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Abstract: Effective improvement of the frost resistance of concrete in cold regions is critical for the
durability of airport pavement concrete in plateau. This paper intends to contribute to a better
knowledge of the effects of combined air-entraining superplasticizer and surface treatments on the
resistance against freezing-thawing and salt freezing. First, an optimum mixing by considering
w/c, cement content, sand ratio, and air-entraining superplasticizer was obtained by comparing
compressive and flexural strength, microstructure, pore distribution, and resistance to freezing-
thawing of different mixes. From the results, a concrete mix with air-entraining superplasticizer,
w/c = 0.4, cement amount at 330 kg/m3, and sand ratio = 0.3 was selected for airport pavement.
Then, this mix was subjected to salt freezing with different surface treatments (smoothing, brushing,
spraying with silane, and impregnating with silane), and the spalled mass loss in salt freeze cycles
was reported. The results show that combined use air-entraining superplasticizer and surface
treatments can provide an obvious improvement on the resistance to salt freezing. Compared to
silane impregnation, surface treatment by silane spraying performed much better in early time.

Keywords: freeze-thawing; salt-freezing; airport pavement; silane spraying and immersion;
air-entraining superplasticizer

1. Introduction

As one of the construction materials currently being used in large quantities [1], con-
crete is becoming more demanding in terms of its performance as the range of applications
expands [2–4]. Unique environments put forward special requirements, such as in the
highlands: high altitude, thin air, and low air pressure [5]. Concrete used on the plateau
is subject to significant temperature variations [6], precipitation, snowfall, de-icing fluids,
and snowmelt, among which the most damaging one is freeze-thawing erosion. Repeated
freeze-thaw cycles can lead to cracking and spalling of concrete, which can lead to structural
damage [7] and fail to meet the durability requirements of the application. Wu et al. [7]
added cellulose/polyvinyl alcohol hydrogel in concrete to block crack expansion and re-
ported an improvement in the freeze-thaw resistance of concrete. Zhang et al. [8] found that
adding a small amount of nano-silica into concrete can reduce the chloride ion diffusion
coefficient and improve the freeze-thaw resistance of concrete. Şahin et al. [9] pointed out
that different freezing methods significantly impact the evaluation of freeze-thaw resistance
of concrete mixtures, such as freezing rate, temperature duration, etc.

The two most classical theories about freeze-thaw damage are hydrostatic pressure
theory [10] and osmotic pressure theory [11]. In short, water in pores freezes into ice in
concrete, and cracks occur and gradually expand in concrete due to pressure on pore walls
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caused by volume expansion or osmotic pressure. Many factors affect the frost resistance
of concrete, such as salt solution types and concentration, freezing temperature, water-
cement ratio, air-entrainment, admixtures, concrete surface microscopic state, aggregates,
etc. Among them, the degree of water saturation and pore structure [12] of concrete are the
main factors. The concrete with a higher porosity but a similar strength usually has a better
frost resistance [13]. Water saturation and pore structure of materials mainly depend on
water-cement ratio and admixture [14–17], etc.

The water-cement ratio in concrete is positively proportional to the amount of porosity
at the cement interface, and also has a significant effect on the compressive strength of
the material [18]. Microcracks during freeze-thaw cycles develop along with the porous
interface between the cement paste and fine aggregates, and reduction of the water–cement
ratio can effectively reduce the number of interfacial pores, which effectively improves the
frost resistance of cementitious materials.

Research reported that the addition of superplasticizer to concrete can enhance sub-
stantial water reduction, and the addition of air-entraining agents can improve the frost
resistance of concrete [10,19]. Adding the suitable admixtures can effectively enhance the
performance of concrete, significantly reduce the surface tension of concrete [20], improve
the concrete’s compatibility, reduce water secretion and segregation, improve the frost
resistance and durability of concrete, etc., so that concrete can be highly durable in a high
plateau environment.

When sand-aggregate ratio in concrete increases, the specific surface area and water
requirement of sand increase accordingly. Under the same sand fineness modulus condi-
tions, the strength of concrete at 28 days decreases with the increase in sand-aggregate ratio.
Therefore, a reasonable sand-aggregate ratio admixture should be determined through
tests. The optimum amount of sand-aggregate ratio can reduce the void ratio of concrete
and improve the long-term performance and durability of concrete [21].

