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Abstract: The fact that the use of a large number of plastic products has brought serious pollution to
the environment has always been the focus of global attention. The development of photocatalytic
degradable plastics is one of the effective ways to solve the problem of “white pollution”. In this work,
La3+ modified TiO2 nanoparticles were prepared by ball milling and characterized. La3+/TiO2 was
mixed with Polyvinyl chloride (PVC) plastic to make a photodegradable composite film, and the pho-
todegradation performance and mechanical properties of films were evaluated. The photodegradable
films were characterized by infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and scanning
electron microscopy (SEM). After 30 h UV irradiation, the weight loss rate of the PVC was only 2.12%,
while that of the TiO2/PVC reached 8.94%. The accelerating of the degradation rate was due to the
mixing of TiO2 into PVC. As for the La3+/TiO2/PVC composite film, when the mass percentage of
La3+/TiO2 was 1.5%, the weight loss rate of La3+/TiO2/PVC sample reached a maximum of 17.78%,
which was eight times the degradation rate of PVC and two times the degradation rate of TiO2/PVC.
The La3+/TiO2/PVC film showed good photodegradability. La is a transition metal element with a
special 4f electronic structure. The reaction mechanism of photodegradation of PVC by the interaction
of La3+ and TiO2 were discussed.

Keywords: La3+ modified TiO2; La3+/TiO2/PVC composite film; ball milling method; photodegra-
dation

1. Introduction

PVC is one of the five biggest general-purpose plastics, having the characteristics of
non-combustibility, corrosion resistance, chemical resistance, insulation, and good mechan-
ical properties. Recently, PVC was widely used in industry, products, daily necessities,
building materials, environmental protection materials, etc. [1,2]. However, with the in-
creasing use of one-off plastic products, the pollution resulting from the plastic waste
has become more and more serious [3,4]. Plastic pollution has always been a hot spot of
global concern. The treatment methods are incineration, landfill [5], recycling, chemical
degradation, and the production of degradable plastics [6,7]. Photodegradable plastics
have been widely studied, which is an ideal way to solve the “white pollution” [8,9].

Photocatalysis is a green-friendly technology that combines abundant solar energy
resources with environmental cleanup and resource reuse and has received widespread
attention [10]. TiO2, ZnO, CdS, and Fe2O3 are common semiconductor materials [11].
Because of its low cost, non-toxicity and its photocatalytic activity for the decomposition
of various environmental pollutants, TiO2 is widely used in the field of photodegradable
plastics [12,13]. At the present stage, the main modification method of TiO2 is to regulate
the structure and composition of the catalyst, including the regulation of TiO2 crystal
structure and defects, grain size, and energy band position. TiO2 can be doped with
metal, non-metal, precious metal, and other elements, and can also be modified by surface
photosensitization and semiconductor composite [14,15]. The modification of TiO2 is aimed
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at expanding the absorption range of TiO2 to sunlight, promoting the efficiency of charge
separation, inhibiting the recombination of photo-generated carriers and improving the
stability of catalyst [16]. Rare earth is a type of transition metal element with a special 4f
electronic structure. Lanthanum is second only to cerium in rare earth elements and is
rich in resources. Therefore, rare earth doped modified TiO2 has been widely studied to
improve photocatalytic activity [17–20].

Due to its simple operation and low cost, the ball milling method is an effective method
in the industry to efficiently mix solids and solid reactants by using the rotation or vibration
of a ball mill [21]. The rare earth modified TiO2 photocatalyst made by the ball milling
method applied to the degradation of PVC waste plastic is of great significance for solving
the problem of environmental pollution from the viewpoint of practical application.

In this paper, La3+/TiO2 photocatalyst was prepared by the ball milling method.
The La3+/TiO2/PVC composite film was prepared by introducing La3+/TiO2 into PVC
plastic. After being compared with the PVC and TiO2/PVC films, the La3+/TiO2/PVC
film was characterized and its photodegradability was also studied. Moreover, the re-
action mechanisms of the photodegradation of PVC by the interaction of La3+ and TiO2
were discussed.

