisher Scientific, Waltham, MA, USA). The fracture surface micromorphology of the coatings was observed via scanning electron microscope (SEM, JSM-7800F, JEOL, Tokyo, Japan). The thickness and adhesive strength of the coatings were measured using a coating thickness measurer and pull-off adhesion tester (DK-500, Deka Precision Measuring Instrument, Shenzhen, China), respectively.

The electrochemical corrosion behavior of the coatings was characterized using a electrochemical work station (VersaSTAT 3F, AMETEK, CA, USA) and the electrolyte was 3.5 wt.% NaCl solution. The corrosion test was performed with a traditional three-electrode system, in which the platinum electrode was as the counter electrode and a saturated calomel electrode and coated samples acted as the reference electrode and working electrode, respectively. Electrochemical impedance spectroscopy (EIS) analysis was conducted in the frequency range of 10^5 Hz $\sim 10^{-2}$ Hz with a sinusoidal voltage signal amplitude of 10 mV. The impedance spectra results were analyzed using Zview software (version 2). The polarization tests were implemented at a scan rate of 1 mV/s and ±250 mV with respect to the open circuit potential (OCP).

3. Results and Discussion

3.1. FTIR Spectra of PEI and Nanofillers

The morphology and microstructure of nano-Al₂O₃ were studied via TEM as shown in Figure 1a. It is clear that the nano-Al₂O₃ formed spherical nanoparticles with a diameter of about 20 nm. The FTIR spectra of PEI, nano-Al₂O₃, and PEI-Al₂O₃ are shown in Figure 1b. For nano-Al₂O₃, the peak located at 3447 cm⁻¹ was due to the presence of -OH on the surface. The absorption bands at about 500~900 cm⁻¹ were attributed to the vibration of Al-O groups [33]. The spectrum of PEI-Al₂O₃ exhibited some new peaks compared with nano-Al₂O₃. The peaks at 2952 and 2845 cm⁻¹ were assigned to the vibration of C-H, and the peak at 1455 cm⁻¹ was assigned to the stretching vibration of C-N. These new peaks confirm that Al₂O₃ nanofillers were successfully modified with PEI.

3.2. The Thickness and Adhesion of the As-Prepared Coatings

The thicknesses of the coatings are shown in Table 1, and the thicknesses of the coatings were similar at different locations, indicating that thickness was evenly distributed. Moreover, the thicknesses of the EP, Al_2O_3 /EP, and PEI- Al_2O_3 /EP coating were 129.3, 123.3, and 128.3 µm, respectively, implying that the preparation of the coatings had good repeatability.

Figure 1. (a) TEM micrographs of nano $-Al_2O_3$ and (b) FTIR spectra of nano $-Al_2O_3$, PEI and PEI $-Al_2O_3$.

Table 1. Thickness of all as-prepared coatings.

Sample	1/µm	2/µm	3/µm	Average Value/µm
EP	129	130	129	129.3
Al ₂ O ₃ /EP	122	125	123	123.3
PEI-Al ₂ O ₃ /EP	127	128	130	128.3

Figure 2 shows the adhesion strength and digital photographs of the coatings. The pull-off strengths of the EP, Al₂O₃/EP, and PEI-Al₂O₃/EP coating were 11.78, 11.98, and 12.44 MPa, respectively. This result indicates that all coatings had excellent adhesion to the substrate, which is crucial for the practical application of coatings.

Figure 2. Morphology images of coatings after pull-off test: (**a**) EP coating, (**b**) Al₂O₃/EP coating, and (**c**) PEI–Al₂O₃/EP coating.

3.3. The Cross-Sectional Morphology of As-Prepared Coatings

Figure 3 exhibits SEM images of the cross-sections of the EP, Al_2O_3/EP , and PEI-Al₂O₃/EP coatings. The pure EP coating exhibited a smooth fracture surface while some micropores were observed within the coating, which were due to the volatilization of solvent during curing. The morphologies of the cross-sections of the Al_2O_3/EP and PEI-Al₂O₃/EP coating became rough as shown in Figure 3b,c. Additionally, nano-Al₂O₃ was detected in the rough area via EDS analysis. For the Al_2O_3/EP coating, severe aggregation of Al_2O_3 was observed in the coating. However, for the PEI-Al₂O₃/EP coating, nano-Al₂O₃ was evenly distributed within the coating compared to the Al_2O_3/EP coating.

