
Citation: Song, J.; Wang, L.; Yao, J.;

Dong, H. Multi-Scale Structural

Design and Advanced Materials for

Thermal Barrier Coatings with High

Thermal Insulation: A Review.

Coatings 2023, 13, 343. https://

doi.org/10.3390/coatings13020343

Academic Editor: Narottam P. Bansal

Received: 9 December 2022

Revised: 15 January 2023

Accepted: 18 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Review

Multi-Scale Structural Design and Advanced Materials for
Thermal Barrier Coatings with High Thermal Insulation:
A Review
Jinbao Song, Lishuang Wang *, Jiantao Yao and Hui Dong

School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
* Correspondence: lswang@xsyu.edu.cn; Tel.: +86-29-8838-2607

Abstract: Thermal barrier coatings (TBCs) are a fundamental technology used in high-temperature
applications to protect superalloy substrate components. However, extreme high-temperature envi-
ronments present many challenges for TBCs, such as the degradation of their thermal and mechanical
properties. Hence, highly insulating, long-life TBCs must be developed to meet higher industrial
efficiency. This paper reviews the main factors influencing the thermal insulation performance of
TBCs, such as material, coating thickness, and structure. The heat transfer mechanism of the coating
is summarized, and the degradation mechanism of the thermal insulation is analyzed from the
perspective of the coating structure. Finally, the recent advances in improving the thermal insulation
and lifetime of coatings are reviewed in terms of advanced materials and structural design, which
will benefit advanced TBCs in future engineering applications and provide guidance for the next
generation of high thermal insulating TBCs.

Keywords: thermal barrier coatings; high thermal insulation; coating thickness; thermal conductivity;
advanced materials; multi-structural design

1. Introduction

Thermal barrier coatings (TBCs) are a multilayer coating of a combination of low
thermal conductivity, high melting-point ceramics and alloy materials deposited on a
nickel-based, high-temperature alloy to reduce the surface temperature [1–3]. TBCs are
used widely to provide thermal protection on the high-temperature components of aero
engines and land-based gas turbines and in the high-temperature manufacturing indus-
try (Figure 1) [4,5]. Increasing the turbine inlet temperature can effectively improve the
efficiency of gas turbines and the thrust-to-weight ratio of aero engines. As the demand
for electric power and supersonic flights increases, the operating temperature of next-
generation engines will exceed 1500 ◦C [6], which is higher than the operating temperature
of nickel-based alloys. Therefore, the thermal insulation and durability of TBCs need to be
improved significantly.

Typical TBCs consists of a topcoat (TC), a bond coat (BC), a thermally grown oxide
(TGO), and a substrate (SUB). The functions of the TC are thermal insulation and resistance
to calcium–magnesium–alumina–silicate (CMAS) corrosion. The functions of the BC are
bond strengthening, oxidation resistance, and mechanical property transition [7–13]. The
BC is typically a metal layer of MCrAlY (M = Fe, Ni, Co, or Ni–Co) [14–16]. The TC material
selected must meet strict performance limits to resist thermal and mechanical attacks in
extreme environments. These include high melting point, good strain tolerance, corrosion
resistance, low sintering rate, no phase change during thermal cycling, and a coefficient
of thermal expansion (CTE) that matches the metal matrix [17,18]. Y2O3-stabilized ZrO2
(YSZ) is used widely as a TC material owing to its good properties [19–21]. However,
YSZ undergoes a phase transformation at operating temperatures above 1300 ◦C, leading
to volume expansion. In addition, sintering occurs, damaging the strain tolerance and
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reducing the lifetime of TBCs [22,23]. Therefore, advanced TBC materials with better
high-temperature stability and lower thermal conductivity are needed.
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Figure 1. Typical applications of TBCs in industrial fields.

Conventional TBCs are mainly prepared by plasma spraying (PS) and electron beam
physical vapor deposition (EB-PVD) [4]. A previous study reported that the PS-TBC
coating exhibited approximately 60% lower thermal conductivity than the bulk due to
the lamella structure containing many inter-splat pores [24]. The TBC prepared by EB-
PVD exhibited a columnar structure with multi-scale pores. Vertical global-scale channels
separate the columnar grains, while nanoscale voids are produced inside the columnar
grains. The thermal conductivity decreases by less than 40% compared to that of the bulk
material because the intercolumnar pores are aligned in the direction of heat flux [25].
Currently, many methods have also been developed for the preparation of TBCs; the
potential and representative techniques include suspension plasma spraying (SPS) and
plasma spraying physical vapor deposition (PS-PVD) (Figure 2) [26–28]. The PS-PVD
process is a conventional method based on the low-pressure plasma spraying of TBCs. The
increased efficiency of vacuum pumps in PS-PVD installations resulted in pressures in the
working chamber between 50 and 200 Pa. Owing to the low pressure in the process, the
plasma plume can reach lengths of more than 2 m and diameters of 200–400 mm [29,30].
SPS is an emerging technology that can replace atmospheric PS (APS) to manufacture
thinner layers. A suspension of submicron particles can be introduced into a plasma stream
via an axial or radial injection. A continuous stream of suspension flows from an injector of
tens of microns and is injected into the plasma stream. The first fragmentation occurs in
the plasma stream, and solvent evaporation occurs before the particles are simultaneously
accelerated and melted until the particles hit the surface [31]. TBCs prepared using these
two techniques have a columnar structure similar to that prepared by EB-PVD, which can
improve the strain tolerance of the coatings. In addition, they have higher intracolumnar
porosity, which can reduce the thermal conductivity of the coating [32], so they have been
studied widely for the preparation of next-generation advanced TBCs.



Coatings 2023, 13, 343 3 of 42

Coatings 2023, 13, x FOR PEER REVIEW 3 of 45 
 

 

 
Figure 1. Typical applications of TBCs in industrial fields. 

 
Figure 2. Schematic diagram of the preparation process of TBCs: (a) equipment working principle 
(b) cross-section (c) surface SEM images (adapted from [33–40]). Figure 2. Schematic diagram of the preparation process of TBCs: (a) equipment working principle

(b) cross-section (c) surface SEM images (adapted from [33–40]).

This paper reviews the thermal properties and influencing factors of TBCs and recent
research strategies to improve their thermal insulation and durability. First, the factors
affecting the thermal insulation of coatings are discussed from the aspects of material
properties, coating thickness, and internal microstructure. The leading causes of thermal
insulation degradation due to thermal exposure are analyzed. Finally, the related designs
for high thermal insulation and long-lifespan coatings are discussed (Figure 3).
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2. Influencing Factors in Thermal Insulation

The heat absorption and release of the TBC is a balanced process, and this thermal
equilibrium process can be considered a steady-state heat transfer. The TBC is generally
thin in the range of 200–3000 µm, and the dimensions parallel to the substrate direction
can be approximated to infinity compared to the thickness direction. Therefore, the heat
transfer process of a TBC can be regarded as a one-dimensional, steady-state heat transfer
perpendicular to the coating surface. According to Fourier’s law, the longitudinal unit
thermal resistance of the coating can be expressed as follows [41]:

R =
H

λA
, (1)

where H is the thickness of the coating, λ is the thermal conductivity, and A is the area
normal to the heat flow. Under one-dimensional, steady-state heat transfer, the thermal
conductivity of the TBC depends on both the coating material and the structure. A compre-
hensive understanding of the heat transfer and thermal insulation degradation mechanisms
of coatings is essential for the development of high thermal insulation TBCs.

2.1. Thickness of the Top Coat

The service environment of aviation and industrial gas turbines is different, so the
requirements for TBCs on turbine blades are also different. The service time of aero-engine
TBCs is thousands of hours, and it is started and stopped continuously [1], which requires
a high strain tolerance TBC prepared by EB-PVD (Figure 4). Heavy-duty gas turbines need
to maintain high temperatures and high efficiency for a long time, and require high thermal
insulation TBCs prepared with APS [42,43]. The thickness of TBCs is often larger than that
needed for aviation (Figure 5).
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Figure 4. Cutaway view of aero-engine GE-9X, thermal barrier coating (TBC) on high-pressure
blade, and scanning electron microscope (SEM) image of a cross-section TBC by EB-PVD 7 wt %
yttria-stabilized zirconia (7YSZ). (Engine and blade images from GE aviation, and SEM micrographs
adapted from Ref. [44]).
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Figure 5. Cutaway view of gas turbine SGT5-4000F, TBC on the first stage blade, and SEM image of
TBC cross-section obtained by APS 8 wt % yttria-stabilized zirconia (8YSZ). (Engine from Siemens
energy, turbine images from SULZER W501F, and SEM micrographs adapted from Ref. [45]).