Concrete surface treatment can effectively protect the concrete, especially in extremely
cold conditions [22]. The surface of an airport roadway has a critical impact on the safety
of aircraft operations. Surface treatment is a very effective way to reduce the deterioration
of concrete structures in extreme environments and to extend the life of the roadway
effectively [23]. Alkyl alkoxysilane materials (silanes for short) are silicone materials
that are commonly used for concrete surface treatment. When the silane is painted on
the concrete surface, it will gradually penetrate the material and react with water under
alkaline conditions inside the concrete to produce highly reactive hydroxylases, which will
react with the hydroxyl groups on the concrete surface to produce a water-repellent net-like
molecular structure [24] and adhere to the concrete surface, a process known as silane
impregnation treatment [25]. Concrete impregnated with silane can make the internal
structure water-repellent and isolate the penetration of external water-soluble aggressive
media [26]. Basheer et al. [27] showed that the freeze-thaw resistance of concrete treated
with silane impregnation was double that of untreated concrete. Silane impregnation is
now commonly used in engineering for the durability and protection of service concrete.

This paper tries through seven groups of concrete samples with different cement
proportions, air-entrained superplasticizers, water-cement ratios, and sand-aggregate ratios
to investigate the effect of these variables on physical properties. The physical properties
include compressive and flexural strength, microstructure and pore distribution, the re-
lationship between freeze-thaw cycles and mass loss rate, and spalled mass loss in salt
freeze cycles. Different surface treatments were applied on the surface of selected concrete
samples subjected to salt freezing to explore the most suitable surface protection methods
for airport pavement on a high plateau. The main novelty of this work is the combination of
different surface treatment methods and the air-entraining superplasticizer for the concrete
resistance of salt freezing.
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2. Materials and Methods
2.1. Materials

PO 42.5 ordinary Portland cement conforming to Chinese national standard GB175-
2007 [28] was used in this experiment. The content and physical properties of cement are
given in Tables 1 and 2.

Table 1. Components and specific surface area of cement.

CaO SiO2 Fe2O3 Al2O3 SO3 MgO Chloride Ion Natural Gypsum Specific Surface Area

63%–
67%

22%–
24% 5%–7% 4%–6% 2.44% 1.58% 0.01% 4.50% 335 m2/kg

Table 2. Cement physical properties.

Initial Setting
Times

Final Setting
Times

3 Days Flexural
Strength

3 Days Compressive
Strength

28 Days Flexural
Strength

28 Days Compressive
Strength

180 min 235 min 4.9 MPa 22.5 MPa 8.6 MPa 48.3 MPa

Naphthalene ZH-3 air-entraining superplasticizer following the provisions of GB8076-
2008 [29] was used. In order to determine the performance of this naphthalene-based
air-entraining superplasticizer in practice, a series of experiments were conducted, as
in Figure 1. The technical performance and experimental results of naphthalene ZH-3
air-entraining superplasticizer are listed in Tables 3 and 4.
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Figure 1. Testing of flow diameter.

Table 3. Technical performance of naphthalene ZH-3 air-entraining superplasticizer.

Tests Results

Water reduction rate (%) 19
Water secretion rate (%) 0

Air content (%) 3.5

Difference in coagulation time (min) First condensation 25
Final condensation 40
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Table 4. Experimental results of naphthalene ZH-3 air-entraining superplasticizer.

Tests Results

Compressive strength ratio (%)
3 days 140
7 days 135

28 days 119

Bending to tensile strength ratio (%) 28 days 114
Shrinkage ratio (%) 28 days 97

The test specimens were made in the laboratory following MH 5006-2015 [30] using a
forced mixer to mix the concrete mixture to ensure the homogeneity of the concrete. Before
mixing the concrete, the mixer was wetted and mixer plates to ensure that the water-cement
ratio of each specimen is consistent with the design water-cement ratio.