Figure 3. Fracture surface morphologies of coatings: (a) EP coating, (b) Al_2O_3/EP coating, and (c) $PEI-Al_2O_3/EP$ coating. EDS point of: (d) d in (b) and (e) e in (c).

3.4. Electrochemical Corrosion Behavior

The corrosion behaviors of the as-prepared coatings were investigated via EIS measurement. Figure 4 shows the Nyquist and Bode plots of the coatings. With the increase in immersion time, the capacitance arc radii of all coatings in the Nyquist plots shrunk, indicating that the anticorrosion performances of all coatings gradually decreased as a result of the intrusion of corrosive media. Notably, PEI-Al₂O₃/EP exhibited a larger capacitive arc than that of EP and the Al₂O₃/EP coating during the entire immersion process, demonstrating that the PEI-Al₂O₃/EP coating could better protect the metal substrate. A higher lowest-frequency impedance modulus in Bode plots ($|Z|_{f=0.01 \text{ Hz}}$) usually indicates a better anticorrosion performance [34]. With the addition of nano-Al₂O₃, the $|Z|_{f=0.01 \text{ Hz}}$ values of the Al₂O₃/EP and PEI-Al₂O₃/EP coatings were higher than that of the pure EP coating. The $|Z|_{f=0.01 \text{ Hz}}$ value of the PEI-Al₂O₃/EP coating stayed the highest among all coatings during immersion. In addition, its $|Z|_{f=0.01 \text{ Hz}}$ value still stayed the highest (1.69 × 10⁶ $\Omega \cdot \text{cm}^2$) even after 20 days of immersion, which was about two times larger than that of pure EP. These results indicate that the PEI-Al₂O₃/EP coating can better protect metal substrate from corrosive media.

To quantitatively analyze the corrosion resistance of the as-prepared coatings, the EIS results were further fitted with an equivalent electric circuit as shown in Figure 5a. In the equivalent electrical circuits, R_s , R_c , Q_c , R_{ct} , and Q_{dl} represent solution resistance, coating resistance, coating capacitance, charge-transfer resistance, and double-layer capacitance, respectively. Generally speaking, a coating with a higher coating resistance (R_c) value means a preferable corrosion resistance [35]. Figure 5b shows the variation in R_c values. During immersion, the R_c values of all coatings exhibited a tendency to reduce, indicating that the coatings were losing their barrier effects gradually. Al_2O_3 /EP and PEI-Al_2O_3/EP both exhibited larger R_c values than the EP coating at the time of immersion, owing to the barrier property of nano-Al_2O_3. After immersing for 3 days, the R_c value of the PEI-Al_2O_3/EP coating was 6.61 × 10⁶ $\Omega \cdot cm^2$, which is about 4 times and 10 times higher than those of the Al_2O_3/EP coating and EP coating, respectively. The above analysis indicates that the barrier property of the composite coating was obviously improved after adding PEI-Al_2O_3.

Figure 4. EIS results of all coatings after different immersion times: (a1-a3) 3 days and (b1-b3) 20 days.

Figure 5. (a) Electrical equivalent circuit used for fitting the EIS results and (b) the R_c values of coatings after 3 days and 20 days of immersion in 3.5 wt.% NaCl solution.

