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Abstract: The fabrication of a green, high activity and low-cost carbon-based catalyst capable of acti-
vating new oxidant (peroxymonosulfate, PMS) for contaminants abatement is needed. In this research,
we prepared novel N-doped biochars via one-step pyrolysis of algal sludge without external nitrogen
sources. The obtained ASBC800 possessed the largest specific surface area (SBET = 145.596 m2 g−1)
and thus it displayed the best catalytic performance, as revealed by the effective elimination of
sulfadiazine (SDZ, >95% within 70 min) with 0.2 g L−1 ASBC800 and 0.5 mM PMS. Both radical
species (e.g., SO4

•−, and •OH), and nonradical regime (1O2 and electron-transfer) contributed to
SDZ oxidation, in which ASBC800 played essential roles in activating PMS, accumulating SDZ, and
regulating electron shuttle from SDZ to ASBC800-PMS*. Overall, this work not only provides a novel
strategy for the synthesis of N-rich and cost-effective biochar but also promotes the development and
application of carbon-based functional materials in environmental remediation.

Keywords: peroxymonosulfate; pre-adsorption; oxidation; electron-transfer; N doping

1. Introduction

Recently, peroxymonosulfate-based advanced oxidation processes (PMS−AOPs) have
received increasing attention for pollutants removal [1–3]. Various reactive oxygen species
(ROS) can be produced in this oxidation process, including sulfate radical (SO4

•−), hydroxyl
radical (•OH) and singlet oxygen (1O2), which possess much higher redox potentials than
their parent oxidants (PMS, 1.75–1.82 V) [4]. In addition, a novel mediated electron transfer
regime may occur between target contaminants and oxidants without the generation of
ROS [5–7].

In order to produce ROS, it is of great importance to break the O–O bond of the PMS.
Metal-free carbon-based catalysts have recently aroused widespread attention owing to
their environmental protection and easy preparation [8]. Carbonaceous materials (e.g., acti-
vated carbon [9], reduced graphene oxide [10], porous carbon [11], carbon nanotubes [12]
and nanodiamonds [13]) have been proven to be potential green catalytic materials for PMS
activation due to their abundant oxygen-containing functional groups, edge defects, and
porous structures. In addition to the abovementioned carbon-based catalysts, biochar is
deemed a promising candidate for catalysis [14]. Biochar is a black solid obtained via high-
temperature pyrolysis and often used as an excellent adsorbent [15,16]. Compared with
other catalytic materials such as metal-based catalysts (e.g., Co, Fe, Cu, Mn), biochar has
the advantages of easy preparation, a wide variety of raw precursors and low cost [17,18].
However, the catalytic activity of pristine biochar is often unsatisfactory owing to its limited
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SBET and undeveloped pore structure. Thus, several modification methods (e.g., metal dop-
ing and heteroatomic doping) have been applied to enhance the catalytic performance of
pristine biochar [19,20]. Among others, N doping has been deemed a popular tool to boost
the catalytic activity of pristine biochar [21]. N doping can enhance the interaction between
catalysts and oxidants through changing the electrical potential on the carbon surface [22].
Nevertheless, the addition of external nitrogen sources (urea, thiourea, melamine, NH4NO3,
NH4Cl, NH3·H2O, etc.) is needed when preparing the N-doped biochar, which increases
the preparation cost [21,23,24]. For instance, Wu et al. [23] prepared N-doped biochar by
using pharmaceutical sludge and urea solid as the feedstocks, which may increase the
preparation cost. Therefore, it is of great importance to develop N-doped biochars without
exogenous nitrogen dopants, which may promote the development and application of
biochars in environmental remediation. Interestingly, algae, as it contains a large amount
of protein, can be directly transferred to N-doped biochars without using extra nitrogenous
chemical reagents [25–27]. It was reported that N-abundant Taihu blue algae biomass could
be used as the feedstock for N self-doping porous carbon preparation [28]. Thus, it could
be speculated that the algal sludge obtained by the mechanical pressure filtration of algal
slurries might be a promising precursor for N-doped biochars preparation. Notably, it is
still a big challenge to effectively dispose of algal sludge and thus translating the algal
sludge into valuable biochars may be an alternative solution. As one of the most widely
used antimicrobial compounds in animal husbandry, relatively high sulfadiazine (SDZ)
residues were detected in the environment [29]. Therefore, it is urgent that green and
efficient methods for SDZ-contaminated water purification are developed.

