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Abstract: The development of a novel electrode material for energy storage devices is a grand
challenge. Here, through a rational design of the structure, the electrochemical performance of the
prepared sample could be improved while enhancing the conductivity and the synergistic effect of
its components. Herein, we constructed a core–shell composite named Ni–Co–O/NiCo-LDH as the
electrode material by a self-template method, which comprised hydrothermal and annealing steps.
The as-prepared material exhibited a Chinese chestnut-like structure, and the core–shell structure was
based on nanoneedles. The pseudocapacitance characteristics of the Ni–Co–O/NiCo-LDH electrode
were significantly improved due to the good electrical conductivity of the core material and the
unique core–shell structure, which led to a high electrochemical performance, reaching a high specific
capacitance of 1434 F g−1 at the current density of 1 A g−1. When assembled in a device with
activated carbon (AC) as the negative electrode, the supercapacitor showed an energy density of
26 Wh kg−1 at a power density of 807 W kg−1. Simultaneously, the device showed an excellent cycle
stability, with 95% capacity retention after 3600 cycles at a current density of 6 A g−1, which could
largely widen the application of the supercapacitor.

Keywords: core–shell structure; pseudocapacitance; electrical conductivity; LDH; supercapacitor

1. Introduction

In recent decades, supercapacitors have drawn much attention as energy storage
devices because of their great power density, long cycling life, fast charge–discharge rate,
and excellent energy conversion efficiency [1–5]. As crucial components of a superca-
pacitor, carbon materials (such as AC, graphene, carbon nanotubes, etc.) are the most
widely researched, commercialized, and technologically matured; they possess a large
specific surface area, excellent chemical durability and good electrical conductivity [6,7].
However, the energy density of carbon materials is limited. Compared with electric double-
layer carbon materials (EDLCs), pseudocapacitive materials usually deliver higher specific
capacitance. For example, with a low cost and variable valences, transition metal ox-
ide/hydroxide electrode materials possess higher specific capacitance through fast surface
faradaic reactions [8].

Due to their high theoretical specific capacitance, nickel/cobalt-based materials have
recently received extensive attention, especially their oxides and hydroxides. With the
synergistic effect of Co and Ni, CoxNiyO(S) or their layered double hydroxides (LDHs),
CoxNiyOH, behave remarkably in performance [9–13]. Though these samples showed
high specific capacity and power density, their intrinsic properties differ. Compared
with the LDHs, the CoxNiyO(S) oxidants showed better conductivity but lower specific
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capacitance [14]. Hence, the balance between conductivity and capacity has become an
important factor to consider. The LDHs are a kind of composites formed by Nickel or
Cobalt hydroxides, with many internal heterojunctions, which could effectively enhance
the capacitance. Wang et al. prepared a Ni0.60Co0.40 LDH electrode showing a high capacity
of 5.15 C cm−2 at 5 mA cm−2 and holding 3.64 C cm−2 at 30 mA cm−2. However, their
electronic conductivity and ion transport were slow, leading to poor cycle life and rate
performance [15].

Research has shown a rationally designed composite structure could effectively pro-
mote a synergistic effect between its multiple components, increasing the specific capaci-
tance, improving the electron and ion transport characteristics in the capacitor electrode
materials, and improving the cycle stability. Therefore, rational design has received exten-
sive attention in constructing high-performance conventional supercapacitors in recent
years. Therefore, to enhance the electrochemical performance of supercapacitors, a practical
design is required. Selecting a high-conductivity substance for recombination became the
first choice for improving conductivity. Ren et al. chose a high-conductivity substrate,
3D dendritic copper, to support the CoNi-LDH, obtaining an impressive specific capac-
itance [16]. With the same design, the substrate could be replaced with suitable carbon
materials [17–19] or other conductive materials [20]. These strategies focus on enhanc-
ing the conductivity of CoNi-LDHs and achieving superior results, which supports the
importance of this complex procedure [21]. Compared with single-component materials,
multicomponent composite materials can compensate for the lack of a single material and
fully utilize the benefits of each component and their potential synergistic effects.

