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Abstract: This review examines the methods used to optimize the process parameters of laser
cladding, including traditional optimization algorithms such as single-factor, regression analysis,
response surface, and Taguchi, as well as intelligent system optimization algorithms such as neural
network models, genetic algorithms, support vector machines, the new non-dominance ranking
genetic algorithm II, and particle swarm algorithms. The advantages and disadvantages of various
laser cladding process optimization methods are analyzed and summarized. Finally, the development
trend of optimization methods in the field of laser cladding is summarized and predicted. It is
believed that the result would serve as a foundation for future studies on the preparation of high-
quality laser cladding coatings.
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1. Introduction

Laser cladding is a technique for the deposition of a protective layer on a substrate [1,2].
It is the process of depositing a material called a “cladding material” onto a substrate with
the help of the thermal energy provided by a laser beam [3–5]. The cladding material could
be applied to the substrate by wire feeding, powder injection, or a preset powder [6–8].
Among them, the wire feeding system is very suitable for processing with high deposition
rates [9]. However, most cladding materials still use powder because the powder-feeding
method is more flexible than wire feeding [10–12]. Laser cladding is an advanced material
processing technology in many parts of the business world [13–15]—for example, the
metallurgical industry, mining machinery industry, marine industry, aerospace industry, au-
tomotive industry, and biomedical industry [16–21]. The laser cladding aims to increase the
substrate’s hardness, wear resistance, corrosion resistance, and oxidation resistance [22–26].
It offers significant advantages over conventional surface modification techniques, such as
smaller heat-affected zones, lower dilution, good metallurgical bonding with the substrate,
and a finer grain size [27–31]. However, the process parameters in the cladding process
have an important influence on the quality of the laser cladding coating. If the process
parameters are not appropriate, the coating will have defects such as holes and cracks.
Therefore, the process parameters must be effectively controlled to obtain the desired
performance [32–34].

Coatings 2023, 13, 496. https://doi.org/10.3390/coatings13030496 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13030496
https://doi.org/10.3390/coatings13030496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-4211-8483
https://orcid.org/0000-0002-5728-4628
https://orcid.org/0000-0003-1615-1906
https://orcid.org/0000-0002-8783-2672
https://orcid.org/0000-0003-2572-7938
https://orcid.org/0000-0002-6834-135X
https://doi.org/10.3390/coatings13030496
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13030496?type=check_update&version=1


Coatings 2023, 13, 496 2 of 26

The laser cladding process is affected by many factors [35–37]. Among them, the
process parameter is one of the critical factors affecting the formation and quality of
the cladding layer [38–40]. The cladding process is complex and non-linear due to laser
cladding involving more than 19 process parameters [41,42]. Laser power, scanning speed,
and powder feeding rate have the most significant influence on the quality of the cladding
layer [43]. These three parameters offer the broadest potential window in terms of chang-
ing and improving the quality of the cladding layer [44]. Experimental and theoretical
studies have shown that the proper selection of input process parameters can significantly
improve the properties of the cladding layer [45–47]. To obtain high-quality coatings, many
scholars have studied and improved the optimization methods of laser cladding process
parameters [48,49]. One approach is to investigate the effect of process parameters on the
properties of the cladding layer using empirical–statistical and analytical models, such as
the response surface method, linear regression method, and Taguchi method [50], to find
the optimal process parameters. Another method is to use intelligent algorithms such as
machine learning and metaheuristics to establish a predictive model of the mapping rela-
tionship between process parameters and the cladding layer, to achieve the optimization of
the process parameters [51,52].

This paper reviews the current research status on the optimization of process pa-
rameters in laser cladding. It summarizes the optimization methods of various process
parameters from traditional and intelligence optimization methods. Then, the advantages
and disadvantages of various optimization methods are contrasted. Finally, we provide an
outlook on the development trend of optimization methods for the laser cladding process.
We hope to provide a reference for future research on the manufacturing of high-quality
laser cladding coatings.

2. Traditional Optimization Methods
2.1. Single-Factor Experiment

The traditional single-factor experiment is the most common way to characterize the
influence of each parameter on the coating properties [53]. Controlling a single parameter
to obtain the desired property is more accessible than controlling multiple parameters [54].

In the study of laser cladding process parameters, many scholars have adopted single-
factor experiments to study the process parameters in which they are interested. Among
them, the more studied parameters are the laser power, powder feeding rate, and scanning
speed [55–58]. Pornsak et al. [59] observed the cladding process in real time by using an
infrared camera with image analysis software. The results showed that the laser spot, melt
pool area, cladding height, and width all increased with increasing laser power. Zhan
et al. [60] found that as the laser power increased, the clad height, width, and grain size
also increased. Li [61] and Jiao et al. [62] found that the microhardness of the coating
increased as the scanning speed increased. However, the wear properties of the coating will
deteriorate sharply when the scanning speed is too large. Bartkowski et al. [63] prepared
Stellite-6/WC metal-based composite coatings using different laser powers and powder
feeding rates. Studies have found that an increase in laser power and powder feeding rate
increases the coating thickness. The effects of the laser power, powder feeding rate, and
scanning speed on cladding results are shown in Figure 1.
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Ref. [60]. 2022, Elsevier. (c) Wear height losses of substrate and clad layers with different scanning 
speeds. Reprinted with permission from Ref. [61]. 2013, Taylor and Francis. (d) Effect of different 
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2016, Elsevier. 
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Figure 1. The influence of different laser power, scanning speed, and powder feeding rate on cladding
results. (a) Effect of different laser powers on the melt pool. Reprinted from [59]. (b) Fracture
toughness and fracture energy of coatings at different laser powers. Reprinted with permission from
Ref. [60]. 2022, Elsevier. (c) Wear height losses of substrate and clad layers with different scanning
speeds. Reprinted with permission from Ref. [61]. 2013, Taylor and Francis. (d) Effect of different
powder feeding rates on the wear resistance of coatings. Reprinted with permission from Ref. [63].
2016, Elsevier.