2. Experimental
2.1. Materials

TiO2 (Analytical reagent, the average particle size = 19.8 nm) was purchased from
Komiou Chemical Reagent Co., Ltd., Tianjin, China. The PVC polymer was produced
by Aladdin (K-Value: 62–60). La2O3 was provided by Hunan Rare Earth Metal Materials
Research Institute. N,N-dimethylformamide (AR), abbreviated as DMF, was produced by
the Damao Reagent Company, Tianjin, China. Hydrochloric acid (HCl, 36.0–38.0%) was
provided by Fusheng Industry Co., Ltd., Shanghai, China.

2.2. Characterization

Using Shimadzu UV-2600 ultraviolet-visible diffuse reflectance instrument, with
BaSO4 as a reference, the ultraviolet-visible absorption spectrum of the films was mea-
sured. Under the condition of vacuum 5 × 10−4 Pa, a JEOL Ltd. JSM-7100F thermal field
emission scanning electron microscope (SEM, Electronics Co., Ltd., Japan) was used to
test the surface morphology of the films, and the voltage was 5.0 kV. The samples were
characterized by Thermo Scientific Nicolet 6700 Fourier transform infrared spectroscopy
(FT-IR, Thermo Fisher Instruments Co., Waltham, MA, USA). The crystal phase of the
materials was detected on an X-ray diffractometer (XRD, Pruck instruments Co., Germany)
with Cu/K radiation, and the diffraction intensity was recorded in the 2θ range of 10–80◦

at a scanning speed of 5◦/min. The digital display tensile testing machine was used to test
the mechanical properties of the film, and purchased from Guangdong Zhongye Jingke
Instrument Equipment Co., Ltd., Guangdong, China. The film was cut into a rectangle of
50 mm × 10 mm and fixed on the digital tensile testing machine with an initial spacing of
20 mm, running at a 50 mm/min. The thickness of the film was measured 5 times with the
NSCING electronic digital micrometer, and the average value was taken.

2.3. Preparation of the La3+/TiO2 Photocatalyst

The La3+/TiO2 photocatalyst was synthesized by a ball milling method, according to
the following procedure: Firstly, 5 g of TiO2, six Φ 10 and twenty Φ 6 agate balls were added
to the agate jar. After being ground for several minutes, La2O3 with the corresponding mass
percentage of 0.6% and a small amount of deionized water were added and heated to 80 ◦C.
Then, the hydrochloric acid with the volume ratio of 1:1 was slowly added into the above
solution and stirred until the solid was dissolved completely. Then, the deionized water
was added to the total volume of 10 mL. The speed of the ball mill was set to 500 r/min, and
the ball milling time was 4 h. The ball-milled slurry was washed with water, centrifuged,
dried, and ground to obtain the La3+/TiO2 photocatalyst.



Coatings 2023, 13, 317 3 of 12

2.4. Preparation of Film and Photocatalytic Experiments

The preparation process and photocatalysis experiment of the La3+/TiO2/PVC film
are shown in Figure 1. All raw materials need to be vacuum dried. The doping content of
the La3+/TiO2 photocatalyst in the film were as a mass percentage of 0.1, 0.5, 1, 1.5, and 2,
respectively. Hence, 2 g of PVC and 15 g of organic solvent DMF were added separately,
heated, and stirred for 1 h. The mixed solution was ultrasonicated for 10 min so that the
photocatalyst could be better mixed with the polymer. At room temperature, the mixed
solution was dropped on the automatic film scraping machine and run at constant speed to
prepare a film with a thickness of 150 µm. The flat plate was removed from the automatic
film scraping machine and immersed in deionized water to obtain a composite film. The
composite film was placed in the XPA-System photochemical reactor for light irradiation.
The light source was a 300 W medium-pressure UV lamp with main wavelength of 365 nm.
and the distance between the light source and the sample was 20 cm. The sample was
taken out every 5 h, and the total illumination time was 30 h. The sample was taken out
for storage and performance testing. The weight loss calculation formula is presented
in Equation (1):

Weightloss (%) = W0 −Wt/W0 × 100% (1)

where Wt is the weight of film at after illumination and W0 is the initial weight of film.
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Figure 1. Preparation process of La3+/TiO2/PVC composite film by using La3+/TiO2 photocatalyst
and the schematic diagram of the photodegradation equipment.