General conductive substances such as carbon materials, conductive polymers, or
metal elements exhibit low capacitance or poor electrochemical stability as single com-
ponent of the electrode materials, which restricts the capacitance of the supercapacitor.
Given the good chemical stability of oxidations, CoxNiyO(S) possesses an outstanding
conductivity with excellent electrochemical performance [22,23]. However, the capacitance
would partly reduce after high-temperature calcination, which is caused by the reduction
of mid-valence Co/Ni and the recrystallization process. Simultaneously, the performance
of supercapacitors is related not only to the chemical composition of the electrode materials
but also to their structures and morphologies [15,24]. Therefore, a novel structure with
CoxNiyO as the core and NiCo-LDH as the shell was put forward, which improved the
conductivity and specific capacitance.

In particular, adequately designed three-dimensional (3D) core–shell nanostructures
can significantly expand the specific surface area and provide more surface redox sites
and more channels for electrolytes to get through, thus allowing a fast ion/electron trans-
port. This design is crucial for improving the electrochemical performance and structural
stability [25–28]. Liu et al. fabricated MgCo2O4@CoFe-LDH core–shell nanoarrays on Ni
foams that exhibited an excellent specific capacitance of 903.15 C g−1 at of 1 A g−1, with
high capacity retention and also low internal resistance (Rs) (0.75 Ω) [29]. This core–shell
strategy construction always relies on a hard template method which limits its applications
and increases the weight of the electrode materials [30–32].

In this work, we constructed a Ni–Co–O/NiCo-LDH core–shell composite as the elec-
trode material by a self-template method, which comprised hydrothermal and annealing
steps. The proposed strategy includes both composition design and structure design. On
the one hand, the electrical conductivity of the NiCo-LDH could be improved and led to
achieving the enhancement of the specific capacitance; on the other hand, the core–shell
structure could alleviate the volume change of the electrode during the working process and
thus improve the rate performance and cyclability. Such a method of preparing electrode
materials is facile, tunable, scalable, and cost-effective, which is crucial for applications
in supercapacitors.
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2. Experimental Sections
2.1. Sample Preparations
2.1.1. Preparation of the Chinese Chestnut-like NiCo-LDH and Ni–Co–O

The Chinese chestnut-like NiCo-LDH sample was synthesized by a modified method based
on previous studies [33]. Typically, 2 mmol of Co(NO3)2·6H2O, 4 mmol of Ni(NO3)2·6H2O,
and 20 mmol of urea were dissolved in 60 mL of distilled water and stirred. Then, we
transferred the resulting solution into a Teflon-lined autoclave (120 ◦C for 5 h) and finally
cooled it down to room temperature. The obtained product was washed thoroughly with
ethanol and distilled water and put in a vacuum drier overnight (60 ◦C); it was named
NiCo-LDH sample. Then, the as-prepared NiCo-LDH was calcined at 350 ◦C for 2 h in
a nitrogen atmosphere at a 2 ◦C/min heating rate and then calcined in air at 350 ◦C for
2 h at a 2 ◦C/min heating rate; the resulting product was named the nickel-cobalt oxide
(Ni–Co–O) sample.

2.1.2. Preparation of the Ni–Co–O/NiCo-LDH Core–Shell Composite

We placed 1 mmol of Co(NO3)2·6H2O, 4 mmol of Ni(NO3)2·6H2O, and 10 mmol of
urea into 36 mL of deionized water and obtained a solution. We then added 0.1 g of the
prepared Ni–Co–O and kept stirring for 30 min. We transferred the solution to a Teflon
autoclave and placed it in an oven (120 ◦C for 5 h). The reaction product was washed
thoroughly with deionized water and ethanol and dried (60 ◦C for 12 h). The resulting
product was named Ni–Co–O/NiCo-LDH. After adding 0.05, 0.1, and 0.15 g of Ni–Co–O,
the resulting composites were named Ni–Co–O/NiCo-LDH-0.05, Ni–Co–O/NiCo-LDH-0.1,
and Ni–Co–O/NiCo-LDH-0.15, respectively.