Increasing the thickness of the topcoat is a promising technique for improving the
thermal insulation potential by preserving its mechanical properties [46,47]. However, this
causes a larger thermal gradient across the coating and higher stress within the topcoat.
In addition to the thermal gradient stress, a higher thickness causes the higher elastic
stress energy stored within the coating, which may lead to the initiation and propagation
of cracks [48–50]. For the cooling phase with a transient thermal gradient, Sundaram
et al. [51] numerically determined the transient energy release rate and mode fixity for
coating delamination to be dependent on the initial thermal gradient, the rate of cool down,
the substrate thickness, and the substrate constraint against bending. When the substrate
thickness was fixed to 3.5 mm, the energy release rate increased monotonically with the
coating thicknesses of 0.15, 0.45, and 0.75 mm. Li et al. [48] investigated the effects of
the thickness and mechanical load on the energy release rate of the dwelling phase. The
results show that when the substrate thickness is fixed, the topcoat thickness increases,
and the energy release rate increases. Mohammadzaki Goudarzi et al. [52] prepared a
TBC (TC 280 µm +BC 100 µm) and a thick TBC (TTBC TC 1000 µm +BC 100 µm) using
a plasma spray process and investigated their thermal insulation and durability. The
scanning electron microscopy image of the polished cross-section of as-sprayed TBC and
TTBC showed distributed 2D pores and globular voids (Figure 6). As shown in Figure 7,
a continuous oxide scale formed at the interface of NiCrAlY/YSZ. There is no sign of
horizontal cracking or debonding in the conventional TBC. On the other hand, complete
delamination occurred within the TTBC, with the delamination located within the top layer
near the interface. The TGO of TTBC grew at a lower rate and failed mainly due to the
higher temperature drop of the thicker coating, hence the higher internal stresses at the
interface between the BC and the topcoat [53]. In addition, the delamination was driven by
the high elastic strain within the topcoat caused by the higher thickness [46]. The thermal
insulation of TTBC was two times that of a TBC. However, the life and bond strength of
the TTBC were only approximately 43% of a TBC (Figure 8). Liang et al. [54] examined the
effects of the coating thickness on fracture under thermal shock cycling by combining their
thermal shock experiments with the corresponding finite element analysis. The results
suggested that coatings with thicknesses greater than 300 µm were prone to failure after
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fewer cycles, and the coating interface cracking was more significant. The 500 µm coatings
failed at only 16.6% of the number of cycles for the 100 µm coatings; the potential failure
mechanism is the higher compressive stress of thicker coatings. Vo et al. [55] investigated
the effect of the TBC thickness on realistic high-pressure turbine cooling-blade heat transfer
using high-quality meshes based on the Mosaic meshing technique. The results showed
that the blade surface temperature decreases with increasing TBC thickness (Figure 9). The
blade coated with a 0.2 mm thick TBC reduced the blade surface temperature by 230 K
(from 1150 to 920 K) compared to the blade without the TBC coating. The TBC thickness
increased by 0.2 mm, resulting in an approximately 40 K decrease in the maximum blade
temperature. Under the existing conditions, 250 µm thick TBCs can reduce the surface
temperature of the blade substrate by 384–440 K [56]. The TBC thickness is significant for
preventing heat transfer to the blade surface. However, spallation of TTBCs during gas
turbine engine operating conditions is one of the major problems in the development and
application of these coatings.
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Figure 9. Comparison of temperature on the blade surface and the tip surface [55]. (Htc is thickness
of the topcoat, LE, LT, and TT are leading edge, leading tip, and trailing tip, respectively).

2.2. Materials and Structure of Top Coats

The heat transfer mechanism in conventional TBCs consists mainly of phonon heat
conduction (crystal lattice vibration) within the YSZ material, photon heat transfer (thermal
radiation), and gas-phase heat conduction and Knudsen heat transfer within the gas pores [57].
For electrically insulating ceramic materials, electrons do not contribute to the heat transfer
process. For TBCs in the medium- to high-temperature range, the heat transfer process of the
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material is mainly phonon transport [58,59]. Based on the Debye theory, the contribution of
lattice vibrations to heat conduction according to phonon dynamics theory is:

Kp =
1
3

∫
Cvρvlp, (2)

where Cv is the specific heat capacity per unit volume of the material, ρ is the density, v is the
phonon velocity, and lp is the phonon mean-free range. Cv, ρ, and v are influenced mainly
by the type of material. The phonon mean-free range lp is the parameter with the greatest
influence on the thermal conductivity of TBCs. The contribution of phonons to heat transfer is
inversely proportional to the mean-free range of phonon scattering, which is closely related
to the microstructure of the material. The scattering processes of phonons can be generally
classified into three main categories: phonon-boundary scattering, phonon-defect scattering,
and phonon–phonon scattering. According to the Matthiessen rule, the effects of the three
scattering processes on the mean-free range of phonons can be quantified as follows:

1
l
=

1
ldefect

+
1

lboundary
+

1
lphonon

, (3)

where ldefect, lboundary, and lphonon denote the effect of defects, boundary, and other phonons
on the phonon mean-free range, respectively. A large number of defects and pore bound-
aries inside the TBC (Figure 10) affect the average free range of its internal molecules.
The enhanced scattering of particles significantly affects the thermal conductivity of the
coating [60]. After thermal exposure of TBC, the average free range of phonons increases.
Hence, the proportion of photon heat transfer increases, and the contribution of photon
heat transfer to thermal conductivity can be expressed as:

Kr =
16
3

σn2T3lr, (4)

where σ is the Stephen–Boltzmann constant, n is the refractive index, T is the absolute
temperature, and lr is the photon scattering mean-free path. When the temperature is lower
than 1200 ◦C, YSZ transfers heat mainly by phonons, but when the temperature increases,
the proportion of photon heat transfer becomes larger (10% of the total heat transfer at
1250 ◦C). Therefore, for future high-performance engines, thermal radiation is an important
factor affecting their performance and efficiency. The lamella structure of the PS-TBC can
reduce the radiation heat transfer of TBCs.

Coatings 2023, 13, x FOR PEER REVIEW 9 of 45 
 

 

where ldefect, lboundary, and lphonon denote the effect of defects, boundary, and other phonons 
on the phonon mean-free range, respectively. A large number of defects and pore bound-
aries inside the TBC (Figure 10) affect the average free range of its internal molecules. The 
enhanced scattering of particles significantly affects the thermal conductivity of the coat-
ing [60]. After thermal exposure of TBC, the average free range of phonons increases. 
Hence, the proportion of photon heat transfer increases, and the contribution of photon 
heat transfer to thermal conductivity can be expressed as: 

2 316
3r rK n T lσ= , (4) 

where σ is the Stephen–Boltzmann constant, n is the refractive index, T is the absolute 
temperature, and lr is the photon scattering mean-free path. When the temperature is 
lower than 1200 °C, YSZ transfers heat mainly by phonons, but when the temperature 
increases, the proportion of photon heat transfer becomes larger (10% of the total heat 
transfer at 1250 °C). Therefore, for future high-performance engines, thermal radiation is 
an important factor affecting their performance and efficiency. The lamella structure of 
the PS-TBC can reduce the radiation heat transfer of TBCs. 

 
Figure 10. Fractured cross-section of as-deposited PS-TBC [61]. 