3. Results and Discussion

3.1. Characterization of La3+/TiO2 Photocatalyst

Figure 2A shows the XRD spectrum of La3+/TiO2 and raw TiO2 after ball milling.
Compared with TiO2, the 3 mol% La3+/TiO2 still maintained the anatase crystal after
doping, and no other peaks of rutile crystal was observed. This suggested that La3+ doped
TiO2 could inhibit the appearance of rutile crystal by ball milling method [22]. Moreover,
no obvious characteristic peaks of the La3+ were found, possibly due the small content of
La3+ doped into the TiO2 lattice. Furthermore, the ionic radius of La3+ was larger than that
of Ti4+, so these doped ions might have difficulty in entering the TiO2 lattice. The peak
position of the (101) crystal plane in La3+/TiO2 appeared red-shifted to 25.4◦, indicating
that La3+ could be highly dispersed on the TiO2 surface in a free state [23]. As shown in
Figure 2B, the EDX spectra indicate that the sample was mainly formed of Ti, O, and La,
suggesting that La3+ successfully doped to TiO2. La3+ was dispersed on the surface of
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TiO2, and it had a squeezing effect on the TiO2 lattice, resulting in more crystal defects and
distortions, which had a certain effect on the TiO2 crystal [24,25].
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Figure 2. Characterization of the La3+/TiO2. (A) XRD pattern; (B) EDX spectra and component
molar ratio.

Figure 3 shows the FT-IR spectrum of raw TiO2 and 0.6 wt% La3+/TiO2. A strong
characteristic peak between 2700 and 3600 cm−1 was attributed to -OH in the H2O molecule,
while the corresponding bending vibration peak appeared near 1630 cm−1 [26]. The
characteristic peaks between approximately 500 and 900 cm−1 belonged to the anatase O-
Ti-O bond [27]. After La3+ doping, the strong peaks of the defective -OH groups obviously
weakened, as the OH groups on the surface of TiO2 could be covalently bonded to La3+ [28].
A decrease in the characteristic peak of the anatase O-Ti-O bond was attributed to the
covalent band between La3+ and TiO2 particles, further indicating that La3+ was successfully
doped to TiO2.
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Figure 3. The FT-IR spectra of TiO2 and La3+/TiO2.

Figure 4A shows the UV-visible absorption spectra of TiO2 and La3+/TiO2. Compared
with TiO2, the UV absorption of La3+/TiO2 prepared by the ball milling method had little
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change except a slight redshift. However, the absorption of La3+/TiO2 slightly enhanced in
the visible region. The red shift of the absorption band was one of the important factors
that made the sample have good photocatalytic performance under visible light. The
reduced band gap energy of La3+/TiO2 could excite and produce more photo-generated
electron-hole pairs, thus effectively improving the photocatalytic efficiency [29]. As shown
in Figure 4B, the light absorption properties of PVC, TiO2/PVC, La3+/TiO2/PVC composite
films were also investigated. The PVC film had little absorption in both ultraviolet and
visible region. The absorption of the TiO2/PVC film significantly enhanced in the near
ultraviolet region. The absorption band of La3+/TiO2/PVC appeared red-shifted and could
absorb light energy in the visible region. The red shift was mainly because part of La3+ was
embedded on TiO2 to form defect energy levels, which reduced the energy level spacing
during electron transition [30]. Therefore, it was of great significance to use La3+/TiO2 with
the higher photocatalytic activity to enhance the degradation performance of PVC.
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3.2. Photodegradation of La3+/TiO2/PVC