2.2. Characterization

The microstructural characteristics of the samples were determined by scanning elec-
tron microscopy (SEM; Quanta 200, FEI, Hillsboro, OR, USA). At the same time, the atomic
ratio and distribution of the elements contained in the samples were characterized by
energy-dispersive X-ray spectroscopy (EDS). The microstructural features of the samples
were further observed by transmission electron microscopy (TEM; Talos F200X, FEI, Hills-
boro, OR, USA). Meanwhile, the exposed faces of the samples and their corresponding in-
terplanar spacings were characterized by high-resolution transmission electron microscopy
(HRTEM). The phase composition and crystal structure of the samples were identified by a
powder X-ray diffractometer (XRD; Bruker-D8 Advance diffractometer, Billerica, MA, USA).
The elemental composition of the samples and the corresponding elemental valence states
were characterized by X-ray photoelectron spectroscopy (XPS; Thermo Scientific Escalab
250Xi, Thermo Fisher Scientific, Waltham, MA, USA). The nitrogen adsorption/desorption
isotherms of the samples were obtained by Quantachrome Autosorb at −196 ◦C. The corre-
sponding pore size distribution and Brunauer–Emmett–Teller (BET) specific surface area of
the samples were also obtained.

2.3. Electrochemical Measurements

In this work, the electrode preparation was achieved by using a coating method to
deposit the powder material. The active material and additives were mixed into a paste
and coated on the surface of the current collector, then pressed to obtain an electrode after
a drying procedure. Nickel foam was used as the current collector. The weight ratio of
the active electrode material, acetylene black, and polytetrafluoroethylene was set at 8:1:1.
The active material and additives were mixed evenly and ground to obtain a slurry, finally
spreading the coatings on the Ni foam with a blade. The electrode preparation process
finished after drying at 80 ◦C for 6 h. The mass of the produced electrode material was
approximately 8–10 mg/cm2.

Typically, the three-electrode system of a platinum foil as the counter electrode and
a saturated calomel Hg/HgO electrode as the reference electrode was applied to test the
electrochemical performance of the prepared samples. A 6 M KOH solution was used as
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the electrolyte. In the two-electrode system test, the as-prepared positive electrode material,
diaphragm, and negative electrode material (AC) were assembled in sequence to fabricate
an asymmetric device and placed into the electrolyte for testing. In this work, the CHI760E
electrochemical workstation was used to test the cyclic voltammetry (CV) and perform the
galvanostatic charge–discharge test (GCD) and electrochemical impedance spectroscopy
(EIS) of the electrodes and devices. The frequency range of ESI was from 0.01 Hz to 100 kHz,
and the amplitude of the voltage was 5 mV.

3. Discussion and Results
Characterization

NiCo-LDH prepared by the traditional hydrothermal method exhibited a micron-
level spherical structure with a size around 3–4 µm and presented a Chinese chestnut-like
morphology comprising the building blocks of needle-like nanorods (Figure 1a,d). As
shown in Figure S1, the NiCo-LDH samples appeared uniform, and the elements of Co, Ni,
O were evenly dispersed, as shown by the results of EDS mapping. After calcination, the
resulting oxide (Ni–Co–O) could maintain the chestnut-like microstructure (Figure 1b,e).
Meanwhile, the size of the Ni–Co–O microspheres as well as the that of the nanoneedles
became significantly smaller (Figure S2a). The EDS mapping results also indicated that the
three elements were uniformly dispersed (Figure S2b–d). After the second hydrothermal
process, the resulting Ni–Co–O/NiCo-LDH sample still maintained the Chinese chestnut-
like microsphere structure, with an average particle size of 4 µm (Figure 1c,f). According to
the EDS mapping, the distribution of Ni, Co, and O elements was uniform. (Figure 1g–j).
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posite, (g–j) EDS-HAADF of the Ni–Co–O/NiCo-LDH composite.