The thermal conductivity of gas inside the pore in TBC can be calculated using the 
Kg model for the thermal conductivity of a gas inside a restricted air channel with a char-
acteristic length dv, which can be calculated using the following equation [62]: 

0
g

g 1 /( )v

K
K

BT d P
=

+
, (5) 

where P is the pressure, T is the absolute temperature, Kg0 is the unconstrained conduc-
tivity of a gas at the temperature concerned, and B is a constant that generally depends on 
the gas type and the solid surface material, surface roughness, and gas–solid interactions 
[63]. Indeed, the magnitude of the gas pressure P and the gas temperature T directly affect 
the molecular mean-free range λ of the gas inside the pore, significantly affecting the ther-
mal conductivity of the gas phase inside the pore and its thermal conductivity. At atmos-
pheric pressure, the molecular mean-free range λ is larger than the characteristic length 
dv of the pore, and Knudsen heat transfer occurs in the pore, which causes the thermal 
conductivity Kg of the gas inside the pore to be much lower than that of the free gas at the 
same temperature. Kg barely changes with temperature and does not increase with tem-
perature similar to the free-space gas thermal conductivity Kg0, which is beneficial to the 
overall thermal insulation performance of the TBC. However, under the high-pressure 
conditions of a TBC, the average free range of molecules will be smaller than the charac-
teristic length of the pore, and the thermal conductivity of the gas in the pore will be larger 
than that of the gas in the pore at atmospheric pressure. Moreover, the thermal conduc-
tivity of the gas in the pore will increase with increasing temperature. The value will be 
close to the thermal conductivity of the gas in the free space with increasing pressure, 
which will adversely affect the overall thermal insulation property of the TBC. 
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The thermal conductivity of gas inside the pore in TBC can be calculated using the
Kg model for the thermal conductivity of a gas inside a restricted air channel with a
characteristic length dv, which can be calculated using the following equation [62]:

Kg =
K0

g

1 + BT/(dvP)
, (5)
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where P is the pressure, T is the absolute temperature, Kg
0 is the unconstrained conductivity

of a gas at the temperature concerned, and B is a constant that generally depends on the
gas type and the solid surface material, surface roughness, and gas–solid interactions [63].
Indeed, the magnitude of the gas pressure P and the gas temperature T directly affect the
molecular mean-free range λ of the gas inside the pore, significantly affecting the thermal
conductivity of the gas phase inside the pore and its thermal conductivity. At atmospheric
pressure, the molecular mean-free range λ is larger than the characteristic length dv of the
pore, and Knudsen heat transfer occurs in the pore, which causes the thermal conductivity
Kg of the gas inside the pore to be much lower than that of the free gas at the same
temperature. Kg barely changes with temperature and does not increase with temperature
similar to the free-space gas thermal conductivity Kg

0, which is beneficial to the overall
thermal insulation performance of the TBC. However, under the high-pressure conditions
of a TBC, the average free range of molecules will be smaller than the characteristic length
of the pore, and the thermal conductivity of the gas in the pore will be larger than that of
the gas in the pore at atmospheric pressure. Moreover, the thermal conductivity of the gas
in the pore will increase with increasing temperature. The value will be close to the thermal
conductivity of the gas in the free space with increasing pressure, which will adversely
affect the overall thermal insulation property of the TBC.

Many traditional empirical formulas have been proposed to calculate the effective
thermal conductivity of coatings [64–68]. Neuer et al. [69] studied the effect of the porosity
of YSZ coatings on the thermal insulation performance and reported that the relationship
between the porosity and thermal conductivity of TBCs is:

λp = λ0(1− β · p), (6)

where λ0 is the thermal conductivity of the bulk material, β is a constant, and p is the
porosity of TBCs. A simulation of the geometric arrangement and heat flows through it is
required to incorporate the effects of heat transfer through the gas in the pores and within
the zirconia itself and the pore architecture [70,71]. Golosnoy et al. [72] established analyt-
ical and numerical models for simulating heat flow through a two-component structure
consisting of a solid layer separated by thin, periodically bridged, gas-filled voids, designed
to represent plasma-sprayed ceramic coatings. It is based on dividing the modeling domain
into two regions: (1) unidirectional conduction successively through the splits and the in-
tervening air gaps and (2) channel conduction through bridges (bonding area). The results
predict that the bridge area is the microstructural parameter with the greatest impact on the
conductivity. Several factors play significant roles in determining the thermal conductivity,
such as pore size, pore distribution, and crack orientation [73–81]. Wei et al. [82] developed
an analytical model to discuss the effects of the microstructural parameters, including splat
thickness, bonding ratio between splits, and unit size, on the total thermal resistance and
to reveal the dominant effect of oriented 2D pores on heat flux (Figure 11) [72,82,83]. The
thermal conductivity is strongly associated with the 2D composited stacking structure: bulk
splits and air-trapped pores, and microstructural parameters, including splat thickness,
splat/splat bonding ratio, and splat length contribute to total thermal resistance.

Higher porosity corresponds to lower thermal conductivity. However, at the service
temperature, the radiation heat transfer caused by the pores cannot be ignored [84–88].
Numerous studies have shown that pores parallel to the direction of the substrate can dras-
tically reduce the thermal conductivity [41,62,67,73,89–91]. Boissonnet et al. [92] prepared
a series of TBCs with different thicknesses by PS and high-velocity oxygen-fuel spraying
(Figure 12). They reported that the thermal diffusivity values decreased linearly with
increasing lamellar porosity. The dependence of the thermal diffusivity on the porosity
decreased at high temperatures (Figure 13). Sun et al. [73] investigated the thermal conduc-
tivity of various TBC pore morphologies by numerical methods. The thermal conductivity
decreased as the total porosity increased, and the TBC with pores in the 0◦ direction (ver-
tical to heat flow) had the lowest thermal conductivity. Furthermore, from 0◦ to 60◦ in
the pore direction, the thermal conductivity decreased as the pore aspect ratio increased
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(Figure 14). In summary, the porosity level affects the thermal conductivity of the coating,
while the pore morphology, aspect ratio, and temperature further influence the dependence
of porosity and thermal insulation of the coating.
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Haynes 188 + 40 µm NiCrAlY + 110 µm YSZ, (b) AM1-APS 2: Haynes 188 + 15 µm NiCrAlY + 430 µm
YSZ, (c) DFL-APS:Haynes 188 + 130 µm NiCoCrAlY + 330 µm YSZ, (d) In-APS: Inconel 600 + 72 µm
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the corresponding higher magnifications of the ceramic coatings [92].
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Therefore, the inherent thermal conductivity of the bulk material and the thickness
and multi-scale pore structure of the coating are the key factors in improving the thermal
insulation performance of TBCs [41,93–95].

2.3. Degradation Mechanism of Thermal Insulation

The thermal conductivity of TBCs increases significantly after thermal exposure, result-
ing in a decrease in the thermal insulation of the coating. Boissonnet et al. [92] suggested
that the thermal diffusivity of self-standing TBCs and full TBCs increases by approximately
40% after thermal exposure (Figure 15), but the self-standing thermal diffusivity first in-
creased, then decreased, and then stabilized because of the generation of many cracks
during cooling. Cernuschi et al. [96] reported a similar increase in thermal diffusivity with
heat treatment time. A higher temperature resulted in a more severe increase (Figure 16).
The thermal conductivity of coatings becomes much more complicated in actual service.
The main problem is that the evolution of the microstructure of TBCs by thermal service
causes a change in the thermal conductivity of the coating [97–99].
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Sintering leads to an approximate 80% increase in thermal conductivity [77,98,100,101].
Many studies attributed this to the significant healing of oriented 2D pores [85,101–107]. Li
et al. [23] reported the comprehensive sintering mechanism for lamellar TBCs. An overall
property evolution with two-stage kinetics was presented during thermal exposure. The
first stage (0–10 h) resulted in faster sintering kinetics and increased mechanical properties
due to the rapid healing caused by multipoint connection at the inter-splat pore tips, as
well as a small quantity of narrow intra-splat cracks.