In order to obtain a film with the best degradation effect, La3+/TiO2 was mixed with
PVC to make the composite films with different mass percentages, and the photodegrada-
tion rates of the above La3+/TiO2/PVC composite films were compared with those of PVC
and TiO2/PVC after irradiation (Figure 5). After light irradiation, the weight loss rate of
the PVC was only 2.12%, while that of the TiO2/PVC reached 8.94%. The accelerating of
the degradation rate was due to the mixing of TiO2 into PVC. As for the La3+/TiO2/PVC
composite film, when the mass percentage of La3+/TiO2 was 1.5%, the weight loss rate
of La3+/TiO2/PVC sample reached a maximum of 17.78%, which was eight times the
degradation rate of PVC and two times the degradation rate of TiO2/PVC. Obviously, the
photocatalytic activity of La3+/TiO2/PVC film increased greatly. Rare earth La3+ modified
TiO2 could inhibit the recombination of photo-generated electrons and holes and accelerate
the formation of active oxides [31]. Moreover, the ball milling method was beneficial to
the uniform distribution of La3+ and suppressed the TiO2 agglomeration. After repeated
grinding, the TiO2 particles could be made smaller and its surface area increased [32,33],
which supplied more photocatalytic active sites and further accelerated the degradation
rate of PVC.
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Figure 5. (A) Curves of weight loss of degradation process. (a) Pure PVC sample, (b) TiO2/PVC
sample, (c) La3+/TiO2/PVC (La3+/TiO2 0.1 wt%), (d) La3+/TiO2/PVC (0.5 wt%), (e) La3+/TiO2/PVC
(1 wt%), (f) La3+/TiO2/PVC (1.5 wt%), (g) La3+/TiO2/PVC (2 wt%). (B) Maximum weight loss rate.

Figure 6A compares the FT-IR spectrum of pure PVC, TiO2/PVC, La3+/TiO2/PVC
samples after being UV irradiated for 30 h with that of the original samples. As shown in
Table 1, The characteristic peaks of C-H for the original PVC film appeared at 2973 cm−1,
2917 cm−1, and 1427 cm−1 [34]. The characteristic peaks at 698 cm−1 and 624 cm−1

belonged to the C-Cl, and the characteristic peaks at 1097 cm−1 belonged to the C-C of
the PVC film [35]. Moreover, characteristics peak of TiO2 could be seen in the spectrum
of TiO2/PVC and La3+/TiO2/PVC samples. The stretching vibration peak at 478 cm−1

belonged to Ti-O-Ti [36]. Obviously, a new band of at 1720 cm−1 was assigned to the C = O
structure after illumination. The intensity of the characteristic peak of the C = O structure
of the La3+/TiO2/PVC film increased gradually after 0 h,10 h, 20 h, and 30 h of irradiation
(Figure 6B), indicating that the film was degraded with the continuous irradiation of light
source. Due to the fact that La3+/TiO2 produces active oxides under UV irradiation. O2

− or
OH free radicals attacked the PVC molecular chain, and O2 also participated in the reaction
to generate oxygen-containing groups and caused the photodegradation of PVC [37]. La3+

can effectively separate the hole-electron pair of TiO2 to generate more free radicals to
attack PVC, which can increase the degradation rate of plastics.
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Table 1. The characteristic peak of infrared spectrum structure.