Some scholars have studied parameters such as the gas supply speed, laser beam
diameter, and pre-placed powder layer thickness. Qi et al. [64] found that the clad width,
depth, and height decreased with the increase in the laser beam diameter. Chryssolouris
et al. [65] found that the clad depth decreased when increasing the gas supply. Qu et al. [66]
analyzed the effects of different pre-coating thicknesses on the cladding layer’s microstruc-
ture evolution and mechanical properties. They found that the dilution rate of the coating
decreased with the increase in the pre-placed powder layer thickness, and the average val-
ues of microhardness and fracture toughness increased with the thickness of the pre-coating.
The influence of the gas supply speed, laser beam diameter, and pre-coating thickness on
the cladding layer is shown in Figure 2.

Above all, a single-factor experiment is a trial-and-error approach. This method often
requires extensive experimentation, which is costly and time-consuming. Moreover, since
this method studies the effects of only one factor at a time, interactions between input
parameters may be overlooked, so the results may not be optimal.
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Reprinted with permission from Ref. [66]. 2015, Elsevier . (d) Variation in coating friction coefficient 
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2.2. Regression Analysis 
Regression analysis is mainly used to reveal the causal relationship between varia-

bles [67] and has been widely used in various types of statistical analysis [68]. It is primar-
ily used as an analysis method in laser cladding to determine the relationship between the 
process parameters and coating properties. It is widely used in the empirical–statistical 
model [69,70]. Ansari [71], Shayanfar [72], Erfanmanesh [73], and Nabhani et al. [74] used 
regression analysis to correlate the main processing parameters (laser power (P), scanning 
rate (V), powder feeding rate (F)) with the coating’s geometrical characteristics (clad 
height, clad width, penetration depth, wetting angle, and dilution). Afterwards, the rela-
tionship between them was investigated using a combined parameter (PαVβFγ). Through 
this method, they obtained a laser cladding process drawing, from which the best process 
parameters could be obtained. Through experimental analysis, they discovered that the 
laser power influences the clad height and the clad width by the combined parameters of 
the laser power and scanning speed, and the clad depth through the combined parameters 

Figure 2. Influence of different laser beam diameters, gas supply speeds, and pre-coating thicknesses
on cladding results. (a) Effect of different laser beam diameters on cladding results. Reprinted with
permission from Ref. [64]. 2017, Elsevier. (b) The influence of different gas supply speeds on cladding
results. Reprinted with permission from Ref. [65]. 2002, Elsevier. (c) Microhardness distribution along
the depth direction of the coating under different pre-placed powder layer thicknesses. Reprinted
with permission from Ref. [66]. 2015, Elsevier. (d) Variation in coating friction coefficient with sliding
time for different pre-placed powder layer thicknesses. Reprinted with permission from Ref. [66].
2015, Elsevier.

2.2. Regression Analysis

Regression analysis is mainly used to reveal the causal relationship between vari-
ables [67] and has been widely used in various types of statistical analysis [68]. It is primar-
ily used as an analysis method in laser cladding to determine the relationship between the
process parameters and coating properties. It is widely used in the empirical–statistical
model [69,70]. Ansari [71], Shayanfar [72], Erfanmanesh [73], and Nabhani et al. [74] used
regression analysis to correlate the main processing parameters (laser power (P), scanning
rate (V), powder feeding rate (F)) with the coating’s geometrical characteristics (clad height,
clad width, penetration depth, wetting angle, and dilution). Afterwards, the relationship
between them was investigated using a combined parameter (PαVβFγ). Through this
method, they obtained a laser cladding process drawing, from which the best process
parameters could be obtained. Through experimental analysis, they discovered that the
laser power influences the clad height and the clad width by the combined parameters of
the laser power and scanning speed, and the clad depth through the combined parameters
of the laser power, scanning speed, and powder feeding rate. However, they have different
views on the dilution ratio. Since the laser power factor is present in the numerator and
denominator of the dilution rate equation, Ansari [71] and Nabhani et al. [74] argue that its
effect can be eliminated by simplifying the fraction, while Shayanfar [72] and Erfanmanesh
et al. [73] do not adopt this approach. Ansari [71] and Nabhani et al. [74] believe that the
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dilution ratio is related to the scanning speed and powder feeding rate. Shayanfar [72]
and Erfanmanesh et al. [73] believe that the dilution ratio is related to the combination of
the scanning speed, powder feeding rate, and laser power. The combination of process
parameters that affect the cladding result is shown in Table 1. The processing diagram of
laser cladding is demonstrated in Figure 3.

Table 1. A combination of process parameters that have an impact on cladding results.

Authors
[Year/Reference] Substrate Cladding Material Clad

Height
Clad

Width
Clad

Depth
Dilution

Ratio

Ansari 2016 [71] Inconel 738
superalloy NiCrAlY powder P2V−3/2F P3/2V−1/3 PV2/3F−2/3 VF−1

Shayanfar 2020 [72] ASTM A592 steel 625 powder P1/2V−2F2 P1/2V−1/5 P3V−1/2 F3/4 P1/2V2F−3/4

Erfanmanesh 2017 [73] AISI 321 steel WC-12Co powder P2V−2F1/4 PV−1/2 P2V1/4F−1/4 P1/2V2F−1

Nabhani 2017 [74] Ti-6Al-4V Ti-6Al-4V powder PV−1F1/4 PV−1/3 PVF−1/8 VF−1/2

P is laser power, V is scanning speed, and F is powder feeding rate.
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Figure 3. Processing map of laser cladding. (a) The processing map for coaxial laser cladding of
NiCrAlY powder on Inconel 738 nickel-based alloys. Reprinted with permission from Ref. [71]. 2016,
Elsevier. (b) The processing map for laser cladding of Inconel 625 powder on ASTM A592 steel.
Reprinted with permission from Ref. [72]. 2020, Elsevier. (c) The processing map for laser cladding of
WC-12Co powder on AISI 321 steel. Reprinted with permission from Ref. [73]. 2017, Elsevier. (d) The
processing map for laser cladding of Ti-6Al-4V alloy on Ti-6Al-4V. Reprinted with permission from
Ref. [74]. 2018, Elsevier.
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Regression analysis can accurately measure the degree of correlation between each
factor and the degree of the regression fit to improve the effectiveness of the prediction
equation. However, the calculation is more complex. Moreover, for non-linear data or data
with complex polynomials, there are difficulties in modeling using the regression analysis
method.