A previous study [61] reported the dynamic evolution of a coating sintered at high
temperatures and the healing mechanism of 2D pores. Figure 17 shows the structural
changes to the two types of pores with different widths during thermal exposure. The
grains begin to grow within a relatively short time after thermal exposure, and the upper
and lower surfaces of the pores become rough. Several diffusions short-circuit channels are
formed in the pores, accelerating the high-temperature evolution typical of pore healing
(Figure 17a). In addition, the wider 2D pores are not completely healed after the same
thermal exposure (Figure 17b), and still maintain the narrow and long 2D features. However,
the point of contact in the narrow area separates the 2D pores into several small pores,
which resulted in a reduction in the aspect ratio of the 2D pores, thereby impairing the
thermal insulation properties of the coating. Liu et al. [103] characterized the evolution of
interlamellar 2D pores of the APS LZO coatings during exposure to high temperatures for
different durations. The aspect ratio of the interlamellar 2D pores in the as-sprayed coating
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was more than 50. As the exposure duration increased, grain bridging segmented long
gaps into several regions and reduced most pores to smaller ones with smaller aspect ratios.
This led to a rapid decrease in the aspect ratio of the residual 2D pores at the early stage.
The aspect ratio of most residual 2D pores after five hours of thermal exposure became
less than 30. After thermal exposure, the aspect ratio was distributed mainly from 10 to 30.
This sintering effect increases the stiffness and thermal conductivity of TBCs (Figure 18).
Therefore, the healing of 2D pores and the increase in the aspect ratio at high temperatures
are the main reasons for the increase in the thermal conductivity of TBCs [77,98,103,108].
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3. Strategies to Enhance the Thermal Insulation of TBCs

The thermal insulation and lifetime of TBCs curb the efficiency and reliability of the gas
turbine. According to the previous section, the improved thermal insulation of TBCs can be
achieved by increasing the thickness of the ceramic layer, reducing the thermal conductivity
of the ceramic material, and adjusting the multi-scale structure of the coating. However,
ceramic layer thickness and low thermal conductivity of ceramic materials subjected to
thermal stress and fracture toughness affect the lifetime of TBCs. Combining with a multi-
scale structural design approach may be an effective way to solve this problem. Some
potential ceramic materials and structural designs are summarized, which will guide the
development of high thermal insulation and long life TBCs.
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3.1. Enhanced Durability of TTBCs

TTBCs (>500 µm) are effective in thermal insulation [47,49,54,110,111]. Owing to the
difference in thermal expansion coefficients between TCs and the substrate, a greater TC
thickness indicates a greater thermal gradient within the coating and thermal mismatch
stresses, elastically stored strain energy, and the energy release rate for crack formation,
resulting in lower bonding strength and faster TTBC degradation [53,112–117]. Further-
more, the singularity of the stress at the coating-free edge also influences the failure of
the coatings [118]. The broken regions usually occur at the horizontal and vertical cracks
within the TC and TC/BC interfaces [17,119–123].

As the thermomechanical properties of TBCs are strongly dependent on the microstruc-
ture of the coating [61,75,93,124,125], the structure can be optimized in terms of the chemical
composition, pore and crack distribution to achieve high thermal insulation and a long lifespan.
Some methods to tailor the microstructure have been reported, including segmentation-cracked
coatings, porous coatings, dense coatings, columnar coatings, gradient coatings, or multilayer
coatings, by optimizing the spraying parameters or adopting various powders [50,126–132].
TTBCs exhibit a range of properties according to their structures.

3.1.1. Functionally Graded TTBCs

The tendency of the internal cracks of a TC to extend due to poor fracture toughness is a
major problem [128]. Many researchers have fabricated gradient-structured YSZ-TBCs, which
appeared to be a good option for improving the fracture toughness near the TC/BC interface
of a TTBC [133–135]. Gradient coatings can reduce interfacial stress and increase fracture
toughness [127,128]. The gradient structure has two forms: structural gradient and component
gradient. The spraying power and gas flow rate altered the morphology of the splits, resulting
in different coating structures obtained by subsequent deposition [136]. Functionally graded
TBCs were sprayed by varying the feeding ratio of YSZ/NiCrAlY powders.

The porosity and pore shape are the key parameters controlling the mechanical properties
and sintering behavior of TBCs [137,138]. Low porosity is beneficial to the fracture toughness
of the coating, and high porosity is beneficial to maintaining strain tolerance. The functional
structure classification can provide a coating with different microstructures on the longitudinal
scale to give the coating strong integrated mechanical properties. The graded coating releases
the driving force energy to fail while preventing the crack length [139]. To improve the
fracture toughness of the TC layer near the BC, Li et al. [129] designed three layers of TBCs
with different microstructures. The layer adjacent to the BC has continuous columnar grains to
achieve crack extension resistance. The upper layer uses conventional and porous coatings to
transition and improve the thermal insulation, respectively. This can increase the thermal cycle
life of the coating by approximately 3.5–4 times that of conventional coatings. Lv et al. [140]
prepared TBCs with gradient pores and examined their mechanical and thermal properties
(Figure 19). The coatings with decreasing porosity from top to bottom showed improved
sintering resistance, and the coating demonstrated a compressive stress state at the interface
(Figure 20), indicating favorable delamination resistance and long lifetime. Structurally graded
coatings allow the microstructure to be adjusted to the functional needs of the layer, resulting
in an excellent combination of mechanical properties.
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The composition-graded coating from 100% metal on the substrate to 100% ceramics
on the top layer caused the interface between the two substances to disappear [141] while
retaining the properties of a variety of composite materials. The composition-graded
coatings improve the bond strength and toughness of the coating and reduce the thermal
stress at the interface [142–145]. Saeedi et al. [146] prepared a five-layer functionally
graded APS-TBC by changing the composition of YSZ/NiCrAlY. Cracks formed in much
lower quantities compared to the conventional TBC owing to the accommodation effect
of the functionally graded structure on thermal stress. In addition, the bond strength of
the gradient functional coating was approximately 1.5 times that of conventional TBCs.
Mohammadzaki Goudarzi et al. [147] examined the effects of composition and porosity
gradients on the thermomechanical properties of APS-TTBCs. They prepared a functionally
graded TTBC (FGTTBC) by changing the hydrogen flow rate to prepare the top layer with
gradient pores and mixing different percentages of NiCrAlY and YSZ powders (Figure 21).
Four samples with a total TC thickness of approximately 1100 ± 40 µm were prepared
for the performance comparison, namely, conventional TTBC, FGTTBC, FGTTBC porous
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(FGTTBC-P), and FGTTBC-pore gradient (FGTTBC-PG) (Figure 22). The results also showed
that a functionally graded coating has a good bond strength. Compared to TTBCs, the
fracture toughness of the FGTTBC was increased by 28%, but its thermal insulation was the
worst because of the presence of a higher thermal conductivity material (NiCrAlY) in TCs.
FGTTBC-P has the best life and thermal insulation because of the high porosity and low
elastic modulus (Figure 23). The presence of NiCrAlY in TCs improves the total coating
fracture toughness and crack growth resistance owing to crack bridging in a graded-volume
fraction [135,148,149]. A porous structure improves the thermal insulation of the coating.
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During the manufacture of FG-TBCs, the quenching of flat particles causes deposition
stresses, and cooling generates thermal expansion coefficient mismatch stresses. The
thermal stresses have the potential to cause crack expansion in FG-TBCs, which is critical
to their performance. Khor et al. [145] showed that the residual stress increases with
decreasing coating thickness. The residual stress decreased as the number of graded
layers increased for the same size of FG-TBC. Ramaswamy et al. [150] pointed out that
the residual stress of three-layer FG-TBCs is 1.8 times higher than that of the conventional
8YSZ coating with the same thickness. On the other hand, FG-TBCs have a longer lifetime
than conventional 8YSZ (Figure 24). The thermal stress of FG-TBCs is influenced by the
coating-to-substrate thickness ratio, the number of layers, and the cooling rate.
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In summary, the functional gradient coating improves the fracture toughness near the
TC/BC interface, which prevents crack extension caused by the greater tip strain energy
than the fracture toughness of the material under a thermomechanical load. The reduction
of thermal stress in the manufacturing process of an FG-TTBC has a positive effect on its
lifetime. Functionally graded TTBCs combined improved the thermal insulation and the
lifetime of the coating.
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3.1.2. TTBCs with Segmented Cracks and Columnar Structure

Columnar-like TTBCs combine the advantages of higher strain tolerance and better
crystal structural stability [128,130,151]. Segmentation cracks are cracks that run perpendic-
ular to the coating surface and penetrate at least half of the coating thickness. The columnar
structure and segmented TTBCs improve the thermal cycling resistance compared to the
traditional lamellar coating due to the increased compliance of the coatings [152,153].