The mixing procedure for concrete in this study is as follows: First the stone, cement,
and sand were added into the mixer in turn and mixed for 120 s. Then, the mixture of
superplasticizer and water were added to the mixer and mixed for 120 s before casting into
the molds according to GBT 50081-2019 [31]. Then, test blocks were placed on a vibrating
table for vibration. After 10 s of vibration, the cast surface was smoothed and covered with
thick plastic sheets, and the specimens were water-cured (20 ◦C) after molding for 24 h.

By considering different cement amounts and adding air-entraining superplasticizer,
water-cement ratios, and sand-aggregate ratios, mixing information in this study is shown
in Table 5. The coarse aggregates consist of 16–31.5 mm big stones and 4.75–16 mm small
stones, and the sieving curves for the two types of aggregates are shown in Figure 2a. The
fine aggregates are 0–4.75 mm natural sand with an apparent density of 2.655 g/cm3, a
fineness modulus of 2.3, and a sand mud content of 2.9% measured by the volumetric flask
method, and its sieving curve is shown in Figure 2b.

Table 5. Concrete mix design.

Mix No.
Cement Sand Big

Stone
Small
Stone Water Air-Entraining

Superplasticizer Water-Cement
Ratio Coarse Ratio

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (%)

C1 320 615.6 790.02 646.38 128 6.4 2 0.4 0.3
C2 330 609.42 782.09 639.89 138.6 0 0 0.42 0.3
C3 330 613.38 787.17 644.05 125.4 6.6 2 0.38 0.3
C4 330 611.4 784.63 641.97 132 6.6 2 0.4 0.3
C5 330 609.42 782.09 639.89 138.6 6.6 2 0.42 0.3
C6 340 607.2 779.24 637.56 136 6.8 2 0.4 0.3
C7 330 570.64 807.05 660.31 132 6.6 2 0.4 0.28

2.2. Test Methods
2.2.1. X-ray Diffraction (XRD)

XRD patterns were collected by using a Bruker D8 powder diffractometer (Bruker,
Billerica, MA, USA) with scanning angles (2θ) ranging from 5 to 70◦ at a rate of 0.6 s/step
and 0.02◦/step using a CuKα radiation source (λ = 1.5418 Å) at 40 kV and 40 mA to
identify the variation in the crystalline phases. The samples were cured under standard
lab environment until 28 days. All samples were ground to powder ≤ 75 µm and vacuum
dried before testing.

2.2.2. Mechanical Testing—Compressive and Flexural Strength

The samples (150 mm × 150 mm × 550 mm) prepared following GBT 50081-2019 [31]
were tested for compressive and flexural strength according to the test methods in the standard.
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2.2.3. Mercury Intrusion Porosimetry (MIP)

Concrete samples were broken into pieces, and the slurry fraction approximately
soy-sized particles were selected and soaked in anhydrous ethanol for 24 h to terminate
hydration and then placed in a vacuum drying oven at 40 ◦C for 3 days. After the samples
were processed, the pore structure was tested using an Autopore IV9510 mercury intruder
(Micromeritics Instrument Corp., Norcross, GA, USA). Samples of 3–5 g were taken for
each test, with pressures ranging from 0.0036 to 414 MPa, corresponding to a minimum
pore size of approximately 3 nm.
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2.2.4. Scanning Electron Microscopy (SEM)

After crushing, samples with a fresh broken surface were selected for SEM obser-
vations. As the sample itself is not conductive, it was coated with carbon. SEM testing
is carried out using a field emission environmental scanning microscope FEI QUANTA
200 FEG (FEI, Hillsboro, OR, USA) under high vacuum at a voltage 15.0 kV to observe the
microscopic morphology of the specimen. Different phases such as calcium hydroxide,
CSH, and ettringite were identified with the aid of energy dispersive spectroscopy (EDS).

2.2.5. Freeze-Thaw Tests

A rapid freezing method in GB 50082-2009 [32] was applied for concrete surface frost
damage test. The specimen size is 100 mm × 100 mm × 400 mm. After 24 days, the
specimens were removed from the maintenance room and then immersed in water at
20 ± 2 ◦C, the surface of the water being 20–30 mm above the top surface of the specimens.
After 4 days of immersion in water, the specimens were removed at age 28 days, cleaned
with a damp cloth to remove the surface water, and the external dimensions were measured.
The freeze-thaw cycle system is shown in Figure 3.
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The relative dynamic modulus of elasticity has been calculated using the following formula:

Pi =
f 2
ni

f 2
0i
× 100 (1)

where Pi is the relative dynamic modulus of elasticity (%) of the i-th concrete specimen
after N freeze-thaw cycles, with accuracy of 0.1; f 2

ni is first natural frequency of transverse
vibrations (Hz) of the i-th concrete specimen after N freeze-thaw cycles; and f 2

0i is first
natural frequency of transverse vibrations (Hz) of the i-th concrete specimen before the
freeze-thaw cycle.