2.3. Response Surface Methodology

The response surface methodology is a statistical method that integrates experimental
design and mathematical modeling to solve multivariate problems [75,76]. It can be used
to improve the secondary effects and interaction effects in different variables [77]. It is an
essential branch of experimental design methods that can be used to develop, improve,
and optimize processes [78].

In laser cladding, the response surface methodology is a powerful tool in analyzing
the relationship between process parameters and cladding results, especially when the
response target is affected by multiple process parameters [79,80]. Among them, the three
process parameters of laser power, scanning speed, and powder feeding rate are more
studied [81]. Cui et al. [82] used the response surface methodology to optimize a cobalt-
based alloy coating’s process parameters. Their work laid the foundation for the setup of
the laser cladding processing parameters for multi-track coatings made from cobalt. The
response surface methodology was used by Li et al. [83] to produce a Ni60PTA coating with
good properties. The coating did not have any cracks, dents, or holes. Wu et al. [84] studied
the relationship between pore formation and multiple process parameters in Ni60A alloy
coatings. They found that the powder feeding rate is the main factor affecting the porosity
of the coating. The results showed the good surface forming quality of the specimens
processed with the optimized process parameters.

Some researchers used the response surface methodology to optimize the laser fre-
quency, pulse width, gas flow, overlap rate, and spot diameter. Khorram et al. [85] found
that the laser frequency and pulse width positively affect the clad width, angle, and dilution
ratio but negatively affect the clad height and hardness. Lian et al. [86] found that the
clad width was inversely proportional to the overlap rate; the dilution ratio was inversely
proportional to the gas flow. Within a specific range, the flatness ratio decreases with
the increase in gas flow and overlap rate and then increases. Wu et al. [87] prepared a
Ni60A-25% laser cladding layer with high microhardness on 42CrMo alloy structural steel.
The experimental results show that the effect of the spot diameter on the dilution ratio and
effective unit area is minimal. The optimization variables and response indexes used in the
response surface methodology are shown in Table 2.

Table 2. Optimization variables and response indexes used in the response surface methodology.

Authors
[Year/Reference] Substrate Cladding

Material Response Indexes Optimization
Variables

Optimal Process
Parameters

Lujun Cui
2021 [82]

ZG310-570
(ZG45)

Co-Cr-W alloy
power

Aspect ratio,
dilution rate, clad
width, clad height,

clad depth

Laser power 1400 W~1700 W

Powder feeding rate 15 g/min~20 g/min

Scanning speed 5 mm/s~6 mm/s

Tiankai Li
2022 [83] 45 steel

Ni60PTA alloy
powder

Dilution rate, ratio
of layer width to

height,
contact angle

Laser power 1477 W

Powder feeding rate 17.5 mg/s

Scanning speed 5 mm/s
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Table 2. Cont.

Authors
[Year/Reference] Substrate Cladding

Material Response Indexes Optimization
Variables

Optimal Process
Parameters

Zupeng Wu
2019 [84] 45 steel Ni60A alloy power Porosity area

Laser power 1524.8 W

Powder feeding rate 5.20 g/min

Scanning speed 6.72 mm/s

Ali Khorram
2019 [85]

Inconel 718
superalloy

75Cr3C2 +
25(80Ni20Cr)

powder

Clad width, clad
height, clad angle

Laser frequency 20 Hz

Pulse width 12.9 ms

Scanning speed 5.43 mm/s

Guofu Lian
2018 [86]

AISI/SAE 1045
steel

W6Mo5Cr4V2
powder

Multi-track clad
width, flatness

ratio, dilution rate

Laser power 1.5 kW

Scanning speed 6 mm/s

Gas flow 1018.81 L/h

Overlap rate 23.47%

Sha Wu
2021 [87]

42CrMo alloy
Ni60A-25% WC

powder
Dilution rate, unit

effective area

Laser power 2799.93 W

Scanning speed 236.84 mm/min

Powder feeding rate 5 g/min

Spot diameter 3 mm

As a traditional optimization method, the response surface methodology has been
successfully applied to various system optimization problems, especially to multivariate
response problems. However, the premise of an experimental design using this method
is that the designed experimental sites should contain optimal conditions. Otherwise, the
optimization results will be biased. Therefore, reasonable experimental factors and levels
must be determined when optimizing the response surface methodology.

2.4. Taguchi Method

The Taguchi method is a low-cost, high-efficiency experimental design method used in
many engineering problems [88]. In the Taguchi method, orthogonal arrays can effectively
determine the influence of variables and levels to achieve robust designs, which can
significantly reduce the experimental time and cost [89].

Due to the simplicity and clarity of the experimental design method of the Taguchi
method, in recent years, the Taguchi method has become a powerful tool to improve
productivity in the R&D stage [90]. Xu et al. [91] investigated the effect of the process
parameters on bond shear strength and microhardness using the Taguchi method. They
found that the powder type had the most significant effect on the bond strength. Quazi
et al. [92] improved the tribomechanical properties of a Ni-WC composite coating on the
surface of AA5083 aluminum alloy by using the Taguchi method to optimize the laser
cladding process parameters. The results show that the laser power, defocus amount, and
scanning speed significantly affect the surface hardness and wear resistance.

Some scholars have improved the Taguchi method and proposed the mixed Taguchi
method. Chen [93] and Shi et al. [94] combined the Taguchi method with the empirical
statistical model and TOPSIS methods. The results show that both methods can signifi-
cantly improve the microhardness of coatings. Zhang [95], Paul [96], Deng [97], and Yu
et al. [98] combined grey correlation analysis and the Taguchi method to optimize the
process parameters. This method can simplify complex multi-parameter optimization
to a single-objective optimization problem, which significantly reduces the difficulty of
optimization. The optimized cladding layer obtained by this method is significantly better
than other cladding layers in terms of morphology and microstructure, which also verifies
the feasibility of Taguchi’s grey correlation method. A grey relational graph of the process
parameters; the influence of the process parameters on the cladding’s height, width, and
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dilution SNR; and the cross-sectional metallographic structure comparison of the specimen
before and after optimization are shown in Figure 4.