Many researchers have developed segmented or dense vertical crack coating microstruc-
tures using the APS process [50,74,131,154,155]. Lu et al. [156] reported that vertical-type
cracks developed in TCs are essential for improving the lifetime performance of TTBCs in a
high-temperature environment. In addition, the segmentation crack density is closely related
to the lifetime of TBCs. Bengtsson et al. [157] reported that substrate temperature and passage
thickness are the major parameters determining the segmentation crack density of coatings.
Schwingel et al. [74] showed that the thick TBCs containing a high segmentation crack density
had an improved thermal shock lifetime. Guo et al. [118] produced three TTBCs with 1.5 mm
TCs using APS at different process parameters. The segmentation crack densities of the three
TTBCs were 2.7 mm−1, 1.5 mm−1, and 0.9 mm−1, respectively (Figure 25). At 1200 ◦C, the
thermal conductivity of the 2.7 mm−1 crack density coating was 1.75 W/m·K, which is 30%
higher than the other two because of the heat flow shortcut provided by segmented cracks.
The results show that a high segmentation crack density gave rise to improved thermal cycling
life of TBCs. The coating with a 2.7 mm−1 crack density had a lifetime of more than 1770 cycles
at 1238 ◦C and approximately 300 cycles at 1335 ◦C (Figure 26). Wang et al. [158] examined
how much the segmentation crack density is appropriate for improved TBC thermal shock
resistance based on finite element simulations and PS-TTBC thermal shock tests. An increase
in the density of splitting cracks within a specific range is followed by a decrease in the elastic
modulus and induced coating stress, enhancing the thermal cycle life of the coating (Figure 27).
The radial stress distribution of the TTBC based on FEM calculations showed that segmented
cracks will reduce the tensile stress at the crack tip, releasing the stress concentration in TTBCs
(Figure 28). The stress intensity factor and the energy release rate of cracks fade and then
increase with increasing segmentation crack density (Figure 29), so there is an upper limit to
the positive effect of the segmentation crack density on the lifetime of TBCs. The calculations
showed that segmentation crack density in the range of 2.38–4.76 mm−1 are beneficial for
improving the thermal shock resistance. However, the effect of the segmentation crack density
on the lifetime of TBCs differs according to the thickness, and the segmentation crack density
should be investigated in relation to the thickness of TBCs in the future. Tailor et al. [159]
reported that PS-TBCs can also implant segmented cracks by post-treatment after deposition
with a controlled segmentation crack density. This is an effective way to tailor the appropriate
segmentation crack density of TBCs. The high segmentation crack density imparts stronger
strain tolerance for TBCs, but there is a partial loss of thermal insulation due to the vertical
crack direction in line with the heat flow. Moreover, segmented cracks may be a large passage
for oxygen transport from the environment to the interior of TBCs [152].
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Figure 26. Photographs of TBCs showing coating failure modes: (a–c) 2.7 mm−1 crack density
coating cycled to 1238 ◦C for 1200 cycles and 1770 cycles, and to 1335 ◦C for 320 cycles, respectively;
(d–f) 2.7 mm−1 crack density coating cycled to 1226 ◦C for 1650 cycles and 1810 cycles, and to 1317 ◦C
for 174 cycles, respectively; (g,h) 0.9 mm−1 crack density coating cycled to 1216 ◦C for 1071 cycles
and to 1327 ◦C for 217 cycles, respectively [118].
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Figure 28. Radial stress distribution of TTBCs with different segmentation crack densi-
ties [158]. (a) 0.79 mm−1 crack density; (b) 1.59 mm−1 crack density; (c) 2.38 mm−1 crack den-
sity; (d) 3.17 mm−1 crack density; (e) 3.97 mm−1 crack density; (f) 4.76 mm−1 crack density;
(g) 5.56 mm−1 crack density; (h) 6.35 mm−1 crack density, (a′–h′) shows the scalar of the contour
of the corresponding figures (a–d) (unit: MPa).
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In a PS-PVD plasma plume diameter of 200−400 mm, the length can be extended to
more than two meters, and temperatures to more than 6000 K because of the low working
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pressure (50–200 Pa) and high power (~120 kW) plasma gun [160–162]. When spraying
with fine-grained powders, the powder can be evaporated at a high nucleation rate to
obtain coatings with columnar microstructures [163].

The supersaturation distribution of the plasma jet in the near-substrate region leads to
changes in the coating morphologies. The decrease in supersaturation in the edge region of
the plasma jet causes a decrease in temperature. This leads to condensation of the gaseous
phase and incomplete evaporation of the coating powder in the external plasma jet, causing
the coating to exhibit a different structure in the radial direction of the plasma jet [164],
from the center to the edge of the plasma jet, where the coating structure will change from
EB-PVD-like columnar to quasi-columnar, or even to dense (Figure 30) [165]. Adjusting the
plasma gas composition and feed rate of the PS-PVD process can allow the formation of
different microstructure TBCs, including lamellar coatings, EB-PVD-like columnar coatings,
quasi-columnar coatings, and composite structured coatings [166–170].
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Figure 30. Effect of condensation behavior on the coating structure [164,165].

Gao et al. [171] manufactured a YSZ quasi-columnar-structured coating using PS-
PVD and examined the thermal conductivity and thermal cycling behavior of the coating.
The quasi-columnar-structured YSZ coating had a lifetime of 2000 cycles in the thermal
cycling test at 1200 ◦C while exhibiting relatively low thermal conductivity ~1.15 W/m·K
at 1200 ◦C. The columnar-structured coating prepared by PS-PVD was formed by stacking
small columns. Thus, the interface between the small columns may enhance the thermal
insulation of the coating [172]. Qiu et al. [173] prepared quasi-columnar-structured YSZ and
GZO coatings by PS-PVD and developed a three-dimensional, quasi-columnar-structured
coating model. The coating exhibited a typical quasi-columnar structure, where the columns
are composed of many small island-like columns stacked on top of each other. Hence,
there are many transverse interfaces and pores in the columnar structure (Figure 31), which
can enhance the thermal insulation of the coating while increasing the strain tolerance of
the coating. The model represents a large heat flux at the interface created by the stack of
island-like columns (Figure 32). More interfaces indicate a stronger barrier to the heat flow
because, in a steady-state heat transfer, a larger heat flux means a smaller effective contact
area. However, the unique columnar PS-PVD-TBCs are expected to have a low resistance
to CMAS and solid particle erosion because of the large amount of open porosity.
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Figure 31. The SEM micrograph of the PS-PVD coatings, (a) fractured cross-section of the YSZ coating
(b) polished cross-section of the YSZ coating (c,d) voids and interfaces between small columns of
the YSZ coating (e) fractured cross-section of the GZO coating (f) polished cross-section of the GZO
coating (g,h) voids and interfaces between small columns of the GZO coating [173].
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In short, PS-PVD-TBCs possess a columnar structure containing many pores and
interfaces, with the advantages of both APS lamellar and EB-PVD columnar structures.
However, the unique microstructure produces conditions for interactions with liquid CMAS
deposits or solid eroded particles. Therefore, improving erosion resistance is the key to the
future development of PS-PVD-TBCs.

Some experimental studies showed that SPS TBCs exhibit unique microstructures of a
high segmentation crack density with relatively high porosity levels simultaneously, which
contribute to their superior thermal cycling durability and low thermal conductivity [174].
These have the potential for fabricating this type of high-strain-tolerated TTBCs.

The SPS process uses liquid feedstock, allowing control of the microstructure of the
spray on the nanoscale [175–177]. When the suspension feedstock is injected into the
plasma jet, the feedstock is broken into many small droplets because of the large velocity
difference. The droplets fly with the plasma gas flow, and when the gas flow encounters
a rough surface (substrate and the surface deposited first), it is deflected. Small droplets
move with it and impinge obliquely on the protrusions of the surface [178,179]. Eventually,
the stacked droplets gradually form a columnar structure due to the shadowing effect [180].