To further investigate the microstructure of the as-prepared samples, TEM characteriza-
tion was conducted (Figure 2). The chestnut-like Ni–Co–O/NiCo-LDH appeared composed
of many nanoneedles arranged in the radial direction of the microsphere (Figure 2a), which
could provide a directional pathway for the electrons. These nanoneedles had an average
length of over 500 nm and a diameter of ~20 nm (Figure 2b). In addition, the gap between
adjacent nanoneedles appeared to facilitate the easy diffusion of the electrolyte, thus ensur-
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ing that the nanoneedles could fully contact the electrolyte. In addition, the nanoneedles
could provide more redox active sites in the discharge/charge process and thus improve
the electrochemical performance. Figure 2c and d show that the lattice distance of 0.211 nm
was in accordance with the (200) plane of NiCoO2. Moreover, the lattice spacing of 0.248
nm agreed with the (111) plane of NiCoO2 [34]. That indicated the successful combination
of Ni–Co–O and NiCo-LDH.
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Figure 2. (HR)TEM of the Ni–Co–O/NiCo-LDH composite (a,b); the insets in (c) and (d) show the
corresponding SAED patterns and inverse fast Fourier transform (FFT) images.

The XRD patterns of NiCo-LDH, Ni–Co–O, and Ni–Co–O/NiCo-LDH are shown in
Figure S3. At 11.9◦, 18◦, 34◦, and 59◦, we observed characteristic XRD peaks belonging
to the (003), (001), (012), and (110) crystal planes of the α-phase of the hydrotalcite-like
LDH phase. The diffraction peaks with 2θ = 37.3◦, 43.3◦, and 62.9◦ are related to the (111),
(200), and (220) plane reflections of NiCoO2. Diffraction peaks of NiCo-LDH and Ni–Co–O
appeared in the XRD patterns of the composite, indicating that NiCo-LDH and Ni–Co–O
were successfully compounded, which was consistent with the TEM results.

The surface elemental composition and chemical valence of the sample Ni–Co–O/NiCo-
LDH were analyzed by XPS, as shown in Figure 3. The full spectrum demonstrated the
presence of Ni, Co, and O in the sample (Figure 3a), which agreed with the EDS analysis.
Figure 3b shows the high-resolution XPS spectrum of Ni 2p. The two characteristic peaks
at the binding energies of 858.7 and 875.3 eV correspond to Ni 2p3/2 and Ni 2p1/2 of
Ni2+, respectively [3]. The two spin-orbit double peaks at 797.4 eV and 782.5 eV were
indexed to Co 2p1/2 and Co 2p3/2, respectively (Figure 3c). This indicated the presence of
Co2+ [16,33]. The fitting peaks at 780.8 eV and 795.9 eV correspond to Co3+. In Figure 3d,
the peak of O1 could be related to H2O molecules absorbed on the sample’s surface [3]. The
peaks of O2 and O3 matched with the binding energies of M−O−H and M−O−M, where
M−O−H was attributed to the NiCo-LDH shell material, and M−O−M was indexed to the
NiCoO2 core material. From the above results, we could infer the successful synthesis of
the Ni–Co–O/NiCo-LDH composite. Figures S4 and S5 show the XPS spectra of NiCo-LDH
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and Ni–Co–O. No obvious differences were observed among the XPS results of the three
samples, indicating that the chemical states of the elements in the three samples were
the same.
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The specific surface area and porosity of the as-prepared three samples were explored
by N2 physical adsorption/desorption isotherms, and the results are shown in Figure 4.
The curves exhibited typical type IV adsorption–desorption isotherm loops, suggesting
that there were mesopores in the microspheres (Figure 4a) [35]. The specific surface areas
of the NiCo-LDH, Ni–Co–O, and Ni–Co–O/NiCo-LDH samples were 249.7, 130.1, and
221.6 m2 g−1, respectively. A high specific surface area can expose the active sites during
the Faraday reaction. The pore size distribution of the Ni–Co–O/NiCo-LDH sample was
narrow, and the diameter of the pores was in the range of 2–5 nm (Figure 4b), which helped
reduce the electrolyte ion diffusion lengths and promoted a fast Faraday redox reaction.
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To determine the best covering ratio of NiCo-LDH to Ni–Co–O, we optimized the ratio
of the two components in the Ni–Co–O/NiCo-LDH composite. Figure S6 displays the CV
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and GCD tests of Ni–Co–O/NiCo-LDH composites. When adding 0.1 g of Ni–Co–O, the
composite showed the best electrochemical performance. The following electrochemical
tests were based on this optimal sample.