Coatings 2023, 13, x FOR PEER REVIEW 8 of 28 
 

 

 
Figure 4. A grey relational graph of the process parameters, the influence of processing parameters 
on the signal-to-noise ratio of cladding, and the metallographic microstructure comparison of spec-
imen cross-sections before and after optimization. (a) Effects of processing parameters on the S/N 
ratio of clad height. Reprinted with permission from Ref. [95]. 2016, Springer Nature. (b) Graph of 
grey relational grade. Reprinted with permission from Ref. [96]. 2013, Springer Nature. (c) Metallo-
graphic microstructure of the specimen cross-section under initial parameters. Reprinted with per-
mission from Ref. [97]. 2022, Elsevier. (d) Metallographic microstructure of specimen cross-section 
under optimal parameters. Reprinted with permission from Ref. [97]. 2022, Elsevier. (e) Main effects 
plot for SNR of the dilution rate. Reprinted with permission from Ref. [98]. 2018, Elsevier. (f) Main 
effects plot for SNR of the clad width. Reprinted with permission from Ref. [98]. 2018, Elsevier. 

Although the Taguchi method is a cost-effective experimental design, it must indicate 
the test. The best combination can only be a combination of a specific test level. The opti-
mal solution can only be within the range of the chosen level. When an interaction be-
tween controllable factors is apparent, it can lead to inaccurate results from ANOVA. 

2.5. Other Traditional Optimization Methods 
In addition to optimization methods such as the response surface methodology, re-

gression analysis, single-factor experiments, and Taguchi method, traditional optimiza-
tion methods such as orthogonal experiments, principal component analysis, TOPSIS, 
grey relational analysis, the improved analytic hierarchy process approach, theoretical–
empirical models, the desirability function approach, and Design Expert statistical soft-
ware are also used to optimize the laser cladding process parameters. 
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cross-sections before and after optimization. (a) Effects of processing parameters on the S/N ratio
of clad height. Reprinted with permission from Ref. [95]. 2016, Springer Nature. (b) Graph of grey
relational grade. Reprinted with permission from Ref. [96]. 2013, Springer Nature. (c) Metallographic
microstructure of the specimen cross-section under initial parameters. Reprinted with permission
from Ref. [97]. 2022, Elsevier. (d) Metallographic microstructure of specimen cross-section under
optimal parameters. Reprinted with permission from Ref. [97]. 2022, Elsevier. (e) Main effects plot
for SNR of the dilution rate. Reprinted with permission from Ref. [98]. 2018, Elsevier. (f) Main effects
plot for SNR of the clad width. Reprinted with permission from Ref. [98]. 2018, Elsevier.

Although the Taguchi method is a cost-effective experimental design, it must indicate
the test. The best combination can only be a combination of a specific test level. The optimal
solution can only be within the range of the chosen level. When an interaction between
controllable factors is apparent, it can lead to inaccurate results from ANOVA.

2.5. Other Traditional Optimization Methods

In addition to optimization methods such as the response surface methodology, re-
gression analysis, single-factor experiments, and Taguchi method, traditional optimization
methods such as orthogonal experiments, principal component analysis, TOPSIS, grey
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relational analysis, the improved analytic hierarchy process approach, theoretical–empirical
models, the desirability function approach, and Design Expert statistical software are also
used to optimize the laser cladding process parameters.

Peng et al. [99] used the coating’s average hardness value and dilution ratio as evalua-
tion indexes and obtained the optimal process parameters through orthogonal experiments.
Marzban [100] and Wang et al. [101] combined principal component analysis (PCA) with
the TOPSIS method and grey correlation relationship analysis, respectively. They achieved
the multi-response optimization of the laser cladding process. Liang et al. [102] proposed a
laser cladding coating quality evaluation method based on fuzzy comprehensive evaluation
(PCE) and an improved analytic hierarchy process (IAHP) approach. The results show
that the method can help to optimize the process parameters. Reddy et al. [103] studied
the influence of the process parameters on the powder deposition efficiency, dilution, and
porosity by establishing a theoretical–empirical model. The experimental results show that
the laser power and powder feeding rate greatly influence the deposition efficiency and
dilution, and the porosity is mainly related to the raw material. Meng [104], Menghani [105],
Mohammed [106], and Liu et al. [107] used the desirability function approach to identify
the optimum magnitude of the process parameters in the laser cladding process to obtain
better cladding quality and geometry. Rasheedat [108] and Moradi et al. [109] designed a
complete factorial experiment, ran many experiments with different process parameters,
and obtained the best process parameters through the Design Expert statistical software.
Table 3 lists the optimization methods and evaluation indexes. The microstructure at
the optimum process parameters and a comparison with the substrate microstructure are
shown in Figure 5. It can be seen from the figure that the coating and substrate bond well
at the optimum process parameters. In addition, many equiaxed dendrites were formed
at the top of the coating, the cladding layer was uniform and compact, the overall quality
was good, and the wear resistance was improved. Compared to the substrate, the wear
mechanism of the coated specimen changed to abrasive wear.

Table 3. The optimization methods and evaluation indexes.