Zhao et al. [181] produced YSZ-TTBCs with segmented cracks by both SPS and APS
processes (Figure 33). The segmentation crack densities of SPS-TTBCs and APS-TTBCs were 4
and 2.5 mm−1, respectively. The results showed that the thermal shock resistance of the SPS-
TTBC was improved approximately twofold compared with that of the APS-TTBC (Figure 34),
which may be due to the increased segmentation crack density and superior segment structure
of SPS-TTBCs. In addition, the failure of the SPS-TTBC is ultimately connected to the thermal
stress and the severe oxidation of BCs. In conclusion, segmented cracks and columnar
microstructure play important roles in controlling the service life of TTBCs.
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3.2. Advanced Materials Build Double Ceramic Layers

High thermal expansion coefficients, ultralow thermal conductivity, reasonable mechan-
ical properties, and outstanding damage tolerance are essential for promising TBC materi-
als [79,182–186]. YSZ is a classical and widely used TC material because of its low thermal
conductivity and good mechanical compatibility with the matrix. However, the damage
tolerance and phase stability of YSZ are lost when operated at temperatures above 1200 ◦C. In
addition, as turbine intake temperatures increase, there is an increasing need for materials for
TBCs with smaller thermal conductivity and highly stable phases at elevated temperatures.
Recently, many researchers focused on developing rare-earth oxide materials [4,187–197].
Table 1 lists the potential TC materials and their corresponding properties.

Table 1. Thermal physical properties of potential TC materials.

Material Thermal Conductivity
/(W·m−1·K−1)

Thermal Expansion
Coefficient/(10−6 K−1)

Elastic
Modulus/

(GPa)

Fracture
Toughness/
(MPa m 1/2)

YSZ [4,187] 2.20 (1000 ◦C) 10.70 (1000 ◦C) 210 ± 10 3 ± 0.5
Rare-earth zirconates

La2Zr2O7 [68,182,189] 1.56 (1000 ◦C) 9.10 (1000 ◦C) 186 2.1 ± 0.1
Gd2Zr2O7 [188–190] 1.60 (700 ◦C) 11.60 (1000 ◦C) 205 2.2 ± 0.2

Dy2Zr2O7 [191] 1.34 (800 ◦C) 10.80 (1000 ◦C)
Yb2Zr2O7 [192] 1.36 (800 ◦C) 11.90 (1000 ◦C) 2.2 ± 0.1

Rare-earth tantalates
YTaO4 [193] 1.5 140 5

NdTaO4 [194] 1.41 (800 ◦C) 178
GdTaO4 [195] 1.70 (800 ◦C) 154
YbTaO4 [193] 1.65–3 7.6 (1200 ◦C) 122
EuTaO4 [195] 1.26 (900 ◦C) 175

Rare-earth niobates
NdNbO4 [196] 2.0 (1000 ◦C) 11.80 (1000 ◦C) 108
SmNbO4 [196] 2.05 (1000 ◦C) 10.86 (1000 ◦C) 120
GdNbO4 [196] 1.66 (1000 ◦C) 10.30 (1000 ◦C) 131

Other oxides
CaZrO3 [197] 0.73 (600 ◦C) 9.00 (1000 ◦C)
SrZrO3 [198] 2.08 (1000 ◦C) 10.90 (1000 ◦C) 170 ± 4 1.5 ± 0.1
BaZrO3 [199] 3.42 (1000 ◦C) 7.90 (1000 ◦C) 181 ± 11
YAlO3 [200] 1.61 (min) 318

YbAlO3 [201] 1.15 (min) 9.62 257
LaPO4 [202] 1.30 (1000 ◦C) 10.50 (1000 ◦C) 131 1.1 ± 0.2
CePO4 [202] 1.35 9.9 1.8 ± 0.1
NdPO4 [202] 1.59 9.8 2 ± 0.2

LaMgAl11O19 [203] 1.95 (1000 ◦C) 10.95 (20~1000 ◦C) 130 ± 11 4.6 ± 0.5
LaTi2Al9O19 [204] 1.30 (1000 ◦C) 11.2 (1000 ◦C) 240 ± 13 1.9–2.5

3.2.1. Rare-Earth Zirconates

The physical properties of rare-earth zirconates (RE2Zr2O7) are closely related to
their unique structure. Rare-earth zirconates usually have either a pyrochlore structure
(Figure 35a) or a fluorite structure. Both structures are face-centered cubic space lattices,
with the main difference being the ordered distribution of oxygen vacancies.
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The pyrochlore structured RE2Zr2O6O′ belongs to the Fd3m (227) space group. A com-
plete cell contains eight molecular units of RE2Zr2O7 with four unequal crystallographic
atomic positions of L, Zr, O, and O′. There are three oxygen ion lattice positions: 8b, 48f,
and 8a, where the space positions of 8b and 48f are occupied by O′ and O, respectively; the
oxygen vacancy occupies the space position of 8a in the tetrahedron formed by four Zr4+.
The fluorite structure belongs to the Fm3m (227) space group. The cation in the fluorite
structure has only one crystallographic position, and the central position of the cation is
occupied by the oxygen ions. The coordination number of the cation is seven, and there are
1/8 intrinsic oxygen vacancies with randomly distributed positions in the crystal structure.

However, pyrochlore and fluorite structures contain intrinsic oxygen vacancies in each
crystal structure unit. The high concentration of oxygen vacancies and the larger mass of
rare-earth atoms in the crystal cell enhance the phonon scattering effect, decreasing the
mean-free range. Therefore, rare-earth zirconates have a low thermal conductivity. The
increase in oxygen vacancy concentration increases the asymmetry of the potential well,
which favors the increase in CTE. The CTE of RE2Zr2O7 increases as the radius of the
rare-earth ions decreases. In addition, doping can introduce defects to relax the lattice and
reduce the lattice energy that increases the CTE.

Feng et al. [189,205] used a quasi-harmonic approximation combined with first-nature
principle calculations to investigate the thermal conductivity of RE2Zr2O7. Figure 35b presents
the calculated and experimental temperature-dependent thermal conductivity of RE2Zr2O7.
The agreement between the calculated and experimental values was good at high temperatures.
For RE2Zr2O7, the predicted value at 1273 K was approximately 0.98–1.37 W/m·K, which
is comparable to the experimental value of approximately 1.2 W/m·K. However, the bond
strength of the rare-earth zirconate coating was not as strong as that of the conventional
YSZ coating. The selection of appropriate powder particle size and spraying parameters can
improve the bond strength [108,109].

3.2.2. Rare-Earth Tantalates

Recently, there has been a promising development in the study of rare-earth tantalates
(RETaO4) being applied as thermal barrier coating materials. Rare-earth tantalates are
mostly monoclinic phases at room temperature and can be used at more than 1600 ◦C.
The thermal conductivity tends to decrease with increasing temperature in a specific
temperature range.

Clarke and Levi examined yttrium tantalate (YTaO4), which is ferroelastic [207,208].
They showed that the stable phases of YTaO4 at high and room temperatures are tetragonal
(t) and monoclinic (m), respectively. The phase transition temperature is approximately
1430 ◦C. The t–m ferroelastic transformation occurs during the cooling process [209,210].
Unlike the phase transition process of the YSZ, the high-temperature ferroelastic phase tran-
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sition is secondary. The change in cell volume and temperature after the phase transition is
continuous and no volume change occurs [211].