The relative dynamic modulus of elasticity is determined as the arithmetic mean of
the test results of three specimens.

The mass loss rate of individual specimens has been calculated using the following formula:

∆Wni =
W0i − Wni

W0i
× 100 (2)
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where ∆Wni is mass loss of the i-th concrete specimen after N freeze-thaw cycles (%), with
accuracy of 0.01; W0i is mass of the i-th concrete specimen before the freeze-thaw cycle
test (g); and Wni is mass of the i-th concrete specimen after N freeze-thaw cycles (g).

The average mass loss rate for each group of specimens has been determined as the
arithmetic means of the three specimens’ mass loss rate test results. The test frequencies
are after 25, 175, 200, 225, 250, 275, and 300 cycles.

2.2.6. Salt-Freezing Tests

The salt-freezing test was performed conforming to MH 5006-2015 [30] and a single-
sided salt-freezing method was adopted. The specimen size was ϕ 150 mm × 100 mm.
Epoxy resin was coated to all sides of the test piece except for the exposure surface. The
salt solution was prepared with 97% distilled water and 3% ethylene glycol. The cyclic
temperature changes started at 20 ◦C and decreased at a constant rate of 10 ◦C/h ± 1 ◦C/h
to −20 ◦C ± 1 ◦C and maintained for 3 h; then it started at −20 ◦C and increased at
a constant rate of 10 ◦C/h ± 1 ◦C/h to 20 ◦C ± 1 ◦C and maintained for 1 h. When
testing specimen spalling, samples were removed from the test chamber and placed in the
ultrasonic bath with the specimen test side down for 3 min. The spalling material was
collected and dropped during the ultrasonic test and filtered through filter paper. The
filtered filter papers with all the exfoliated materials were dried in an oven at 110 ◦C ± 5 ◦C
for 24 h and cooled in a laboratory at a temperature of 20 ◦C ± 2 ◦C and a relative humidity
of 60% ± 5% for 60 min ± 5 min.

The mass of spalled material on the surface of the specimen has been calculated using
the following formula:

ms = m2 − m1 (3)

where ms is mass of specimen surface flake (g), with accuracy of 0.01 g; m1 is mass of filter
paper (g), with accuracy of 0.01 g; and m2 is total mass of filter paper and specimen flakes
after drying (g), with accuracy of 0.01 g.

The amount of spalling per unit test area for each group of specimens has been the
arithmetic mean of the calculated values for three specimens.

3. Analysis of Results
3.1. Mechanical Testing Results—Compression and Flexural Testing

The results of the 28-day compressive and flexural strength tests for all specimens
are shown in Figure 4. The C2 sample had no air-entraining superplasticizer added, and
it was the control group for other mixes when considering the effect of air-entraining
superplasticizer. The experimental results show that the air-entraining superplasticizer
can reduce the 28-day compressive strength of concrete slightly but can improve the
28 day-flexural strength. The C3, C4, and C5 samples were compared to see the effect of
the water-cement ratio, and the three groups of specimens had water-cement ratios of 0.38,
0.40, and 0.42, respectively. When the water-cement ratio increased from 0.38 to 0.40, the
compressive strength of concrete decreased significantly, and the flexural strength increased
slightly; when the water-cement ratio increased from 0.40 to 0.42, the compressive strength
of concrete increased slightly, and the flexural strength decreased significantly.