Authors
[Year/Reference]

Optimization
Method Substrate Cladding

Material Evaluation Indexes Process Parameters
Optimal
Process

Parameters

Pengfei Fan
2020 [99]

Orthogonal
experiments

15 M nNi4M
o steel

Co50 powder and
WC powder

Clad depth, clad
width, clad height,

dilution rate,
hardness

Laser power 2.4 kW

Powder feeding rate 0.5 g/s

Scanning speed 7 mm/s

Javad Marzban
2015 [100] PCA with TOPSIS AISI 1040

Ni-Cr-Mo
powders

Clad height, clad
width, clad depth

Laser power 1 kw

Powder feeding rate 8 mg/min

Scanning speed 0.5 m/min

Qianting Wang
2020 [101] PCA with GRA AISI 1045

Fe50 powder and
TiC powder

Clad width, flatness,
non-fusion area

Laser power 1.77 KW

Power ratio 35.28%

Overlapping ratio 24.06%

Defocus amount −0.44 mm

Wanxu Liang
2021 [102] FCE with IAHP 45 steel

316 L stainless
steel powder

Coating profile,
microstructure,

mechanical properties

Laser power ≤1200 W

Scanning speed 5~7 mm/s

Overlap rate 30~40%

L. Reddy
2018 [103]

Theoretical–
empirical

model
15Mo3 SHS 7170 powder

Powder deposition
efficiency, dilution,

porosity

Laser power 1000 W

Powder feeding rate 4 g/min

Scanning speed 300 mm/min
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Table 3. Cont.

Authors
[Year/Reference]

Optimization
Method Substrate Cladding

Material Evaluation Indexes Process Parameters
Optimal
Process

Parameters

Jyoti Menghani
2021 [105]

Desirability
function
approach

AISI 316
AlFeCuCrCoNi

high-entropy
powder

Clad height, clad
depth, clad width,

percentage dilution

Laser power 1.1 kW

Powder feeding rate 4 g/min

Scanning speed 500 mm/min

Mahmoud
Moradi

2021 [109]

Design Expert
statistical
software

4130
alloy steel

Inconel 718
powder

Clad height, clad
width, standard

deviation of
microhardness, the

stability of additively
manufactured walls

Scanning speed 2.5 mm/s

Powder feeding rate 28.52 g/min

Scanning strategies
(unidirectional,
bidirectional)

Unidirectional
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used, and extensive experiments are performed to optimize the process parameters. In 

Figure 5. The microstructure at optimum process parameters and a comparison with the substrate
microstructure. (a) Microstructure of the lower part of the cladding layer. Reprinted with permission
from Ref. [99]. 2020, Elsevier. (b) Microstructure of the top of the cladding layer. Reprinted with
permission from Ref. [99]. 2020, Elsevier. (c) 3D worn morphologies of substrate. Reprinted from [101].
(d) 3D worn morphologies of optimized clad layer [101]. (e) SEM morphologies of worn surfaces for
HEA cladded SS-316 at optimum process parameters. Reprinted from [105]. (f) SEM morphologies of
worn surfaces for untreated SS-316 [105].
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Traditional optimization methods are often specific to a given process, without con-
sidering physical changes such as thermal strain and the cooling rate during optimization.
Optimization methods still need to be redesigned when new materials or processes are
used, and extensive experiments are performed to optimize the process parameters. In
addition, the use of traditional optimization methods often requires a specific mathematical
foundation, and some mathematical operations are necessary for the optimization process
and the mathematical analysis of the experimental results.

3. Intelligent Optimization Methods
3.1. Artificial Neural Network Model

The artificial neural network is a robust empirical modeling tool with significant
advantages, such as high accuracy, low costs, and short times, and it is one of the most
applicable models in non-linear analysis [110]. It has a high degree of non-linear fitting
capability, which is impossible with traditional methods [111]. Among them, the BP neural
network is well suited for physical applications, and it is currently one of the most widely
used artificial neural networks [112,113].

In recent years, the artificial neural network has made remarkable achievements in
materials science. It has begun to be applied to laser cladding to predict the cladding
layer morphology and optimize the process parameters [114–116]. Song et al. [117] found,
through an experimental comparison, that the artificial neural network model is more
suitable for describing the non-linear relationship between process parameters and cladding
geometry than the response surface model. Li et al. [118] used the BP neural network to
establish a laser cladding AlCoCrFeNi coating dilution rate prediction model; they found
that under the optimum process parameters, the coating microstructure was composed of a
simple BCC solid solution phase, the grains were equiaxed, and no serious segregation of
internal elements occurred. Thus, the coating crack could be effectively controlled. Caiazzo
et al. [119] used an artificial neural network to study the relationship between the laser
cladding process parameters and cladding layer size. The results show that this method
can obtain the required process parameters for specific cladding layer sizes. Guo et al. [120]
used the BP neural network model to study the influence of the process parameters on
the coating quality of a high-power semiconductor laser cladding cobalt-based alloy. The
results showed that the width, height, and depth of the cladding layer were related to the
laser scanning speed, and the hardness of the cladding layer was related to the powder
feeding rate. The neural network prediction errors are shown in Table 4. The BP neural
network training process, a comparison between the BP neural network model and the
RSM model prediction results, and the microstructure of AlCoCrFeNi HEA coatings under
the optimal process parameters are shown in Figure 6.

Table 4. Neural network prediction objects and errors.

Authors
[Year/Reference] Substrate Cladding Material Optimization

Method Prediction Error

Changhui Song
2020 [117]

316 L
stainless steel

316 L stainless steel
powder BPNN

Clad wight Clad height

2.79% 3.09%

Yutao Li
2021 [118]

40CrNiMo
alloy steel

AlCoCrFeNi high-entropy
alloy powder BPNN

Dilution rate

5.89%

Fabrizia Caiazzo
2018 [119]

2024
aluminum

alloy

2024 aluminum alloy
powder ANN

Laser
power Scanning speed Powder

feeding rate

2.0% 5.8% 5.5%
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Figure 6. The BP neural network training process, the comparison between the BP neural network
model and the RSM model prediction results, and the microstructure of AlCoCrFeNi HEA coatings
under optimal process parameters. (a) The BP neural network training process. Reprinted from [118].
(b) Comparison of the prediction results of neural networks and RSM for clad height. Reprinted with
permission from Ref. [117]. 2020, Elsevier. (c) Back-scattered SEM images of the AlCoCrFeNi coating
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microstructure under low magnification [118]. (d) Back-scattered SEM images of the AlCoCrFeNi
coating microstructure under high magnification. At the region marked B in (d), the Fe element
content was the highest, which was 30.40 at.%; and the Al element content was the lowest, which
was 14.98 at.%. The black granular microstructure (marked A) had the highest content of Al and
N elements, which were 38.41 at.% and 25.23 at.%, which indicates that the particles were the AlN
phase. [118]. (e) EDS maps of AlCoCrFeNi coating [118].