In addition to the m-phase, RETaO4 belongs to the m’ structure when fabricated
using elevated temperature solid-state reactions (Figure 36) and has good thermal stability
and thermal protection properties. According to Chen et al. [193], m’ RETaO4 exhibits
outstanding lattice stability with structural stability up to 1500 ◦C. However, the shorter
bond length and stronger bond strength result in a lower CTE and higher elastic modulus.
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Figure 37 shows the microstructures of RETaO4. Granular RETaO4 was observed in
the microstructure with a grain size of approximately 2–14 µm, and the domain structure
was clearly visible. Ferroelastic domains can deflect cracks generated during material
cracking and absorb the fracture energy. Thus, fracture toughness is improved, resulting in
better thermal and mechanical properties of RETaO4. The deposition and thermal exposure
behavior of tantalate rare-earth coatings should be investigated further.
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3.2.3. Rare-Earth Niobates

Rare-earth niobate is a new ceramic material with an integrated structure and function
that has attracted considerable attention. The basic crystal structures are pyrochlore with
a defective fluorite structure (RE3NbO7) and perovskite structure (RENbO4) (Figure 38a).
Perovskite rare-earth niobate RENbO4 ceramics have a similar crystal structure to RETaO4
ceramics and have the same potential as a new TBC material. RENbO4 exhibits a lower
thermal conductivity than YSZ at > 200 ◦C (Figure 38b), with a range of 1.80–2.26 W/m·K
at 1000 ◦C. The low thermal conductivity of RENbO4 is due to the large chemical inhomo-
geneity in terms of the charge difference between cations and a fluctuating bonding length.
Rare-earth niobate has a ferroelastic structure (Figure 39), which allows for increased
fracture toughness.
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3.2.4. Other Materials

Perovskite-oxides (ABO3, where A = Ba, Sr, and B = Zr, Ti, Hf) can accommodate a
wide range of ions in the solid solution, including those with large atomic masses, and
are considered potential ceramic materials for TBCs because of their excellent mechanical
properties. CaZrO3 has low thermal conductivity and cost, but the thermal expansion
and melting point coefficients are lower than YSZ, which can be applied to some lower-
temperature environments [197,212–214]. RAAl11O19 is an alumina-based coating material
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with a low sintering rate and good thermal stability, which can be used in environments
above 1200 ◦C [215]. However, it is unsuitable for the EB-PVD method preparation due
to the low deposition efficiency and amorphous body [215]. In summary, poor fracture
toughness and low CTE are the main reasons limiting the use of advanced materials for TC
(Figure 40). Several studies have designed different structures with different materials and
tried to overcome these problems.
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3.2.5. YSZ-Based Double Ceramic Layer

A double ceramic layer (DCL) structure is an effective means to overcome the poor
fracture toughness of ceramic materials for advanced TBCs. The DCL structure is based
on depositing a layer of advanced ceramic material on YSZ. A DCL is a better solution to
improve the thermal insulation ability and bond strength of the coating simultaneously.
The bottom layer of YSZ enhances the fracture toughness of the coating and provides a
transition adjustment for the thermal expansion mismatch between the advanced material
and substrate. The advanced material used as the top layer reduces the thermal conductivity
of the coating and enhances the thermal insulation performance of the coating.

Cheng et al. [217,218] prepared La2Zr2O7 (LZO)/YSZ DCL TBCs with different layer
thickness ratios and different elastic moduli by APS (Figure 41). Figure 41a presents a diagram
of five TBC structures with different layer thickness ratios having the same thermal insulation
effect, where 67 µm LZO and 100 µm YSZ have the same thermal insulation effect. Thus,
advanced ceramic materials help reduce the thickness of ceramic layers while maintaining the
same thermal insulation performance. Figure 42a shows the cross-sectional microstructures
of five TBCs, where the coatings of two materials have similar microstructures because of
the same preparation method. Under the thermal gradient cycling test, 4Y/1L and 3Y/2L
exhibited higher lifetimes than the conventional YSZ coating (Figure 43a). As the percentage of
LZO increased, the coating failure shifted from the TC/BC interface to the LZO/YSZ interface
and finally to within the LZO layer because of the lower CTE and poorer fracture toughness of
LZO. Subsequently, the combination of 3Y/2L was optimized, and LZO layers with different
elastic moduli were prepared (Figure 41b). LZO with different elastic moduli was achieved
by varying the spraying distance to prepare different porosity structures (Figure 42c−e). By
further optimization of the microstructure, the TBC lifetimes of the 3Y/2L combination were
all higher than those of the conventional YSZ. The thermal gradient cycle lifetimes were, in
descending order, 3 Low LZO/2Y > 3 Middle LZO/2Y > 3 High LZO/2Y > 5YSZ (Figure 43b).
Chen et al. [219] examined the thermal cycling failure of LaMgAl11O19 (LMA)/YSZ DCL TBC
with YSZ and LMA monolayer systems. The results showed that the LMA/YSZ DCL TBCs,
which overcame the thermal mismatch between the LMA TC and substrate, have better strain
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tolerance and thermal cycling life than the single-layer YSZ and LMA coatings. Therefore,
DCL TBCs can improve the thermal insulation while enhancing the lifetime.

Coatings 2023, 13, x FOR PEER REVIEW 31 of 45 
 

 

 
Figure 41. Schematic diagram of DCL structure: (a) equivalent thermal insulation with different 
thickness ratio (b) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 42. Cross-sectional SEM images of DCL TBCs: (a) equivalent thermal insulation with differ-
ent thickness ratio (b–e) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 43. Lifetime of DCL TBCs under gradient thermal cyclic tests at 1300 °C TC surface and 940 
°C backside surface: (a) equivalent thermal insulation with different thickness ratio (b) equivalent 
thermal insulation with different modulus [217,218]. 

3.3. Nano- and Composite-Structured Coatings 
3.3.1. Nanostructured Coatings 

The mechanical properties of materials can be enhanced significantly when the grain 
size of a material is transformed from the microscale to the nanoscale [220–222]. The life-
time of nanostructured YSZ TBCs has been extended by 50–100% compared to conven-
tional PS YSZ TBCs [223,224]. In addition, the resistance to sintering and oxidation is en-
hanced significantly [225], and the degradation of the thermal insulation properties is less 
than 50% [226,227]. Therefore, nanostructured coatings have become a potential next step 
in developing TBCs. 

PS should be carried out by choosing the appropriate spraying parameters [228,229] 
to achieve a particle state where complete and partial melting coexist and preserve the 
nanoscale of the raw powder [230]. Thus, the nanostructured PS-TBCs have a bimodal 

Figure 41. Schematic diagram of DCL structure: (a) equivalent thermal insulation with different
thickness ratio (b) equivalent thermal insulation with different modulus [217,218].

Coatings 2023, 13, x FOR PEER REVIEW 31 of 45 
 

 

 
Figure 41. Schematic diagram of DCL structure: (a) equivalent thermal insulation with different 
thickness ratio (b) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 42. Cross-sectional SEM images of DCL TBCs: (a) equivalent thermal insulation with differ-
ent thickness ratio (b–e) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 43. Lifetime of DCL TBCs under gradient thermal cyclic tests at 1300 °C TC surface and 940 
°C backside surface: (a) equivalent thermal insulation with different thickness ratio (b) equivalent 
thermal insulation with different modulus [217,218]. 

3.3. Nano- and Composite-Structured Coatings 
3.3.1. Nanostructured Coatings 

The mechanical properties of materials can be enhanced significantly when the grain 
size of a material is transformed from the microscale to the nanoscale [220–222]. The life-
time of nanostructured YSZ TBCs has been extended by 50–100% compared to conven-
tional PS YSZ TBCs [223,224]. In addition, the resistance to sintering and oxidation is en-
hanced significantly [225], and the degradation of the thermal insulation properties is less 
than 50% [226,227]. Therefore, nanostructured coatings have become a potential next step 
in developing TBCs. 

PS should be carried out by choosing the appropriate spraying parameters [228,229] 
to achieve a particle state where complete and partial melting coexist and preserve the 
nanoscale of the raw powder [230]. Thus, the nanostructured PS-TBCs have a bimodal 

Figure 42. Cross-sectional SEM images of DCL TBCs: (a) equivalent thermal insulation with different
thickness ratio (b–e) equivalent thermal insulation with different modulus [217,218].

Coatings 2023, 13, x FOR PEER REVIEW 31 of 45 
 

 

 
Figure 41. Schematic diagram of DCL structure: (a) equivalent thermal insulation with different 
thickness ratio (b) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 42. Cross-sectional SEM images of DCL TBCs: (a) equivalent thermal insulation with differ-
ent thickness ratio (b–e) equivalent thermal insulation with different modulus [217,218]. 

 
Figure 43. Lifetime of DCL TBCs under gradient thermal cyclic tests at 1300 °C TC surface and 940 
°C backside surface: (a) equivalent thermal insulation with different thickness ratio (b) equivalent 
thermal insulation with different modulus [217,218]. 