The effect of the sand-aggregate ratio on the mechanical properties of concrete can
be obtained from the comparison between the C4 and C7 samples. It can be seen that an
appropriate reduction in sand-aggregate ratio, from 0.3 to 0.28, can effectively increase the
compressive strength of concrete. Similar findings have been reported in the literature [21];
however, the flexural strength decreased with decreasing sand-aggregate ratio. With the
increasing amount of cement in the C1, C4, and C6 samples from 320 kg/m3 to 340 kg/m3, it
is clear from the graph that the compressive strength of the concrete decreases continuously
with the increasing amount of cement. However, the flexural strength does not change
significantly. It is known that microcracks usually propagate from the ITZs (interfacial
transition zones) in normal concrete and develop through the cement paste; then, an
optimum content of cement is required because too little cement content could not generate
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compacted ITZs and too much cement could increase weak points in cement paste for crack
developing. In addition, cement is more expensive than other raw materials such as stone
and sand. The minimum cement amount should be used when similar physical properties
can be obtained.
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3.2. XRD Results

The XRD results for all seven mix groups from this test are shown below in Figure 5.
The C2 and C5 samples are the control groups with and without the addition of superplas-
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ticizer; the C3, C4, and C5 samples have increased water-cement ratios from 0.38 to 0.42;
and the C4 and C7 samples compare the change in sand-aggregate ratio. It can be seen that
the addition of the superplasticizer and higher water-cement ratios induced more obvious
peaks of the portlandite and ettringite due to the fact that more cement participated in
the hydration. The quartz came from the sand and calcite mainly came from the stone in
concrete when preparing the powder samples. Then, the main difference on the resistance
of salt freezing caused by these different mixes should be discussed in more detail from the
microstructure and pore distributions.
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3.3. Results of Pore Distribution in Different Mixes

Figures 6–8 show pore size distribution and porosity from MIP results of different
mixes. It is well known that pore structure in concrete significantly affects the frost re-
sistance of the concrete. When water freezes and becomes ice in concrete under cold
conditions, its nucleation and growth are very rapid and can lead to a significant volume
expansion [33,34]. Previous research has shown that with increasing freeze-thawing cycles,
the porosity of concrete increased, and the pores became concentrated in large pores, which
to a certain extent destroyed the internal structure causing microcracks [35]. Therefore, it is
essential to characterize the pore structure of concrete.
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Figure 8. Porosity of each mix group.

Figures 6 and 7 show that by comparing the results of the C2 and C5 samples, the
addition of the air-entraining superplasticizer has resulted in a significant increase in the
total pore content of the concrete, especially the absolute pore volume in the 100–1000 nm
and >1000 nm, occupying a total of over 50%. The superplasticizer added in this study is
also air-entraining. Air-entraining agents can introduce uniform, stable, and tiny bubbles
in the concrete; these bubbles can effectively cushion the various stresses generated in the
cement paste, playing a “buffer airbag” role, and can effectively improve the salt and frost
resistance of concrete.

The results also show that with the increase in the water-cement ratio, the absolute
pore volume in the <50 nm region decreases relatively, and the absolute pore volume in the
50–100 nm and >1000 nm regions show an increasing trend. An appropriate increase in the
cement content and sand-aggregate ratio can help to increase the total pore content of the
concrete as well as the absolute pore volumes in all four zones, as shown in Figures 6 and 7.
It should be kept in mind that porosity also affects the strength of concrete [36–40]. In
Figure 8, the porosity of the C3, C4, and C5 samples are similar, but in Figure 4, the
compressive strength of the C4 sample is significantly lower than the C3 samples, and the
flexural strength of the C3 and C4 samples are higher than the C5 samples. It can be seen
that the relationship between porosity and compressive and flexural strength interactions
is not direct and could be quite complicated, which could involve the microstructure and
the connectivity of micropores.

3.4. Microstructure Observations

Figure 9 shows the microscopic morphology of the C1–C7 samples. It can be seen that
the ITZ in added air-entraining superplasticizer mix (the C5 sample) is slightly different
from the mix with no air-entraining superplasticizer (the C2 sample), and the addition
of the superplasticizer resulted in a more compact bond between aggregate and cement
matrix in the concrete. Compared to the C2 sample, the micro pores in the C5 sample are
more evenly distributed and the pore sizes in the paste of the C5 sample are similar. In the
C3, C4, and C5 samples, with the water-cement ratio slightly changing from 0.38 to 0.40
and 0.42, there is no obvious difference in the microstructure in these 3 mixes, which agrees
well with the MIP results. In the C6 and C7 samples, the effect of the sand-aggregate ratio
on the microstructure cannot be seen from the SEM images. Comparing the C1 and C6
samples, the effect of cement content on the microstructure is also not obvious, but the C1
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sample has less cement paste and then fewer pores as reported in MIP results compared
with the C6 sample.
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Figure 9. Micromorphology results observed by SEM.