Consequently, this study aimed to prepare N-rich biochars from algal sludge for PMS
activation. The physicochemical properties of the N-doped biochars along with the adsorp-
tive and oxidative degradation of SDZ were systematically investigated. Moreover, the
activation mechanism of PMS by N-doped biochar was analyzed in detail. This study will
provide a low-cost and efficient strategy for N-doped biochars preparation and establish
an integrated oxidation process for SDZ-contaminated water cleanup.

2. Materials and Methods
2.1. Chemicals and Regents

SDZ (Table S1) and PMS were obtained from Aladdin, China. All other reagents were
analytical grade (Text S1).

2.2. Preparation and Characterization of the ASBCx

The algal sludge was collected from a sewage plant in Wuxi, China. Firstly, the algal
sludge was dried at 80 ◦C and then mechanically grinded and sieved to 0.15 mm. The
obtained powdered sample was placed in an oven and heated to a required temperature
(400, 500, 600 and 800 ◦C) at 5 ◦C min−1 and held for 2 h. The obtained black solids were
then ground into fine powders and named as ASBCx, where x represented the annealing
temperature (400, 500, 600 and 800 ◦C). Detailed information on various characterizations
and electrochemical experiments is given in Text S2 and Text S3, respectively.

2.3. Adsorption Studies

Experiments on SDZ adsorption were performed in a 100 mL bottle containing 50 mL
of SDZ solution (5 mg L−1) and 0.2 g L−1 of ASBCx. The mixture was stirred at ambient
temperature with a magnetic stirrer. At regular intervals (2, 5, 10, 20, 40, 60, 120 min), liquid
samples were taken from the mixture and filtered with 0.2 mm of filter to remove the solid
catalyst for analysis. Then, the adsorption behavior of SDZ on ASBCx was further studied
by adsorption kinetics (Text S4).
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2.4. Catalytic Degradation of SDZ

SDZ, as a model pollutant, was selected as a degradative substrate to evaluate the
catalytic activity of ASBCx. The SDZ degradation was conducted in a glass beaker (100 mL)
containing 50 mL of SDZ solution (5 mg L−1). First, 10 mg of ASBCx was dispersed in
a SDZ solution and stirred for 30 min to reach adsorption equilibrium. Then, 0.5 mM of
oxidants were injected into the suspension to initiate catalytic reaction. At regular intervals
(2, 5, 10, 20, 30, 40 min), 0.5 mL of solution was withdrawn, filtered with 0.2 mm of filter
to remove the ASBCx, and quenched with 0.5 mL of methanol for analysis. More details
of degradation experiments and analytical methods are provided in Text S5 and Text S6,
respectively.

3. Results and Discussion
3.1. Characterizations

The SEM images of the biochars prepared under 400 and 800 ◦C are shown in
Figure 1a,b, respectively. As depicted in Figure 1a, ASBC400 exhibited a massive and
plane structure, which had a relatively smooth surface. In contrast, ASBC800 (Figure 1b)
underwent a dramatic change and a large number of irregular defect structures appeared on
the surface, which might be the active sites for pollutant adsorption. In addition, compared
with the TEM image of ASBC400 (Figure 1c), it could be observed that plenty of nano-
spaces/channels were formed in ASBC800 (Figure 1d), which was able to expose abundant
active sites and beneficial for nanoconfinement effects, boosting the PMS activation and
pollutants adsorption.
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As depicted in Figure 2, N2 adsorption/desorption isotherms were characterized,
which presented type IV, and the hysteresis loop occurred at the medium pressure end.
These phenomena were due to N2 condensation and accumulation in the porous channel,
demonstrating that ASBCx were porous materials [21]. Moreover, the pore size distribution
of ASBCx is listed in Table 1, which was mainly between 6 and 10 nm, and belonged
to microporous and mesoporous. With the increase in pyrolysis temperature, the SBET
increased from 84.017 to 145.596 m2 g−1. Comparing the results, it could be seen that the
higher pyrolysis temperature endowed ASBC800 with a larger SBET. Thus, the ASBC800
with larger SBET may have more active sites for pollutants and oxidants adsorption.
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Figure 2. BET and pore size distribution of ASBC400 (a), ASBC500 (b), ASBC600 (c), and ASBC800 (d).