Figure 5 shows the results of the double-electrode electrochemical performance test
using the Ni–Co–O/NiCo-LDH electrode. Figure 5a shows the CV curves for the Ni–Co–O/
NiCo-LDH core–shell electrode material under different scan rates. The CV curves show the
capacitance characteristics and a pair of obvious redox peaks, indicating the pseudocapaci-
tive energy storage mechanism. As the scan rate increased from 5 mV s−1 to 100 mV s−1,
the CV curve’s shape did not change significantly. In contrast, the area increased gradually,
and the peak current also increased, which suggested the electrochemical reversibility of
the electrode material was good.
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To explore the origin of the capacitive behavior, an analysis of the contribution of
EDLC and pseudo-capacitance (PC) towards the overall specific capacitance was conducted
by the Trasatti’s method. In the Trasatti’s method, the surface-controlled capacities are
divided into “inner” and “outer” portions. Specifically, “inner” surfaces are the regions
with difficult access, while “outer” surfaces refer to surfaces that ions directly come in
contact with [36,37]. Figure S7 exhibits the linear fit of capacity (q) vs. the reciprocal of the
square root of the scan rate (v−1/2) and q−1 vs. ν1/2 for the sample Ni-Co-O/NiCo-LDH. A
ohmic drop of the intrinsic resistance was responsible for the non-linear behavior of the
graphs [38]. After the evaluation, the sample Ni-Co-O/NiCo-LDH exhibited 5.3% and
94.7% of the capacity, originating from the EDLC and PC contributions, respectively. The
high proportion of PC indicated that the core–shell composition provided the main pseudo-
capacitive properties, while the microstructure of the chestnut-like structure provided part
of the electric double-layer properties, which jointly promoted the high electrochemical
performance of the composite.

Figure 5b shows the GCD curves of the Ni–Co–O/NiCo-LDH core–shell electrode
material at various current densities. It shows apparent charge–discharge platforms that
further proved the pseudocapacitive energy storage mechanism [39]. According to the
GCD curves, the specific capacitance of the Ni–Co–O/NiCo-LDH core–shell electrode at
different current densities could be calculated. It exhibited specific capacitance values of
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1434, 1416, 1312, 1212, 1136, and 1040 F g−1 at the current densities of 1, 2, 4, 6, 8, and
10 A g−1, respectively.