3.3. Nano- and Composite-Structured Coatings 
3.3.1. Nanostructured Coatings 

The mechanical properties of materials can be enhanced significantly when the grain 
size of a material is transformed from the microscale to the nanoscale [220–222]. The life-
time of nanostructured YSZ TBCs has been extended by 50–100% compared to conven-
tional PS YSZ TBCs [223,224]. In addition, the resistance to sintering and oxidation is en-
hanced significantly [225], and the degradation of the thermal insulation properties is less 
than 50% [226,227]. Therefore, nanostructured coatings have become a potential next step 
in developing TBCs. 

PS should be carried out by choosing the appropriate spraying parameters [228,229] 
to achieve a particle state where complete and partial melting coexist and preserve the 
nanoscale of the raw powder [230]. Thus, the nanostructured PS-TBCs have a bimodal 

Figure 43. Lifetime of DCL TBCs under gradient thermal cyclic tests at 1300 ◦C TC surface and
940 ◦C backside surface: (a) equivalent thermal insulation with different thickness ratio (b) equivalent
thermal insulation with different modulus [217,218].

3.3. Nano- and Composite-Structured Coatings
3.3.1. Nanostructured Coatings

The mechanical properties of materials can be enhanced significantly when the grain
size of a material is transformed from the microscale to the nanoscale [220–222]. The lifetime
of nanostructured YSZ TBCs has been extended by 50–100% compared to conventional
PS YSZ TBCs [223,224]. In addition, the resistance to sintering and oxidation is enhanced
significantly [225], and the degradation of the thermal insulation properties is less than
50% [226,227]. Therefore, nanostructured coatings have become a potential next step in
developing TBCs.
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PS should be carried out by choosing the appropriate spraying parameters [228,229]
to achieve a particle state where complete and partial melting coexist and preserve the
nanoscale of the raw powder [230]. Thus, the nanostructured PS-TBCs have a bimodal
structure, which is manifested as a conventional lamellar structure with nanozones con-
tained in it [225,231]. In nanostructured TBCs, the lamellar zones are relatively dense with
anisotropic structures, whereas the nanozones have a higher surface area with an isotropic
loose structure [232]. Therefore, the nanozones have a different sintering behavior from the
lamellar zone.

Figure 44 shows the microstructural evolution of conventional PS-TBCs and nanos-
tructured TBCs during thermal exposure [233]. After thermal exposure, the initial lamellar
multi-scale pore structure of conventional TBCs subsided, and the coating became much
denser due to sintering. However, for nanostructured TBCs, the porous nanostructured
agglomerates within the nanozones have a higher driving force for sintering-induced den-
sification than the lamellar zones. Therefore, rapid densification of the nanozones led to
the formation of coarse voids.
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Figure 45 shows the changes in the elastic modulus and thermal conductivity as a
function of thermal exposure [233]. The changes in both are nonlinear throughout the
heat exposure phase. This is consistent with that mentioned in Section 2.3. However, for
nanostructured TBCs, the degree of the increase in performance is smaller than that for
conventional TBCs. The main reason for this is the contribution of the newly formed coarse
pores to the thermal conductivity and strain tolerance. A previous study reported that
nanostructured TBCs could achieve longer lifetimes during thermal shock tests [223].
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Briefly, nanostructured TBCs are used to maintain the strain tolerance of a coating by
comparing the nanozones. The original 2D pores in the lamellar zone still subside. Further
efforts should be made to control the newly formed pore orientation, which contributes to
the thermal and mechanical properties of the coatings.

3.3.2. Composite Structured Coatings

Composite structured TBCs are similar to nanostructured TBCs because both have a
bimodal structure, and the spontaneous formation of pores occurs during thermal exposure.
However, composite structures can be tailored to a newly formed pore orientation to
improve strain tolerance and thermal insulation.

Li et al. [234] designed three TBCs (Figure 46) by tailoring the morphology of the
inclusions to obtain a preferred orientation of the insulating pores, namely, conventional
TBCs (Mono-TBCs), composite TBCs with isotropic nano-inclusions (composite-TBC-1),
and composite TBCs with anisotropic nano-inclusions (composite-TBC-2). Composite-TBC-
1 is nanostructured TBCs and composite-TBC-2 is formed by stacking alternately sprayed
dense splits and nano-powder heaps with 2D morphology that has a large aspect ratio from
the cross-section.
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Figure 46. Schematic diagram of the three kinds of TBCs: (i) mono-layered TBCs without nano-
inclusions (mono-TBCs); (ii) composited TBCs with isotropic nano-inclusions (composite-TBCs-1);
(iii) composited TBCs with anisotropic nano-inclusions (composite-TBCs-2) [234].

Figure 47 shows the evolution of the cross-sectional microstructures of the three TBCs
during thermal exposure [234]. All TBCs underwent severe sintering, particularly in
conventional TBCs, where the 2D pores almost disappeared. These nanostructures form
coarse pores after thermal exposure. The difference is that the newly formed pores in
composite TBCs-2 have a perpendicular orientation to the heat flow and have 2D pore
characteristics. The 2D pores play a significant role in preventing heat flux. The 2D pore
density of composite-TBC-2 was consistently higher than that of composite-TBC-1 during
heat exposure. Thus, the thermal insulation performance was better (Figure 48).
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In conclusion, for the application of composite TBCs, a bimodal structural coating
will reduce the increase in thermal conductivity and elastic modulus considerably when
exposed to high temperatures by counteracting the densification effect through differential
sintering. However, the newly formed pores may reduce the cohesion of the coating. Hence,
further investigation is needed.

4. Outlook

Thermal barrier coating technology is an indispensable technology for manufacturing
high-performance engines in the future. In recent years, researchers have made significant
progress in the research of thermal barrier coating preparation technology, but there are
still problems in the contradiction between coating performance and equipment cost and
process cost, as well as the limitation of application scope. Future research should focus on
the following areas: (i) improved PS-TBC deposition process and post-treatment process to
achieve porous TBC structures with segmented cracks, and enhanced thermal insulation
and strain tolerance of the coating to increase the service life of TBCs; (ii) diversified
composite TBC preparation processes, such as plasma enhanced chemical vapor deposition
(PE-CVD) and laser CVD, to improve production efficiency and reduce process costs; and
(iii) exploring new rare-earth, doped-ceramic material systems and nanoscale ceramic
material sizes to improve thermal insulation and bonding of coatings.
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5. Conclusions

TBCs provide essential thermal protection for gas turbines, and higher thermal insula-
tion and durability of TBCs are required to meet the development of efficient industrial
levels. Therefore, this paper reviewed the development and synergistic design of advanced
materials and coating structures for TBCs based on a comprehensive understanding of the
factors influencing coating thermal insulation and the mechanisms of heat transfer and
degradation. The main conclusions are as follows.

(i) The coating thickness intuitively affects the thermal insulation; the TBC thickness
increased by 0.2 mm, which results in a decrease in the maximum blade temperature of
approximately 40 K. However, it also leads to large thermal gradients and high elastic strain
energy, which can drive cracks, leading to coating delamination. Functional gradients and
TTBCs with segmented cracks can solve this problem. Functional gradient TTBCs improve
the fracture toughness near the TC/BC interface. TTBCs with segmented cracks increase
the compliance of the coating, and segmented crack densities between 2.38 and 4.76 mm−1

contribute to the thermal shock resistance of the coating.
(ii) Advanced TBC materials, such as rare-earth zirconates, rare-earth tantalates, and

rare-earth niobates, have low thermal conductivity. The rare-earth zirconates produce
a YSZ-based DCL structure required for their application because of their low fracture
toughness and CTE drawbacks. Choosing the correct thickness ratio in the DCL can increase
the coating lifetime up to two times that of conventional coatings. Rare-earth tantalates
and rare-earth niobates have good fracture toughness owing to their ferroelastic structure,
giving them high potential in next-generation TBCs.

(iii) The porosity and aspect ratio significantly affect the thermal insulation of coatings.
The decrease in porosity and aspect ratio due to sintering during thermal exposure are the
main reasons for the degradation of thermal insulation. Nano- and composite-structured
TBCs have unique appeal to improve the resistance of TBCs to sintering. Both are bimodal
structures that resist densification by differential sintering to form new pores during
thermal exposure. In composite structured TBCs, the thermal insulation of the coating is
increased significantly due to the adjustable orientation of the newly formed pores.
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