Table 1. Basic information of ASBCx.

Samples SBET (m2 g−1) Pore Volume (cm3 g−1) Average Pore Diameter (nm)

ASBC400 84.017 0.194 9.756
ASBC500 93.210 0.188 7.447
ASBC600 110.686 0.232 7.636
ASBC800 145.596 0.179 6.220

As depicted in Figure 3a, the Raman spectra of ASBCx showed two representative
bands at 1343 cm−1 (D bands) and 1588 (G bands) cm−1, which originated from the defects
and disorder of carbon atomic crystals and the graphitic structures, respectively. The
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intensity ratios of D to G (ID/IG) clearly indicated the defective degree of the ASBCx [30].
Therefore, the higher ID/IG value of ASBC800 (0.972) than ASBC600 (0.969), ASBC500
(0.957), and ASBC400 (0.860) suggested higher defected carbon and it could be concluded
that more new structural defects would be created under higher pyrolysis temperature.
FTIR spectroscopy in the wavenumber range of 4000 to 500 cm−1 was conducted to investi-
gate evolution of the surface of ASBCx. As displayed in Figure 3b, the band at 3428 cm−1

could be allotted to –OH stretching vibrations, whereas the peak at 2928 cm−1 was as-
signed to the C–H bond stretching vibrations [19]. Moreover, the peaks at 1470 cm−1

(C–C), 1592 cm−1 (C=C), and 1064 cm−1 (C–O) were identified [19]. Notably, the peak at
1174 cm−1 on ASBCx was owing to the formation of C–N bonds, which might be beneficial
for oxygen reduction reaction (ORR) kinetics, boosting the ORR process [31]. In addition,
the peak at 560 cm−1 was the Fe–O characteristic vibration mode of ASBCx [32]. XPS
spectra (Figure 3c) confirmed ASBCx were composed of C, N, and O elements. Moreover,
a signal appeared at 708.8 eV representing Fe 2p was observed in the XPS measurement
spectra of ASBCx [33], which was due to the addition of iron–containing reagent in the
process of algal sludge pressure filtration.
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Figure 3. Raman spectra (a), FTIR spectra (b), and XPS spectra (c) of ASBCx.

The C 1s XPS spectra (Figure S1) were divided into four sections at: 284.6, 285.3, 286.4,
and 533 eV, indicating C=C (sp2-C), C–C (sp3-C), C–O, and C=O, respectively. The O 1s
spectra (Figure S2) were also divided into four sections: –C=O (531.4), –O–C=O (532.5),
C–O (533.7), and H2O (535.0). The Fe 2p core levels of ASBCx were analyzed, and Fe 2p was
divided into two pairs of doublets and two satellite peaks (Figure S3). The peaks at 710.6
and 723.8 eV belonged to Fe2+ species, whereas the peaks at 713.6 and 726.8 eV belonged to
Fe3+ species [34]. Additionally, the other two peaks at 717.2 and 732.8 eV originated from
two satellites. The N 1s spectra of ASBCx were fitted into different components, including
pyridinic N (N in 6-atom ring, 397.9 eV), pyrrolic N (N in 5-atom ring, 399.5 eV) and
graphitic N (N in graphitic carbon plane, 401.1 eV). The content of the N configurations also
exhibited correlation with the pyrolysis temperature (Figure 4). The percentage of graphitic
N significantly increased from 15.62% to 34.82% when the pyrolysis temperature increased
from 400 to 800 ◦C. It was well accepted that the graphitic N could be more reactive in PMS
activation than other N configurations [35,36]. Thus, the increased graphitic N in ASBC800
implied its best performance for PMS activation and contaminants removal.
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3.2. Adsorptive Experiment

As shown in Figure 5a,b, the SDZ molecule could be rapidly transferred to the ASBCx
surface via adsorption. The better correlation coefficients (Table 2, R2 > 0.967) were obtained
by fitting with a pseudo-second-order kinetic model, indicating that chemisorption might
dominate the adsorption process. More specifically, ASBC800 had the highest qe value
of 12.532 mg g−1, followed with ASBC600 (1.175 mg g−1), ASBC500 (0.993 mg g−1), and
ASBC400 (0.482 mg g−1), suggesting the adsorption affinity of the catalyst could be boosted
under a higher pyrolysis temperature. Additionally, as abovementioned in Table 1, the
largest SBET would be obtained under 800 ◦C, which would be beneficial for contaminant
adsorption.
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Table 2. Adsorption kinetic parameters.