The CV and GCD of the individual components NiCo-LDH and Ni-Co-O were also
tested (Figures S8 and S9), which identified the excellent symmetry and high capacity of
Ni–Co–O/NiCo-LDH. The CV curves of the as-prepared NiCo-LDH, Ni–Co–O, and Ni–
Co–O/NiCo-LDH at a scan rate of 10 mV s−1 were compared (Figure 5c). The CV curves
of the three electrode materials showed the capacitance characteristics and obvious redox
peaks. As expected, when the NiCo-LDH and Ni–Co–O were combined to form a core–shell
structure, the CV curve area significantly increased, and the peak current also increased
compared with those of NiCo-LDH or Ni–Co–O. In addition, two distinct redox peaks
could be observed, demonstrating an electrochemical reaction behavior in the presence of
Faradaic processes. Figure 5d shows the GCD curves of the as-prepared NiCo-LDH, Ni–Co–
O, and Ni–Co–O/NiCo-LDH samples at the current density of 1 A g−1. The GCD curves
of the three electrodes showed clear charge–discharge platforms, which also proved the
pseudocapacitive energy storage mechanism; the discharging time increased significantly
after the core–shell structure formed. Compared with Ni–Co–O, the broadened potential
window of Ni–Co–O/NiCo-LDH further indicated that the composite of this core–shell
structure would successfully reduce the polarization and enhance the specific capacitance
(Figures S10 and S11).

Figure 5e shows the EIS results of the three electrode materials. In the low-frequency
region, the linear slope of the Ni–Co–O/NiCo-LDH electrode material is larger than that
of the two single-component electrode materials, which indicated that the composite had
lower internal impedance, showing a faster diffusion of ions, which allowed a faster and
complete contact between the electrolyte ions and the electrode materials. In the high-
frequency region, the semicircle of the Ni–Co–O/NiCo-LDH electrode material becomes
smaller, indicating that the charge transfer resistance was significantly reduced, which is
beneficial to the rapid transfer of electrons, consequently promoting the rate performance
of the electrode. The EIS data were fitted to the equivalent circuit shown in inset of
Figure S12 [40]. The electrochemical parameters of the series resistance (Rs) and the charge
transfer resistance (Rct) were obtained as shown in Table S1. Ni–Co–O/NiCo-LDH had a
lower Rct than the other two materials, suggesting fast kinetics in the discharge/charge
process [41,42]. This result further proved that due to the construction of the composite
material, the electron transport rate of the electrode was improved to a certain extent.

Figure 5f displays the rate capability of the three electrode materials. The specific
capacitance value of the Ni–Co–O/NiCo-LDH electrode material was higher than those of
the single components at each current density, and the rate performance was also improved.
Especially at high rates, e.g., at a current density of 10 A g−1, the highest specific capacitance
value could reach 1040 F g−1, much higher than the specific capacitance value of the NiCo-
LDH (806 F g−1) and Ni–Co–O electrodes (226 F g−1). With the construction of the core–shell
structure, the specific capacitance of the electrode material significantly increased at any
current density. This was due to the synergistic effect of NiCo-LDH and Ni–Co–O, while
the high conductivity of Ni–Co–O restrained the polarization of the composite. Typically,
redox reactions are challenging to occur in the core part of a core–shell structure, and most
of them occur at the surface. In the present work, the core–shell structure formed based on
the nanoneedles’ structure. Such unique microstructure is very thin, and the core material
is more accessible to the electrolyte, which allows for a faster electron transport and further
increases the specific capacitance and reduces the polarization of the electrode material.
Moreover, the specific surface area, which showed more electroactive sites, also plays a
vital role. Hence, the above advantages provided the as-prepared Ni–Co–O/NiCo-LDH
core–shell structure with an excellent electrochemical performance.

To evaluate further the practical possibility of preparing electrode materials, an asym-
metric supercapacitor was fabricated, using the prepared Ni–Co–O/NiCo-LDH core–shell
structure electrode as the positive electrode, AC as the negative electrode, and 6 mol L−1