3.5. Physical Performance of Different Mixes Subjected to Freeze-Thawing Cycles

Based on the analysis of the above experiments, the C1, C4, C5, C6, and C7 samples
specimens were selected for further freeze-thawing experiments. The mass loss rate and
relative dynamic modulus of elasticity during test cycles are shown in Figure 10.
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Figure 10. Results of mass loss (a) and relative dynamic modulus of elasticity (b) after freeze-
thawing tests.

In Figure 10a, for the C1, C4, and C6 samples, the amount of cement increased from
320 kg/m3 to 340 kg/m3, and the mass loss rate of the C1 sample decreased significantly
after 275 freeze-thawing cycles. Additionally, the C4 sample had consistently higher mass
loss rates than the other groups after the start of the freeze-thawing cycles. The C6 sample
showed a significant increase in mass loss rate at 25–175 freeze-thawing cycles compared
to the C7 sample, which could be caused by the different sand-aggregate ratios. However,
since the difference in sand-aggregate ratios is relatively small, there could be other factors,
such as the pore structure.

The change of relative dynamic modulus of elasticity for all mixes after different
freeze-thawing cycles is shown in Figure 10b. From Figure 10a, the C1 sample showed a
significant decrease in mass loss after 275 freeze-thawing cycles; however, in Figure 10b,
there was no responding change of the dynamic modulus of elasticity in the same test
cycles. It can be seen that there is no direct relationship between the mass loss and the
change of dynamic modulus of concrete subjected to freeze-thawing.

3.6. Effects of Different Surface Treatments on the Physical Performance of Concrete Subjected to
Salt-Freezing Cycles

By considering the mechanical properties and freeze-thawing performance from the
above experimental results, the C4 sample specimens were selected for further salt-freezing
experiments. A total of 4 different treatments shown in Figure 11 were considered, and the
concrete specimens were subjected to 30 salt-freezing tests. Additionally, the total scaling
mass per unit area in 10, 20, and 30 salt-freezing cycles are shown in Figure 12. In these
surface treatment methods, smoothing means that the surface of the formed specimen is
smoothed, brushing means that the surface of the formed specimen is brushed according
to the requirements of the airport road surface brushing, impregnation means that the
exposed surface of the concrete specimen had been soaked with silane in a depth of 5 mm
for one day, and spraying means that the exposed surface of the concrete specimen is
sprayed with 300 g of silane per square meter. Brushing is usually mandatory for airport
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pavement roads to increase the friction coefficient to ensure the safety of aircraft landing
and take-off.
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The results show that specimens only smoothed and brushed had a higher spalled
mass loss in the salt-freezing tests than the other two groups, namely brushing + spraying
silane and brushing + silane impregnated. In particular, the spalled mass of the brushed
specimens tended to increase continuously with increasing salt-freezing test cycles. The
specimens sprayed with silane or impregnated with silane had a significantly lower spalled
mass than the no silane-treated specimen group after 30 cycles of salt-freezing tests. The
spalling quality of the specimens with spraying silane is lower than that with silane
impregnated, and it can be inferred that silane impregnation is conducive to improving
the frost resistance of concrete and, to a certain extent, the durability of concrete. The
chemical reactions can occur between silane and hydration products on the concrete
surfaces, forming a network structure of dimer or even polymer on the concrete surface.
From this salt-freezing experiment, the spraying silane method could provide a better
protection mechanism than the impregnating silane method. Brushing and spraying silane
reduced the mass loss by more than 60%.