Serial Number Wavenumber/cm−1 Characteristic Peak

1
2
3

2973, 2917, 1427 C-H
698, 624 C-Cl

1097 C-C
4 478 Ti-O-Ti
5 1720 C=O

Figure 7 shows the XRD patterns of PVC, TiO2/PVC, and La3+/TiO2/PVC films before
and after UV irradiation. There was no obvious sharp characteristic diffraction peak of
PVC, which clearly illustrated that PVC polymer was an amorphous structure, and the peak
distribution was wide and low [38]. The characteristic diffraction peaks of TiO2 appeared in
the TiO2/PVC film. After light illumination, the peaks of TiO2/PVC and La3+/TiO2/PVC
films disappeared at 13◦~20◦, while the pure PVC did not change. This was due to the
destruction of the PVC structure in the photocatalyst/UV system. A new peak appeared at
32.5◦ in all composite films after light illumination, because several new small molecules
appeared in the process of breaking PVC, which corresponded to the FT-IR spectrum.
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The surface structure of the film could be clearly observed by SEM. As shown in
Figure 8, the surface of pure PVC, TiO2/PVC and La3+/TiO2/PVC film had a certain
size of hole before illumination. After UV irradiation, the size of the holes in PVC film
increased slightly, while that in the TiO2/PVC film significantly increased in terms of
porosity and appeared to be crispy, indicating that a photo-oxidation reaction occurred on
the film surface. The La3+/TiO2/PVC composite film could be seen to gradually undergo
photooxidation after 10 h, 20 h, and 30 h UV exposure. Under 30 h illumination, the hole
diameter increased to approximately 2–8 µm, and the La3+/TiO2 particles could be observed
on the La3+/TiO2/PVC sample (Figure 8C4). As shown in the inset in Figure 8C4, the film
appeared to fracture and the lanthanum ion-doped TiO2 photocatalyst was observed at the
place of the break, which indicated that the photo-oxidation was caused by the exposed
La3+/TiO2. Therefore, the photodegradable film prepared by this method had certain
application prospects for environmental friendliness.
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Figure 8. SEM images of films. (A1) PVC before irradiation, (A2) PVC after irradiation;
(B1) TiO2/PVC before irradiation, (B2) TiO2/PVC after irradiation; (C1) La3+/TiO2/PVC before
irradiation, La3+/TiO2/PVC after irradiation for (C2) 10 h, (C3) 20 h, (C4) 30 h.

3.3. The Performance Characterization of La3+/TiO2/PVC

One of the important reasons why the additive degradable plastics have not been
widely used was the poor mechanical properties of plastics. Therefore, it is of great
significance to study the tensile properties of the La3+/TiO2/PVC plastics. There were
two important factors influencing the mechanical properties of materials: (1) the shape,
orientation, and distribution of the additive, (2) the interaction between the additive
and the matrix [39,40]. As shown in Table 2, after mixing PVC and TiO2 or La3+/TiO2,
the tensile strength and elongation of PVC decreased slightly. The slight decrease in
mechanical properties might be due to the mixture of amorphous and crystalline TiO2 in
the PVC chain, which reduced the polymer interaction between chains [41]. However, the
La3+/TiO2/PVC degradable was made by this method and belonged to an environment-
friendly composite material.

Table 2. Mechanical properties of these kinds of different films.

Sample Thickness (mm) Tensile Strength
(MPa)

Elongation at Break
(%)

PVC 0.12 ± 0.01 2.10 ± 0.20 31 ± 0.08
TiO2/PVC (TiO2 1 wt%) 0.11 ± 0.01 1.70 ± 0.10 26 ± 0.10

La3+/TiO2/PVC
(La3+/TiO2 1.5 wt%)

0.13 ± 0.01 1.71 ± 0.17 31 ± 0.04

The thermal degradation of PVC was mainly divided into two stages (Figure 9). The
first stage was the removal of HCl from PVC, where most of the degradation products in
the second stage were cyclic compounds [42]. Compared with pure PVC film, the initial
degradation temperature of PVC composite films had no obvious change. However, the
overall degradation temperature shifted to a higher temperature, and the thermal stability
of PVC composite film was improved. The mass of films did not decrease around 100 ◦C,
indicating that the films did not contain water molecules. At 800 °C, the PVC achieved
complete thermal degradation.
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3.4. Mechanism Discussion

La3+ doping modified TiO2 has important significance for the increase of the TiO2
photocatalytic activity. The reaction mechanism is shown in Figure 10. La3+ doped TiO2
could inhibit the growth of TiO2 grains and cause lattice distortion by the ball milling
process. The grain refinement increased the specific surface area of TiO2, provided more
photocatalytic active sites, and improved the photocatalytic activity of TiO2. When La ions
were doped into the TiO2 lattice, La3+ could capture photo-generated electrons to form La2+