of KOH as the electrolyte. Figure S13 shows the CV curves of the Ni–Co–O/NiCo-LDH
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electrodes (0–0.5 V) and AC/NF electrodes (−1.0~0 V) at a scan rate of 10 mV s–1. The CV
curve of the AC/NF negative electrode showed a rectangular shape, indicating that this AC
electrode is an ideal double-layer capacitor based on the rapid desorption/adsorption of
the electrolyte ions. According to the previous experimental results, the operating voltage
windows of the Ni–Co–O/NiCo-LDH electrode and the AC negative electrode were 0–0.5 V
and −1~0 V, respectively. Therefore, the operating voltage range of the assembled super-
capacitor was 0–1.5 V. Figure 6a shows the CV curves of the asymmetric supercapacitor
in various voltage ranges (from 0–1.2 V to 0–1.8 V) at a scan rate of 10 mV s−1. When the
voltage range increased from 1.2 V to 1.6 V, the shape of the CV curve of the asymmetric
supercapacitor did not change. Therefore, the asymmetric supercapacitor could operate
stably in the voltage range of 1.6 V. Figure 6b displays that the assembled asymmetric
supercapacitor had an electric double layer and pseudocapacitive behavior characteristics.
As the scan rate increased, the area of the CV curve gradually increased, and the shape of
the CV curve changed only slightly, which showed its excellent Faraday reaction process
and rate performance. Figure 6c shows the GCD curves of asymmetric supercapacitors at
different current densities. According to the GCD curve, we could calculate the specific
capacitance value of the asymmetric capacitor. The calculation result is shown in Figure 6d.
At 1 A g−1 current density, the specific capacitance of the asymmetric capacitor could reach
72.3 F g−1; when the current density increased to 10 A g−1, the specific capacitance of the
asymmetric capacitor was 30.6 F g−1, displaying a good rate performance.
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Figure 6. (a) CV curves of the Ni–Co–O/NiCo-LDH//AC electrode collected over various potential
windows at 10 mV s−1, (b) CV curves of the asymmetry device at different scan rates ranging from 5
to 100 mV s−1, (c) GCD at various current densities from 0 to 1.6 V; (d) specific capacitance plots of
the asymmetry device at different current densities; (e) Ragone plot illustrating energy and power
densities of the Ni–Co–O/NiCo-LDH//AC device and other electrochemical devices; (f) cycling life
of the device with 3600 cycles at 6 A g−1.

The calculated energy density and power density of the assembled asymmetric su-
percapacitor are shown in the Ragone diagram (Figure 6e). When the power density was
807 W kg−1, the energy density of the asymmetric capacitor could reach 26 Wh kg−1. When
the power density increased to 6422 W kg−1, the energy density could still be maintained
at 13.2 Wh kg−1. The figure also shows a comparison between our results and others in
the literature, as reported in Table S2 [39,43–47]. It can be seen that the performance of the
asymmetric supercapacitor assembled in this work was relatively excellent. Meanwhile,
the device exhibited lower impedance, which can accelerate electron transfer and reduce
internal energy dissipation (Figure S14).

In addition, to explore the stability of this supercapacitor, 3600 discharge and charge
tests were conducted on the asymmetric capacitor under a current density of 6 A g−1
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(Figure 6f). After 3600 cycles, the asymmetric capacitor retained 95% of the original capacity,
indicating that the asymmetric capacitor had a good cycle performance.

4. Conclusions

In conclusion, a Ni–Co–O/NiCo-LDH core–shell composite was designed and suc-
cessfully synthesized by the self-template method. The Ni–Co–O/NiCo-LDH core–shell
composite showed a Chinese chestnut-like morphology composed of nanoneedles. When
used as the electrode material of supercapacitors, the Ni–Co–O/NiCo-LDH composite ex-
hibited high specific capacitance and good rate performance. Several reasons may explain
this good electrochemical performance. First, the electrical conductivity of NiCo-LDH
improved after combining with Ni–Co–O, which also improved its specific capacitance.
In addition, the core–shell structure composed of many nanoneedles could provide a di-
rectional pathway for the electrons, which promoted the electron transfer. Moreover, the
Ni–Co–O/NiCo-LDH composite has a high specific surface, which helped expose more
active redox sites. The electrode material prepared in this work not only has excellent
electrochemical performance, but also has potential application in supercapacitors due to
its simple preparation method and low cost.
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