3.5. Potentiodynamic Polarization Test

The anticorrosion properties of the as-prepared coatings were further analyzed using a potentiodynamic polarization test. The potentiodynamic polarization curves of all coatings immersed in 3.5 wt.% NaCl solution for 12 h are shown in Figure 6. The corrosion potentials (E_{corr}) and corrosion current densities (i_{corr}) are shown in Figure 7. Typically, a more positive E_{corr} and a smaller i_{corr} in the polarization curve indicate a lower corrosion tendency and a lower corrosion rate, respectively [36]. The E_{corr} of the PEI-Al₂O₃/EP coating (-0.579 V) was higher than that of the Al₂O₃/EP coating (-0.628 V) and the EP coating (-0.740 V). With the addition of nanofillers, the i_{corr} of the Al₂O₃/EP and PEI-Al₂O₃/EP coatings both decreased. Moreover, the i_{corr} of the PEI-Al₂O₃/EP coating (5.388×10^{-9} A·cm²) was lower than that of the Al₂O₃/EP coating (2.8195×10^{-8} A·cm²), indicating that a composite coating with homodisperse nano-Al₂O₃ exhibits better corrosion resistance.

Figure 6. Tafel curves of samples after 12 h of immersion in 3.5 wt.% NaCl solution.

Figure 7. The E_{corr} and i_{corr} of all coatings after being immersed in 3.5 wt.% NaCl solution for 12 h.

3.6. Corrosion Products Analysis

The corrosion morphologies and corrosion products on coated substrates after 30 days of immersion were further investigated. Figure 8 shows the corrosion morphologies and corresponding EDS results, and the weight ratios of Al and O elements at different coating–substrate interfaces are shown in Figure 9. There were abundant corrosion products on EP-coated substrate, and the oxygen content was the highest (60.56 wt.%) compared with other samples, indicating that the EP coating had the worst corrosion resistance. For Al₂O₃/EP coating, the corrosion products decreased compared with the EP coating, and the oxygen content was 38.86 wt.%, implying that nano-Al₂O₃ could improve the anticorrosion performance of the coating by prolonging the diffusion path of corrosive media. Notably, compared to the other substrates, the surface of the PEI-Al₂O₃/EP substrate had the fewest corrosion products, and the trace of polishing could still be clearly observed. Moreover, the oxygen content of the PEI-Al₂O₃/EP coating had the best protective effect. In addition, the corrosion products at the PEI-Al₂O₃/EP coating-substrate interface were further investigated via

XRD as shown in Figure 10. The XRD results show that the corrosion products at the PEI-Al₂O₃/EP coating–substrate interface mainly consisted of Al₂O₃, Al(OH)₃, and AlCl₃.

Figure 8. Surface morphology and element mapping of different coated substrates after immersion: (a) EP coating, (b) Al₂O₃/EP coating, and (c) PEI–Al₂O₃/EP coating.

Figure 9. The weight ratio of Al and O in the sample surface after 20 days of immersion in 3.5 wt.% NaCl solution.

Figure 10. XRD pattern of corrosion products: (a) full figure and (b) local magnification figure.

3.7. Anticorrosion Mechanism

The anticorrosion mechanisms of the coatings are exhibited in Figure 11. The organic coating acts as an important protective layer that can protect the substrate from aggressive media. However, for the pure EP coating, there were a considerable amount of micropores within the coating, and corrosive media (H₂O, O₂, Cl⁻) could penetrate into the coating quickly through these micropores. For the Al₂O₃/EP coating and the PEI-Al₂O₃/EP coating, the nano-Al₂O₃ could fill the defects in the coating and create tortuous diffusion paths, thus reducing the diffusion rate of electrolytes. However, for the Al₂O₃/EP coating, the agglomeration of nano-Al₂O₃ restricted the enhancement of its anticorrosion properties. PEI-Al₂O₃ with good dispersion could maximize the diffusion paths of the aggressive media within the coating. Therefore, the PEI-Al₂O₃/EP coating has the better anticorrosion properties.

Figure 11. Schematic diagram of anticorrosion mechanism.

4. Conclusions

In summary, Al_2O_3 nanofillers were successfully modified with ethylene imine polymer, and an PEI-Al_2O_3/EP coating was successfully fabricated. Its corrosion resistance and

the corresponding mechanism were investigated in detail. The major conclusions can be drawn as follows.