4. Discussion
4.1. Change of Airport Pavement Concrete in High Plateau Subjected to Freeze-Thawing and
Salt Freezing

Airport pavement concrete on a high plateau is susceptible to freeze-thawing and
salt-freezing damage due to the located environment. During freeze-thawing cycles, the
concrete is damaged, mainly in terms of reduction in dynamic modulus of elasticity and
loss of quality due to surface spalling [41]. From the viewpoint of mechanical properties, it
is mainly manifested as the reduction in mechanical property indexes such as compressive
strength, flexural strength, and static modulus of elasticity. Moreover, from the microscopic
viewpoint, it is manifested as the expansion of micro-cracks and the degradation of the
matrix in concrete [42–46] from dense to loose. The dynamic modulus of elasticity of
concrete and transport properties [47,48] is closely related to the structure of the concrete
itself, and when the internal structure of the concrete changes, the dynamic modulus of
elasticity changes at the same time [49].
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4.2. Effect of Water-Cement Ratio and Cement Amount on the Frost Resistance of Airport
Pavement Concrete

Concrete with a high water-cement ratio usually has poor frost resistance [50]. In
this research, the results show that a slight change in the water-cement ratio had no
significant effect on the surface spalling of concrete in freeze-thawing cycles, but it reduced
the dynamic modulus of elasticity, especially after 225–250 freeze-thawing cycles. The
slight change in cement amount was found to have no significant effect on the rate of
loss of mass spalled at 25–275 freeze-thawing cycles, but the use of more cement caused a
significant decrease in the dynamic modulus of elasticity of the concrete after 175 freeze-
thawing cycles.

4.3. Effect of Different Surface Treatments on Salt-Freezing Resistance

The physical treatment of concrete surfaces with brushing alone cannot effectively
resist the damage caused by salt frost. A brushed concrete surface followed by a silane
surface treatment can significantly improve the resistance of concrete to salt freezing.
Spraying silane as well as silane impregnation on the surface of the concrete material alone
will improve the resistance of the material to salt freezing, with spraying silane having
better performance and easier operation. It is important to note that the water repellency
created by silane impregnation of the surface could decay over time [26]. The long-term
effects of silane-impregnated and silane-sprayed surface treatments still require extensive
experimental research on airport concrete pavements.

4.4. Important Physical Properties for Airport Pavement Concrete in High Plateau

The results from this study show that C4 specimens (water-cement ratio = 0.4, 2%
naphthalene air-entraining superplasticizer and sand-aggregate ratio = 0.3), with brushing
and silane spraying on the surface, are more resistant to freeze-thawing and salt-freezing
damage. Han et al. [51] conducted salt-freezing experiments by preparing hardened
mortars with different water-cement ratios and concluded that cement mortars with a less
water-cement ratio have a stronger frost resistance. Other methods, such as additives [52],
pre-treatments [53], and surface treatments [54], are suggested to compare them with silane
impregnation in order to achieve a better frost resistance of concrete.

5. Conclusions

This paper investigates the effects of combined air-entraining superplasticizer and sur-
face treatments of airport pavement concrete against salt freezing, and related mechanisms
were analyzed. Based on the results, the following conclusions can be drawn:

(1) The addition of an air-entraining superplasticizer can modify the ITZ, increase bond-
ing between aggregates and cement matrix, and substantially increase the porosity
of concrete. However, it has an adverse effect on the compressive strength proper-
ties of the concrete due to the increased porosity, but this effect is not significant to
the flexural strength properties of the concrete. Therefore, the optimum amount of
air-entraining superplasticizer should be added in order to increase the porosity of
airport pavement concrete on high plateau without compromising the compressive
and flexural strength of concrete. In addition, using air-entraining superplasticizer
only might not be able to provide a proper freezing resistance to airport pavement,
and proper surface treatments could be applied.

(2) Both silane spraying and silane impregnation methods effectively improved the salt-
freezing resistance of concrete, with silane spraying more effective. Silane spraying
and impregnation make the concrete from the surface to the ingression depth water-
repellent, but the long-term performance of silane spraying and impregnation still
needs further experimental work. Surface treatment by brushing and silane reduced
the mass loss by more than 60% in the salt-freezing tests.

(3) Freeze-thawing in concrete caused microcracks to expand and develop, and the C-S-H
gel structure becomes loosened within the concrete. In order to have a better freezing
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resistance, promoting cement early hydration process, combined modification of the
microstructure by air-entraining superplasticizer, and silane spraying are suggested
to improve the salt-freezing resistance of concrete.
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