Biochar
Pseudo First-Order Pseudo Second-Order

qe k1 R2 qe k2 R2

ASBC400 0.461 0.721 0.941 0.482 2.696 0.967
ASBC500 0.915 0.239 0.912 0.993 0.435 0.969
ASBC600 1.144 0.881 0.991 1.175 1.816 0.999
ASBC800 11.763 0.352 0.985 12.532 0.043 0.990

3.3. Catalytic Degradation of SDZ

In order to evaluate the performance of ASBCx activated PMS, SDZ was selected as the
model contaminant. As depicted in Figure S4, only 23.05% of the SDZ could be oxidized
by PMS alone. For ASBC400, ASBC500 and ASBC600, negligible adsorption of SDZ was
obtained (<3%), whereas ASBC800 could adsorb 37.4% of SDZ, which may be owing to
the larger SBET caused by higher pyrolysis temperature. As for the catalytic performance,
a complete SDZ degradation removal was achieved in the ASBC800/PMS system in 40 min,
while removals of 28.7%, 30.2% and 35.0% were obtained in 40 min in ASBC400/PMS,
ASBC500/PMS, and ASBC600/PMS systems (Figure 6a), respectively. In addition, compared
to the biochars prepared at a low temperature (kobs = 0.00425–0.00587 min−1), ASBC800
gave rise to an approximately 10-fold enhancement of reaction rate constant (0.0586 min−1).
As depicted in Figure 6b, a good correlation (R2 = 0.866) between SBET and qe was observed,
indicating that the larger SBET of ASBC800 endowed it with stronger adsorptive capacity
towards SDZ, and thus enhanced SDZ removal. Similarly, a good linear relationship
was observed between kapp and qe (R2 = 0.999), suggesting that the adsorption of SDZ
was beneficial for the subsequent degradation of SDZ (Figure 6c). Therefore, it could
be concluded that the SBET of ASBCx played a vital role both in SDZ adsorption and
degradation. Notably, the ASBC800/PMS system attained a comparatively good SDZ
removal rate and even surpassed some state-of-the-art metal/metal-free based oxidation
systems (e.g., BC/PMS, Fe3O4/PMS, Cu2O/PMS, and MoS2/PMS) according to the higher
SDZ normalized removal rate, faster kinetics, and lower oxidant dosage (Figure 6d).
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Figure 6. SDZ elimination in the PMS/ASBCx system (a), the correlation between SBET and qe (b),
the correlation between kapp and qe (c), and the comparisons between the ASBC800/PMS system and
other PMS-based oxidation processes for SDZ removal (d). (The diameters of the balls were the ratios
of PMS/SDZ).

3.4. Stability of the ASBC800/PMS System

In order to explore the practical application prospects of the ASBC800/PMS system,
investigating the stability of the oxidation process was of great significance. First of all,
the effect of ASBC800 dosage on SDZ degradation was explored (Figure 7a). As the
ASBC800 dosage increased from 5 to 15 mg, the SDZ could be removed more quickly.
This was because a higher dosage of ASBC800 could increase adsorptive sites for the
PMS and SDZ, which could enhance the interaction among catalysts, oxidants and target
contaminants. The effects of organic matter and inorganic anions (e.g., humic acid (HA),
Cl−, H2PO4

−) were further confirmed. HA, as a representative NOM, is often used as
the model compound to explore the effects of NOM on the oxidation processes. HA with
abundant electrons can function as a scavenger to consume the generated ROS, and thus
obviously depress the oxidation process. More specifically, HA can attach to the surface of
catalysts through π–π stacking, hydrophobic or other interactions and cover the active sites,
and thus hinder the adsorption of pollutants. On the other hand, HA may compete with
the target pollutants for ROS, inhibiting organic contaminants degradation. Notably, the
ASBC800/PMS system could exhibit strong tolerance to HA (Figure 7b). Interestingly, Cl−

remarkably accelerated the SDZ oxidation process (Figure 7c). This was probably because
Cl− reacted with PMS, which further produced other species such as Cl• or HOCl, and
thus synergistically degraded SDZ (Equations (1)–(11)). In addition, H2PO4