- (a) The PEI-Al₂ O_3 nanoparticles have excellent dispersive properties in the coating;
- (b) The coating resistance of the PEI-Al₂O₃/EP coating (6.61 × 10⁶ Ω·cm²) was 10 times larger than that of the EP coating because nano-Al₂O₃ could fill the defects within the coating and slow the diffusion rate of corrosion media;
- (c) The surface of the PEI-Al₂O₃/EP substrate had the fewest corrosion products and lowest oxygen content (3.26 wt.%) compared to EP and the Al₂O₃/EP coating, indicating PEI-Al₂O₃/EP has the best protective effect.

Author Contributions: Conceptualization, S.S. and X.F.; methodology, C.H. (Cheng Hua), M.Z. and Y.Z.; software, X.L., S.S. and Y.H.; validation, X.L., S.S. and Y.H.; formal analysis, X.L. and S.S.; investigation, C.H. (Cheng Hua), M.Z. and Y.H.; resources, X.L. and X.F.; data curation, X.L. and C.H. (Can He); writing-original draft preparation, X.L., C.H. (Can He) and S.S.; writing-review and editing, X.L., C.H. (Cheng Hua), X.F., S.S. and M.C.; visualization, C.H. (Cheng Hua), M.Z. and Y.Z.; supervision, X.F.; project administration, X.F.; funding acquisition, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was carried out with the financial support provided by the National Natural Science Foundation of China (No. 52075458 and No. U2141211) and the Sichuan Science and Technology Program (No. 2021JDRC0094).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge ceshigo (www.ceshigo.com, accessed on 31 December 2022) for providing testing services and the Analytical and Testing Center of Southwest Jiaotong University for supporting the SEM measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Zhang, B.B.; Xu, W.C.; Zhu, Q.J.; Li, Y.T.; Hou, B.R. Ultrafast One Step Construction of Non-Fluorinated Superhydrophobic Aluminum Surfaces with Remarkable Improvement of Corrosion Resistance and Anti-contamination. *J. Colloid Interface Sci.* 2018, 532, 201–209. [CrossRef]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. *Mater. Today Proc.* 2015, 2, 3032–3041. [CrossRef]
- Canepa, E.; Stifanese, R.; Merotto, L.; Traverso, P. Corrosion Behaviour of Aluminium Alloys in Deep-sea Environment: A Review and the KM3NeT Test Results. *Mar. Struct.* 2018, 59, 271–284. [CrossRef]
- Yan, H.; Cai, M.; Li, W.; Fan, X.Q.; Zhu, M.H. Amino-functionalized Ti₃C₂T with Anti-corrosive/Wear Function for Waterborne Epoxy Coating. J. Mater. Sci. Technol. 2018, 54, 144–159. [CrossRef]
- Song, S.J.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.Q.; Cui, X.J.; Zhu, M.H. Superhydrophobic Composite Coating for Reliable Corrosion Protection of Mg Alloy. *Mater. Design* 2022, 215, 110433. [CrossRef]
- Cui, X.J.; Lin, X.Z.; Liu, C.H.; Yang, R.S.; Zheng, X.W.; Gong, M. Fabrication and Corrosion Resistance of A Hydrophobic Micro-Arc Oxidation Coating on AZ31 Mg Alloy. *Corros. Sci.* 2015, 90, 402–412. [CrossRef]
- Song, S.J.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.Q.; Zhu, M.H. Multilayer Structural Epoxy Composite Coating towards Long-Term Corrosion/Wear Protection. *Carbon* 2021, 183, 42–52. [CrossRef]
- Cai, M.; Yan, H.; Li, Y.T.; Li, W.; Li, H.; Fan, X.Q.; Zhu, M.H. Ti₃C₂T_x/PANI Composites with Tunable Conductivity towards Anticorrosion Application. *Chem. Eng. J.* 2021, 410, 128310. [CrossRef]
- 9. Wang, C.; Jiang, F.; Wang, F.H. The Characterization and Corrosion Resistance of Cerium Chemical Conversion Coatings for 304 Stainless Steel. *Corros. Sci.* 2004, *46*, 75–89. [CrossRef]
- Duan, G.Q.; Yang, L.X.; Liao, S.J.; Zhang, C.Y.; Lu, X.P.; Yang, Y.E.; Zhang, B.; Wei, Y.; Zhang, T.; Yu, B.X.; et al. Designing for the Chemical Conversion Coating with High Corrosion Resistance and Low Electrical Contact Resistance on AZ91D Magnesium Alloy. *Corros. Sci.* 2018, 135, 197–206. [CrossRef]
- 11. Montemor, M.F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. *Surf. Coat. Technol.* **2014**, 258, 17–37. [CrossRef]