(Formula (2)), and La2+ could easily form superoxide radicals with O2 (Formula (3)), effec-
tively inhibiting photo-generated carrier recombination (Formula (4)). Under the sufficient
light energy, the valence band electrons of TiO2 were excited to the conduction band. The
outer electronic structure of the La element contained only one electron in the d orbit and
the completely empty f orbit. Therefore, the empty orbits provided the transfer orbits for
electrons (Formula (5)), which could be used as shallow traps to capture the photogenerated
electrons, as well as facilitate the separation of photogenerated electron hole pairs. OH
was formed by the reaction of photogenerated holes with H2O on TiO2 (Formula (6)). The
photogenerated electrons reacted with O2 to produce O2

− and OH (Formulas (7)–(10)) [43].
During the photodegradation process of high-molecular polymers, the PVC molecular
chains were attacked by O2

− and OH to generate a free radical chain. According to the
chemical bond energies of C-Cl, C-C, and C-H, 328 kJ/mol, 348 kJ/mol, and 413 kJ/mol,
respectively, C-Cl was more easily destroyed by the free radicals generated under UV light
(Formulas (11) and (12)). Then, the free radical chain continued to react with O2 to form
oxygen-containing compounds, which were decomposed into small molecules under the
action of UV light, and finally completely mineralized (Formulas (13) and (14)). Moreover,
La3+ doping modified TiO2 could inhibit the growth of TiO2 grains and cause lattice dis-
tortion by ball milling process. The grain refinement increased the specific surface area of
TiO2, supplying more photocatalytic active sites and improving the photocatalytic activity
of TiO2. The La3+ doping would also change the band gap of TiO2, so that La3+/TiO2 had
absorption in the visible region [44]. Therefore, it is of great significance to use La3+/TiO2
with the higher photocatalytic activity to enhance the degradation performance of PVC.
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La3+ + e− → La2+ (2)

La2+ + O2 → La3+ + •O2
− (3)

2 •O2
− +2 H+ + e− → •O2H + OH− + O2 (4)

TiO2 + hν→ TiO2 (e− + h+) (5)

h+ + H2O→ •OH (6)

e− + O2 → •O2
− (7)

•O2
− + H2O→ •O2H + OH− (8)

2 •O2H→ H2O2 + O2 (9)

H2O2 + hν→ 2 •OH (10)

−(CH2CHClCH2CHCl)− +·OH + hv→−(CHCHCH2CH)− + H2O + 2·Cl (11)

−CH·CHCH2CH·CH2− + 2·Cl→−CHCH = CHCH = CH− + 2 HCl (12)

−CH = CH-CH2− + 1O2 →−(HOO)CH-CH = CH− (13)

−(CHCH = CHCH)− + O2 →→CO2 + H2O (14)

4. Conclusions

An La3+/TiO2 photocatalyst was successfully prepared and characterized by the ball
milling method. The characterization results showed that La3+ successfully doped modified
TiO2. La3+ was dispersed on the surface of TiO2, increasing the surface oxygen vacancies
and lattice distortion. Compared with TiO2, the La3+/TiO2 photocatalyst showed higher
photocatalytic activity. La3+/TiO2 was applied to photocatalytic degradation of PVC plastic.
After 30 h of UV light irradiation, the weight loss rate of the PVC and TiO2/PVC were 2.12%
and 8.94%, respectively, while that of the La3+/TiO2/PVC (La3+/TiO2 1.5 wt%) reached
17.78%, which was eight times the degradation rate of PVC and two times the degradation
rate of TiO2/PVC. The La3+/TiO2/PVC composite film showed higher photodegradability.
After illumination, the FT-IR spectrum showed a new peak at 1720 cm−1, which belonged
to C = O, and the XRD patterns showed a new peak at 32.5◦. The surface pore size
of the La3+/TiO2/PVC sample increased to 2~8 µm. These results indicated that the
La3+/TiO2/PVC film had photodegradability. Predictably, La3+/TiO2/PVC has a good
application prospect, and it is an environment-friendly composite material.
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