− showed weak
influences on SDZ oxidation processes (Figure 7d), which might be due to the fact that
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H2PO4
− can convert SO4

•−and •OH to HPO4
•− that have a weaker oxidizing capacity,

(Equations (12) and (13)), and thus slightly suppress the oxidation process.

SO•−4 + Cl− → SO2−
4 + Cl• (1)

HO− + Cl• → ClOH•− (2)

Cl• + Cl• → Cl2 (3)

Cl• + Cl− → Cl•−2 (4)

Cl•−2 + Cl•−2 → Cl2 + 2Cl− (5)

Cl•−2 + H2O→ ClOH− + H+ + Cl− (6)

ClOH•− + H+ → Cl• + H2O (7)

R• + Cl•−2 → R− Cl + Cl− (8)

Cl− + HSO−5 → SO2−
4 + HOCl (9)

2Cl− + HSO−5 + H+ → SO2−
4 + Cl2 + H2O (10)

R− H + HOCl → R− Cl + H2O (11)

HPO2−
4 + SO•−4 → SO2−

4 + HPO•−4 (12)

HPO2−
4 + HO• → OH− + HPO•−4 (13)
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3.5. Activation Mechanism
3.5.1. Identification of Reactive Oxygen Species

As evidenced in Figure 6a, the removal of SDZ was significantly boosted in the
ASBC800/PMS system, suggesting the formation of reactive oxygen species (ROS). On the
one hand, •OH and SO4

•− could function as two primary ROS, which often dominate the
radical-based oxidation process. Quenching experiments were taken firstly for elucidating
the generated ROS in the ASBC800/PMS system. If radicals played vital roles in such
oxidation system, the addition of methanol (MeOH) and tertiary butanol (TBA) would
obviously inhibit the degradation of SDZ (Table S3). As depicted in Figure 8a, a mod-
erate inhibition of SDZ elimination was obtained, indicating that •OH and SO4

•− were
produced in the ASBC800-mediated PMS activation process. Moreover, we monitored the
leaching of Fe2+ during the oxidation process (Figure S5), and the leached Fe2+ content
was 0.23 mg L−1, which met the requirements of surface water environmental quality stan-
dards (GB3838-2002, 0.3 mg L−1). In addition, the SDZ degradation experiments were also
conducted in the PMS/Fe2+ (0.23 mg L−1) system, in which the SDZ could be removed by
the homogeneous reaction system (Figure S6). Notably, both high concentrations of MeOH
and TBA could not completely suppress the SDZ removal, and thus other ROS might also
participate in the oxidation reaction.
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1O2, as the selective ROS, could also oxidize contaminants, especially the electron-rich
compounds. To verify the generation of 1O2 in the ASBC800/PMS system, L-histidine
(L-his) was chosen for the quenching experiments. As shown in Figure 8a, the oxidizing
capability of the ASBC800/PMS system was effectively inhibited after adding 5 mM of
L-his, indicating that 1O2 was also generated and obligated to the elimination of SDZ. In
addition, D2O was able to accelerate the 1O2-dominated oxidation process because the
lifetime of 1O2 in D2O (55 µs) was longer than that in H2O (4.2 µs). As shown in Figure 7,
SDZ removal was accelerated in D2O, suggesting that 1O2 was the contributor. The above
inference could be further verified by EPR tests. As shown in Figure 8b, both DMPO-OH
and DMPO-SO4 signals were detected in the ASBC800/PMS system, and the signal of
TEMP-1O2 was also observed in the ASBC800/PMS system, confirming that ASBC800 was
capable of generating ROS via PMS activation.