- 12. Pezzato, L.; Lorenzetti, L.; Tonelli, L.; Bragaggia, G.; Dabalà, M.; Martini, C.; Brunelli, K. Effect of SiC and borosilicate glass particles on the corrosion and tribological behavior of AZ91D magnesium alloy after PEO process. *Surf. Coat. Technol.* **2021**, *428*, 127901. [CrossRef]
- 13. Agarwala, R.C.; Agarwala, V. Electroless alloy/composite coatings: A review. Sadhana 2003, 28, 475–493. [CrossRef]
- Ramesh, K.; Nor, N.A.M.; Ramesh, S.; Vengadaesvaran, B.; Arof, A.K. Studies on Electrochemical Properties and FTIR analysis of Epoxy Polyester Hybrid Coating System. *Int. J. Electrochem. Sci.* 2013, *8*, 8422–8432.
- Ghiyasi, S.; Sari, M.G.; Shabanian, M.; Hajibeygi, M.; Zarrintaj, P.; Rallini, M.; Torre, L.; Puglia, D.; Vahabi, H.; Jouyandeh, M.; et al. Hyperbranched Poly(ethyleneimine) Physically Attached to Silica Nanoparticles to Facilitate Curing of Epoxy Nanocomposite Coatings. *Prog. Org. Coat.* 2018, 120, 100–109. [CrossRef]
- Farag, A.A. Applications of Nanomaterials in Corrosion Protection Coatings and Inhibitors. *Corros. Rev.* 2020, 38, 67–86. [CrossRef]
- Christy, A.; Purohit, R.; Rana, R.S.; Singh, S.K.; Rana, S. Development and Analysis of Epoxy/nano SiO₂ Polymer Matrix Composite Fabricated by Ultrasonic Vibration Assisted Processing. *Mater. Today Proc.* 2017, 4, 2748–2754. [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV Degradation Resistance of Epoxy Coatings Using Modified Carbon Black Nanoparticles. *Prog. Org. Coat.* 2015, *85*, 199–207. [CrossRef]
- 19. Yu, Z.X.; Di, H.H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.L.; He, Y. Fabrication of Graphene Oxide-alumina Hybrids to Reinforce the Anti-Corrosion Performance of Composite Epoxy Coatings. *Appl. Surf. Sci.* **2015**, *351*, 986–996. [CrossRef]
- Yan, H.; Zhang, L.; Li, H.; Fan, X.Q.; Zhu, M.H. Towards High-performance Additive of Ti₃C₂/graphene Hybrid with A Novel Wrapping Structure in Epoxy Coating. *Carbon* 2020, 157, 217–233. [CrossRef]
- Yan, H.; Li, W.; Li, H.; Fan, X.Q.; Zhu, M.H. Ti₃C₂ MXene Nanosheets toward High-Performance Corrosion Inhibitor for Epoxy Coating. Prog. Org. Coat. 2019, 135, 156–167. [CrossRef]
- 22. Yu, J.P.; Yan, H.; Yang, M.S.; Ma, Y.T.; Fan, X.Q.; Zhu, M.H. Polyphenol-reduced Graphene Oxide toward High-Performance Corrosion Inhibitor. *Surf. Topogr. Metrol. Prop.* **2019**, *7*, 025010. [CrossRef]
- Deyab, M.A.; Awadallah, A.E. Advanced Anticorrosive Coatings Based on Epoxy/functionalized Multiwall Carbon Nanotubes Composites. Prog. Org. Coat. 2020, 139, 105423. [CrossRef]
- Farhan, A.M.; Kadhim, N.J.; Hasan, A.F.; Jaafer, H.I. Corrosion Protection Study for Carbon Steel 1045 in Saline Water Using Nanocomposite by Spin Coating as protective coating. *Res. J. Pharm. Biol. Chem.* 2018, 9, 34–48.