A neural network is suitable for handling large data samples, and when the number of
samples is too small, the results may need to be more accurate. In addition, neural network
models tend to fall into local minima and take longer to learn and train. Therefore, there is
a need to apply more optimization algorithms to the neural network.

3.2. Genetic Algorithm Optimizes BP Neural Network (GABP)

The genetic algorithm is a non-traditional optimization tool based on random search
techniques [121]. The genetic algorithm has a good global optimization ability, which is
suitable for dealing with multi-objective problems [122,123]. The artificial neural network
has a long learning time and slow convergence speed, and quickly falls into local min-
ima [124]. Its combination with genetic algorithms can effectively optimize the threshold
value of the neural network and achieve a fast global optimization search [125].

Liu et al. [126] found that GABP neural networks have higher prediction accuracy
than BP neural networks. At the same time, the combination of a double hidden layer
and single-output neural network led to higher prediction accuracy. Pang et al. [127]
found that the GABP neural network had better optimization ability than the response
surface method. The process parameters obtained using the GABP neural network could
improve the deposition rate for laser cladding. Huang [128] and Yang et al. [129] combined
genetic algorithms with a neural network model to study the relationship between the
laser cladding process parameters and cladding layer quality. The results show that the
optimization method can be applied to the crack control of laser cladding molding and can
provide some references for the optimization of the laser cladding process parameters. The
GABP predictions and their comparison with the BPNN predictions are shown in Figure 7.

The programming implementation of genetic algorithms is complex. The search speed
of the algorithm could be faster and requires a long training time. There are better solutions
than a single genetic algorithm for large-scale computational problems, and they can easily
fall into premature convergence.

3.3. Support Vector Machines (SVM)

Support vector machines (SVM) are a statistical learning method based on structural
risk minimization. Support vector regression (SVR) is a vital application branch of sup-
port vector machines (SVM). Compared with artificial neural networks, SVM still has a
strong generalization ability and global optimization ability when the training data are
insufficient. In recent years, it has become a hotspot in various research and industrial
process applications and has been successfully applied to modeling and regression analysis
problems [130–133].

Chen et al. [134] used the support vector machine (SVM) model to study the influence
of the process parameters on the coating quality characteristics. The results show that
the preset powder thickness, laser spot diameter, and power are the most critical process
parameters. Chen et al. [135] established a multi-output support vector regression (M-SVR)
model. Through experiments, they found that its accuracy was higher than that of the
single-output support vector regression (S-SVR) model and the BP neural network model.
Yao et al. [136] established a support vector regression (SVR) model based on the Gaussian
radial (RBF) kernel function. This model is more accurate than the BP neural network
model and can help to select the process parameters. Zhang et al. [137] optimized the
process parameters by combining the multi-objective slime mold algorithm (MOSMA) and
support vector regression (SVR). The results show that compared with other methods,
such as the response surface methodology, the best process parameters obtained by this
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method can lead to coatings with better performance. A comparison of the prediction
results of support vector regression and the BP neural network is shown in Table 5. The
prediction model framework for support vector machines, a comparison of the predicted
and experimental values for SVR, and a comparison of the predicted values for SVR and
BPNN are shown in Figure 8.
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Figure 7. The GABP predictions and their comparison with the BPNN predictions. (a) Comparison
of the prediction error of the triple-output-layer GABPNN with the single-output-layer GABPNN
and BPNN for the clad width. Reprinted with permission from Ref. [126]. 2018, Springer Nature.
(b) Comparison of the prediction error of the triple-output-layer GABPNN with the single-output-
layer GABPNN and BPNN for the clad height. Reprinted with permission from Ref. [126]. 2018,
Springer Nature. (c) Prediction results of BPNN [128]. (d) Prediction results of GABP [128].

Support vector machines (SVM) can effectively solve regression problems and per-
form well when dealing with small sample data. However, they are only suitable when
processing a small amount of data, and, when there are too many data sets, they require a
long time to solve the problem and show poor results.
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Table 5. Comparison of support vector regression and BP neural network prediction results.

Authors
[Year/Reference] Substrate Cladding

Material
Optimization

Method Prediction Error

Xiyi Chen
2021 [135] 316 L stainless steel

316 L stainless
steel powder

BPNN
Clad width Clad height

15% 6%

M-SVR
Clad width Clad height

5% 5%

Yao Wang
2020 [136] 316 L stainless steel Fe powder

BPNN
Clad width Clad height

6.72% 7.96%

RBF-SVR
Clad width Clad height

4.58% 5.33%

Coatings 2023, 13, x FOR PEER REVIEW 15 of 28 
 

 

Yao et al. [136] established a support vector regression (SVR) model based on the Gaussian 
radial (RBF) kernel function. This model is more accurate than the BP neural network 
model and can help to select the process parameters. Zhang et al. [137] optimized the pro-
cess parameters by combining the multi-objective slime mold algorithm (MOSMA) and 
support vector regression (SVR). The results show that compared with other methods, 
such as the response surface methodology, the best process parameters obtained by this 
method can lead to coatings with better performance. A comparison of the prediction re-
sults of support vector regression and the BP neural network is shown in Table 5. The 
prediction model framework for support vector machines, a comparison of the predicted 
and experimental values for SVR, and a comparison of the predicted values for SVR and 
BPNN are shown in Figure 8. 