3.5.2. Electrochemical Analysis

Apart from common reactive species produced in the oxidation system, electron-
transfer regime was further investigated by electrochemical tests (Text S6). Firstly, electro-
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chemical impedance spectroscopy (EIS) was measured to evaluate the conductivity of the
biochars prepared under different temperatures. As depicted in Figure 9a, the semicircle
diameter of ASBC800 was smallest, which suggested that ASBC800 possessed the best
conductivity among other biochars and thus could serve as the favorable medium for
electron transfer. Secondly, a noticeable increase in current was seen from the LSV curves
with the injection of PMS (Figure 9b), demonstrating the formation of metastable ASBC800-
PMS complexes (ASBC800-PMS*). Notably, another remarkable increase in current was
triggered upon the injection of SDZ, manifesting the formation of current flow from SDZ to
ASBC800-PMS*. In addition, an I-t plot was further conducted to verify this conclusion.
As evidenced in Figure 9c, an obvious current jump was detected with sequential injec-
tion of PMS and SDZ, which was the solid evidence proving the occurrence of electron
transfer. Overall, both radicals (e.g., SO4

•−, and •OH), and nonradical pathways (1O2
and electron-transfer) were responsible for SDZ oxidation, in which the leached Fe2+ was
beneficial for the generation of radicals and ASBC800 played essential roles in activating
PMS, accumulating SDZ, and regulating electron shuttle from SDZ to ASBC800-PMS*.

Figure 9. EIS analysis of ASBC800 (a), LSV under different conditions (b), and I-t curves (c).

3.6. Durability and Reusability

To examine the practical application potential of ASBC800 in eliminating SDZ-contaminated
water, SDZ degradation experiments were performed in real river water and wastewater.
As displayed in Figure 10a, unremarkable deterioration of SDZ removal was observed in
river water, whereas a moderate deterioration occurred in wastewater, which might be
owing to the ultra-high concentration compounds in the wastewater. Nevertheless, over
79% of SDZ was successfully degraded in river water and wastewater, indicating that
ASBC800 has an excellent resistance. In addition, cycle experiments were performed to
evaluate the stability of the ASBC800/PMS system. Unfortunately, we noticed a remark-
able deterioration of SDZ degradation in the second run (Figure 10b). We supposed that
the depletion was induced by the retarded adsorption capacity (from 38.7% of the first
run to 22.75% of the second run). This was probably due to the adsorbed SDZ being not
completely degraded, and thus only limited active sites could be provided for the SDZ
adsorption. To verify this hypothesis, we used acetonitrile to wash the residual SDZ on
the surface of ASBC800 in order to regenerate the catalyst. As expected, the adsorption
efficiency of SDZ was significantly recovered from 22.75% to 28.60%, and thus the total
removal rate of SDZ was also improved.
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4. Conclusions

In conclusion, N-rich and cost-effective biochars were fabricated by algal sludge, which
were further used to catalyze PMS for SDZ degradation. To be specific, the ASBC800/PMS
system exhibited excellent performance for SDZ removal (>95% within 70 min), which
even surpass many state-of-the-art metal/metal-free based oxidation systems. Based on
the quenching experiments, solvent exchange experiments and EPR characterizations, both
radical pathways (i.e., •OH and SO4

•−) and nonradical pathways (i.e., 1O2 and electron-
transfer) were demonstrated to be responsible for SDZ removal. Notably, during the
electron transfer process, PMS molecules were first adsorbed on the ASBC800 surface to
form the surface-bound ASBC800-PMS* complexes, which could subsequently degrade the
co-adsorbed SDZ. Owing to the selectivity of non-radical mechanisms, the ASBC800/PMS
system could maintain outstanding SDZ removal efficiency even in real wastewater, in-
dicating that ASBC800 possesses promising prospects for practical application. Overall,
this study might provide a new insight into N-rich and environment friendly biochar
preparation from algal sludge and deepen the insight into mechanisms of PMS activation
with carbon-based functional materials.
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Figure S5: The leached Fe2+ during PMS activation; Figure S6: Removal of SDZ by PMS alone and
Fe2+/PMS; Figure S7: Removal of SDZ by solvent exchange experiment; Table S1: The physicochem-
ical properties of SDZ; Table S2: Catalytic performance of reported Fenton-like catalysts for PMS
activation [37–44]; Table S3: Second-order rate constants for reactions of the MeOH and TBA with
different radicals; Text S1: Chemicals and regents; Text S2: Characterizations of the biochars; Text S3:
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