- Karthik, A.; Arunmetha, S.; Srither, S.R.; Manivasakan, P.; Rajendran, V. Nano Alumina-zirconia Blended Epoxy Polymeric Composites for Anticorrosive Applications. J. Sol-Gel Sci. Technol. 2015, 74, 460–471. [CrossRef]
- Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A Facile Route of Making Silica Nanoparticles-covered Graphene Oxide Nanohybrids (SiO₂-GO); Fabrication of SiO₂-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance. *Chem. Eng. J.* 2016, 303, 511–528. [CrossRef]
- Yan, H.; Cai, M.; Wang, J.C.; Zhang, L.; Li, H.; Li, W.; Fan, X.Q.; Zhu, M.H. Insight into Anticorrosion/Antiwear Behavior of Inorganic-organic Multilayer Protection System Composed of Nitriding Layer and Epoxy Coating with Ti₃C₂T_x MXene. *Appl. Surf. Sci.* 2021, 536, 147974. [CrossRef]
- 28. Zhang, B.B.; Xu, W.C.; Zhu, Q.J.; Hou, B.R. Scalable, Fluorine Free and Hot Water Repelling Superhydrophobic and Superoleophobic Coating Based on Functionalized Al₂O₃ Nanoparticles. *J. Mater. Sci. Technol.* **2021**, *66*, 74–81. [CrossRef]
- Yu, J.H.; Huo, R.M.; Wu, C.; Wu, X.F.; Wang, G.L.; Jiang, P.K. Influence of Interface Structure on Dielectric Properties of Epoxy/Alumina Nanocomposites. *Macromol. Res.* 2012, 20, 816–826. [CrossRef]
- Dhoke, S.K.; Mangal Sinha, T.J.; Khanna, A.S. Effect of Nano-Al₂O₃ Particles on the Corrosion Behavior of Alkyd Based Waterborne Coatings. *J. Coat. Technol. Res.* 2008, *6*, 353–368. [CrossRef]
- 31. Cai, W.; Hong, N.N.; Feng, X.M.; Zeng, W.R.; Shi, Y.Q.; Zhang, Y.; Wang, B.B.; Hu, Y. A Facile Strategy to Simultaneously Exfoliate and Functionalize Boron Nitride Nanosheets via Lewis Acid-base Interaction. *Chem. Eng. J.* 2017, 330, 309–321. [CrossRef]
- Wu, Y.Q.; He, Y.; Zhou, T.G.; Chen, C.L.; Zhong, F.; Xia, Y.Q.; Xie, P.; Zhang, C. Synergistic Functionalization of h-BN by Mechanical Exfoliation and PEI Chemical Modification for Enhancing the Corrosion Resistance of Waterborne Epoxy Coating. *Prog. Org. Coat.* 2020, 142, 105541. [CrossRef]
- Zhang, L.; Li, Y.; Guo, H.; Zhang, H.H.; Zhang, N.; Hayat, T.; Sun, Y.B. Decontamination of U(VI) on Graphene Oxide/Al₂O₃ Composites Investigated by XRD, FT-IR and XPS Techniques. *Environ. Pollut.* 2019, 248, 332–338. [CrossRef] [PubMed]
- 34. Fan, F.; Zhou, C.Y.; Wang, X.; Szpunar, J. Layer-by-Layer Assembly of a Self-healing Anticorrosion Coating on Magnesium Alloys. *ACS Appl. Mater. Interfaces* **2015**, *7*, 27271–27278. [CrossRef] [PubMed]
- 35. Chen, C.; Qiu, S.H.; Cui, M.J.; Qin, S.L.; Yan, G.P.; Zhao, H.C.; Wang, L.P.; Xue, Q.J. Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene. *Carbon* **2017**, *114*, 356–366. [CrossRef]
- Shi, Z.M.; Liu, M.; Atrens, A. Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation. *Corros. Sci.* 2010, 52, 579–588. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.