Table 5. Comparison of support vector regression and BP neural network prediction results. 
Authors [Year/Refer-

ence] 
Substrate Cladding Mate-

rial 
Optimization 

Method 
Prediction Error 

Xiyi Chen 
2021 [135] 

316 L stainless 
steel 

316 L stainless 
steel powder 

BPNN 
Clad width Clad height 

15% 6% 

M-SVR 
Clad width Clad height 

5% 5% 

Yao Wang 
2020 [136] 

316 L stainless 
steel 

Fe powder 
BPNN 

Clad width Clad height 
6.72% 7.96% 

RBF-SVR 
Clad width Clad height 

4.58% 5.33% 

 
Figure 8. A prediction model framework for support vector machine, comparison of predicted and 
experimental values of SVR, and comparison of the predicted values of SVR and BPNN. (a) The 
prediction model framework of the support vector machine. Reprinted with permission from Ref. 
[134]. 2019, Elsevier. (b) Predicted results for microhardness and experimental values. Reprinted 
with permission from Ref. [134]. 2019, Elsevier. (c) Comparison of the predicted values of the clad 
width of SVR and BPNN [135]. (d) Comparison of the predicted values of the clad height of SVR 
and BPNN [135]. 

Figure 8. A prediction model framework for support vector machine, comparison of predicted and
experimental values of SVR, and comparison of the predicted values of SVR and BPNN. (a) The
prediction model framework of the support vector machine. Reprinted with permission from
Ref. [134]. 2019, Elsevier. (b) Predicted results for microhardness and experimental values. Reprinted
with permission from Ref. [134]. 2019, Elsevier. (c) Comparison of the predicted values of the clad
width of SVR and BPNN [135]. (d) Comparison of the predicted values of the clad height of SVR and
BPNN [135].

3.4. Novel Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The novel non-dominated sorting genetic algorithm II (NSGAII) is a well-known meta-
heuristic that can effectively solve non-linear multi-objective optimization problems [138].
It has the advantages of fast operation and good solution convergence.

Peng et al. [139] used a hybrid TS-GEP algorithm and NSGA-II to optimize the laser
cladding process parameters. By using this method, they improved the energy and material
utilization rate in the laser cladding process. Jiang [140] and Lin et al. [141] optimized the
laser cladding process parameters using the NSGA-II algorithm. The results show that this
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method can effectively reduce the energy loss in the laser cladding process and improve the
macro quality and microhardness of the cladding layer. Zhao et al. [142] used the NSGA-II
algorithm to optimize the process parameters for coaxial powder-feeding laser cladding.
The results showed that the use of the optimized parameters could reduce the depth of the
heat-affected zone of the substrate and improve the cladding efficiency. The results of the
response values before and after optimization using the NSGA-II algorithm are shown in
Table 6.

Table 6. Comparison of response values before and after NSGA-II optimization.

Authors
[Year/Reference] Substrate Cladding

Material Response Values before and after Optimization

Xingyu Jiang
2022 [140]

45 steel
plate

304 L
powder

Response Energy
consumption (J)

Powder
utilization

Microhardness
(HV) Aspect ratio

Before 2,972,340.405 43% 221 3.6

After 1,798,861.43 46% 235 4.5

Linsen Shu
2022 [141]

TC4 plate TC4 alloy
powder

Response Wear depth
(µm)

Wear width
(µm)

Microhardness
(HV)

Average mean
friction

coefficient

Before 74.54 2459.64 429.5 0.374

After 56.64 1884.79 473.3 0.293

Zhao Kai
2020 [142] 20 steel

Inconel
625

powder

Response Efficiency
(mm2·s−1)

Heat-
affected

zone depth

Microhardness
(HV) Dilution

Before 15.24 0.855 186.433 0.518

After 16.17 0.736 218.337 0.32

The NSGA-II algorithm can achieve good results in low-dimensional multi-objective
optimization problems. However, for high-dimensional multi-objective optimization prob-
lems, when there are too many optimization goals, the selection pressure will be too small,
and the computational complexity will increase significantly. Therefore, the algorithm
needs to continue to be improved.

3.5. Particle Swarm Optimization Algorithm (PSO)

Particle swarm optimization (PSO) is a class of metaheuristic search algorithms with-
out derivatives [143]. The mode of operation of particle swarm algorithms is similar to that
of genetic algorithms. However, particle swarm algorithms consider individuals in the
form of populations, rather than focusing only on a single individual, as genetic algorithms
do [144]. They are widely used in multi-objective optimization problems because of their
fast convergence, simple operation, and few parameters [145].

Pant et al. [146] developed a prediction model considering the process parameters
and powder capture efficiency, clad height, and width using the particle swarm algorithm
to optimize the artificial neural network. The results showed that the PSO-ANN model’s
prediction results were more accurate than those of the ANN model. Deng et al. [147]
developed a BPNN-QPSO neural network prediction model for the laser cladding of Ti (C,
N) ceramic coatings and compared the method with the Taguchi method, BPNN, and BPNN-
PSO. The results show that the probability of the BPNN-QPSO model falling into the locally
optimal solution is low, and the convergence speed is fast. Ma et al. [148] used a multi-
objective quantum particle swarm optimization algorithm to find the minimum dilution
rate and residual stress. They found that the defocus amount had the most excellent effect
on the dilution rate, and the scanning speed had the most significant impact on the residual
stress. Chukwubuikem et al. [149] used particle swarm optimization algorithms to optimize
individual objective functions, obtained the optimal process parameters, and developed
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a user interface through which the parameters could be optimized directly using particle
swarm optimization, without redesigning the optimization methods. Figure 9 shows a
comparison of the performance of the neural network and the particle swarm optimization
neural network models, and an iterative comparison of the coatings’ microhardness fitness
values under different optimization methods.
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Figure 9. Performance comparison of a neural network model optimized by the particle swarm
algorithm with a neural network model. (a) Comparison of experimental and ANN and PSO-ANN
models’ predicted results for clad height. Reprinted with permission from Ref. [146]. 2020, Elsevier.
(b) Relative error of ANN and PSO-ANN models for clad width. Reprinted with permission from
Ref. [146]. 2020, Elsevier. (c) Performance comparison between the neural network and the PSOANN
model. Reprinted with permission from Ref. [146]. 2020, Elsevier. (d) The iterative comparison of the
coating microhardness fitness values under different optimization methods [147].

The standard PSO algorithm may sometimes fail to converge to the optimal global
solution. The multi-objective QPSO algorithm is superior in terms of convergence speed
and accuracy compared to the standard PSO algorithm. However, the multi-objective
QPSO algorithm that converges too quickly may lead to premature convergence, reducing
the convergence accuracy.

3.6. Other Intelligent Optimization Methods

The most commonly used intelligent optimization algorithms in laser cladding are the
neural network, GABP, support vector machines (SVM), and particle swarm algorithms
(PSO). However, in addition to these algorithms, algorithms such as the adaptive neuro-
fuzzy inference system (ANFIS), random forest (RF), grey wolf optimization (GWO), and
the Bonobo optimization algorithm have also been applied to laser cladding.



Coatings 2023, 13, 496 18 of 26

Singh et al. [150] used four different methods (sine cosine algorithm, coyote optimiza-
tion algorithm, Jaya algorithm, and Bonobo optimization algorithm) to optimize the process
parameters in order to obtain the minimum dilution. They found that the Bonobo optimiza-
tion algorithm converged the fastest when searching for the global optimum solution. At
the optimum parameters, the microhardness of the clad layer was significantly increased
due to the diffusion of WC particles during the cladding process. Zhou et al. [151] deter-
mined the optimal process parameters by combining the grey wolf optimization algorithm
and the BP neural network. They found that the GWO-BPNN model was more accurate
than the predictions of the BPNN model. Under the optimum process parameters, the
wear resistance and corrosion resistance of the cladding layer were significantly improved,
with wear in the form of adhesion and fatigue wear. Sohrabpoor et al. [152] optimized
the process parameters by correlating the ANFIS response model with the Imperialist
Competition Algorithm (ICA). The results show that the method effectively improves the
powder collection efficiency and obtains the desired clad height and clad width. Liang
et al. [153] used a random forest algorithm to construct a regression model of laser cladding
process parameters (laser power, scanning speed, powder feeding rate) and a single-pass
cladding layer size. The results show that this method can accurately estimate the laser
cladding process parameters required to process the cross-sectional geometry of a specific
single-pass cladding layer. The prediction results of ANFIS, RF optimization methods, and
GWO optimization of BPNN before and after their application are shown in Table 7. The
results of the optimized microstructure are shown in Figure 10.

Table 7. The prediction results of ANFIS, RF optimization methods, and GWO optimization of BPNN.

Authors
[Year/Reference] Substrate Cladding

Material
Optimization

Method Predicted Error

Zhijie Zhou
2022 [151]

20Cr13
stainless

steel

15-5PH
powder

BPNN

Clad
height
MSE
(10–3)

Clad
weight
MSE
(10–3)

Dilution
MSE
(10–3)

1.053 0.642 4.969

GWO-
BPNN

Clad
height
MSE
(10–3)

Clad
weight
MSE
(10–3)

Dilution
MSE
(10–3)

0.161 0.715 0.267

Hamed
Sohrabpoor
2016 [152]

A36 mild
steel

Fe-based
alloy

powder
ANFIS

Powder
catchment
efficiency

Clad
height

Clad
width

7.62% 8.36% −3.83%

Liang Xudong
2020 [153]

Stainless
steel

Inconel
625

powder
RF

Laser
power

Scanning
speed

Powder
feeding

rate

1.17% 3.43% 3.51%

At present, intelligent optimization algorithms have begun to be applied to laser
cladding, but there are still some limitations. Optimizing the process parameters using
intelligent optimization methods often requires extensive experimentation to obtain valid
training data, which can also increase the costs. Moreover, a single intelligent algorithm
will likely produce local convergence, failing to obtain the optimal process parameters.
Therefore, in the future, hybrid intelligence algorithms should be used more often to
optimize the process parameters.
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4. Summary and Outlook

It can be seen from the above that the optimization of the process parameters of laser
cladding is a complex multi-parameter optimization problem. Through the optimization
of the laser cladding process, the parameters can effectively improve the quality of the
coating. With the deepening of research, many optimization methods have been developed.
In the early years, more traditional optimization methods were used. However, with
the development of computer technology, intelligent algorithms began to be applied to
optimization problems, but these optimization methods still have some defects. The authors
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believe that the future development trend of process parameter optimization methods is as
follows.

4.1. A Deeper Look at Intelligent Algorithms

Intelligent algorithms have recently been widely used in various optimization fields.
However, there are still relatively few applications for evolutionary algorithms in laser
cladding, such as simulated annealing algorithms, ant colony algorithms, prohibited search
algorithms, and artificial bee colony algorithms. Convolutional neural networks and radial
basis neural networks are rarely reported. There are many other areas where improve-
ments to the non-dominated sorting second-generation algorithm have been reported to
significantly improve the algorithm’s performance. However, they have yet to be widely
used in laser cladding. In addition, since hybrid intelligence algorithms can overcome the
shortcomings of single algorithms, more research into hybrid algorithms should follow
as well.

4.2. Optimization of Process Parameters under External Auxiliary Conditions

There are many reports that external conditions such as ultrasound and electromag-
netic fields can effectively improve the quality of coatings. However, only a few scholars
have investigated their effect in optimizing the process parameters. The optimization of
the process parameters under external auxiliary conditions can be analyzed to optimize the
process parameters more successfully and prepare better coatings with superior properties.

4.3. Optimization Studies Carried out on More Parameters, and More Evaluation
Indicators Introduced

There are many process parameters in laser cladding. However, many scholars only
optimize and study process parameters such as the laser power, scanning speed, and
powder feeding rate. More research needs to be carried out to optimize other process
parameters. The laser cladding results are generally evaluated by performance indicators
such as the cladding width, height, depth, dilution rate, wear resistance, microhardness,
etc. In contrast, the mechanical properties of the coating, such as bending, tensile, fatigue,
compression, and shear properties, are rarely studied. It is essential to strengthen the
research on the optimization of other process parameters and introduce more evaluation
indicators to study the laser cladding process parameters.

4.4. Development of Software That Allows the Optimization of Laser Cladding Process Parameters

Both traditional and intelligent optimization methods require many experiments,
which can waste time and increase costs. Developing software that can intelligently select
the best process parameters is essential.
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