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Abstract: Some surface coatings can protect metal surfaces and reduce scale deposition. Based on
that, the biomimetic material polydopamine (PDA) can form a stable coating on many material
surfaces; therefore, we propose an efficient one-step electroplating method for preparing anti-scale
PDA coatings with high stability. The scale deposition test showed that the deposition weight of
calcium carbonate on the coating is less than that of carbon steel after immersing in a supersaturated
solution of calcium carbonate for 12 h at 70 ◦C and 90 ◦C, with a coating scale-inhibition efficiency of
55.02% and 66.96%, respectively. By using molecular dynamics simulation, it was found that water
adsorption layers exist near the metal’s surface, and the existence of water adsorption layers on the
hydrophilic surface is the main reason for the initial deposition of calcium carbonate. The interaction
energy between the PDA molecular layer and water is weaker (−5.69 eV) for the surface with the
PDA coating, and there is no dense water adsorption layer on the coating, which leads to the low
probability of calcium carbonate adsorption on the PDA coating surface. Therefore, PDA coating can
inhibit the deposition of calcium carbonate on the surface.

Keywords: PDA coating; electroplating; stability; corrosion resistance; scale inhibition; molecular
dynamics simulation

1. Introduction

Scale is a layer of solid or oozy material that gradually accumulates on a solid surface in
contact with a fluid. Scale deposition on the surface of pipes and heat exchange equipment
is a widespread problem in various industrial fields, which not only leads to the reduction
in heat exchange efficiency but results in the corrosion of the equipment’s surface, thus
causing huge security risks and economic loss [1–5]. In order to reduce the formation
and attachment of scale on the surface of equipment, researchers have developed many
anti-scale methods, such as scale inhibitors, electric field anti-scale, etc., [6–10], but effective
anti-scale measures are still very limited. The application of these scale-inhibition and
descaling methods causes a series of problems, such as a large amount of water pollution,
equipment corrosion, and high cost. Under the pressure of increasing water shortage and
sustainable environmental development, the use of these methods will be gradually limited
or even eliminated. As another modification method of the solid surface, anti-scale coating
can reduce the adhesion strength between the scale and heat transfer interface, reducing
the deposition of scale. The coating can also effectively isolate the plate from the outside
world and prevent external damage to the base material [11,12].
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Polydopamine (PDA) coating can be formed on the surface of any material, and has
the advantages of wide applicability, strong binding force, good flexibility, etc., [13]. It
is worth noting that the PDA coating has excellent corrosion resistance [14]. At present,
PDA composite coating is mostly used in scale inhibition [1,15–17], in which PDA mainly
plays the role of adhesion and fixation; however, whether PDA coating itself has a scale-
inhibition effect is not yet clear. In the traditional chemical preparation process of PDA
coating, dopamine polymerization must be induced by adding oxidizer to neutral or acidic
water media [18–20]. In addition, the preparation process of PDA will be affected by
many factors, such as pH, temperature, reaction time, and so on [21]. For example, Wang
et al. [1] calibrated the configured Tris buffer pH value as 8.5, mixed it with dopamine
solution, then added ammonium persulfate oxidant, and immersed the base in the reaction
solution at 50 ◦C for 6 h to prepare PDA coating. Tris buffer or oxidant components will
inevitably be doped into the coating, which may change the physicochemical properties of
the coating [21,22].

The electroplating process has many advantages, such as a simple preparation method,
low cost, controllable plating conditions, and unlimited base size [23–25]. It was found that
plating accelerated the dopamine polymerization rate and facilitated the preparation of
PDA coating [26–28]. For example, Xiang et al. [28] used dopamine, nickel sulfate, copper
sulfate, sodium sulfate, and n-dodecanethiol as electrolytes to successfully prepare super
hydrophobic and super oil-philic coating on stainless steel mesh by electroplating.

In many industrial applications, such as water treatment, heat exchanging, etc., the
formation of calcium carbonate (CaCO3) scales on the surface of a pipe or equipment is
a critical concern. This work proposes to prepare the PDA coating on the metal surface,
obtain the CaCO3 scale-suppression properties, and explore the microscopic mechanism of
scale inhibition by molecular dynamics simulation. Ni is widely recognized as the most
widely used surface finishing material, with excellent corrosion resistance, and Ni2+ can
be used as a polymeric oxidant of dopamine [26–28]. In the preparation, the dopamine
aqueous solution is used as the electrolyte, and the high-purity Ni plate (Ni 99.99%) is
used as the anode. During the electroplating process, the anode releases Ni2+, and the
Ni2+ drives the dopamine to move to the cathode metal substrate. Meanwhile, dopamine
promoted the electrodeposition of Ni2+. The proposed one-step plating method yields
stable PDA coatings on a variety of metal surfaces in only a few minutes. The coating
performance test shows that the prepared PDA coating has excellent stability, corrosion
resistance, and scale-suppression properties.

Molecular dynamics simulations can explore the mechanism of the inhibition of CaCO3
adsorption by the scale-inhibitor mechanism from a microscopic perspective [7]. The initial
formation of CaCO3 scale is the adsorption behavior of CaCO3 ions on the surface. In this
paper, stable PDA coatings were first prepared on metal surfaces by simple and efficient
one-step electroplating methods. Additionally, after serial characterization, the inhibition
of CaCO3 crystalline scale by PDA coating was evaluated by the weighing method. The
adsorption and interaction energy of CaCO3 on the surface with or without coating was
obtained by the molecular dynamics simulation method, and the mechanism of inhibiting
the formation of calcium carbonate scale by PDA coating was qualitatively revealed from
the molecular point of view.

2. Experimental Section
2.1. Materials

The substrate used in the study was Q235 carbon steel. Dopamine hydrochloride
(DA, 98%, MW = 189.64 g/mol) was purchased from Sigma-Aldrich Corporation (St. Louis,
MO, USA). All experiments were performed with deionized water. All reagents are analyti-
cal grade and require no further purification.
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2.2. Fabrication of PDA Coating

This preparation method can successfully prepare PDA coating on the surface of
conductive metal substrate, and PDA coating has been successfully prepared on the surface
of carbon steel, stainless steel, and copper metal. Here, carbon steel is selected as the
substrate for coating preparation and properties. First, the 0.5 mm thick Q235 carbon steel
plate was laser cut into a 30 × 10 mm2 test plate, and then ground by SiC sandpaper with
a mesh size of 280–1000 in sequence. Prior to experiment, the sample was ultrasonically
treated with acetone, ethanol, and DI water. The plating solution was 1.2 g/L of dopamine
solution without the addition of other reagents. The plating process was carried out in a
double-electrode electrochemical reaction tank, using Ni 99.99% high-purity nickel plate
as anode, pretreatment Q235 carbon steel as cathode, and the spacing between the two-
electrode plates fixed at 20 mm. During plating, the voltage control was 15 V, and the
temperature was kept at about 35 ◦C. After 3 min of electroplating, the cathode samples
were removed from the plating solution and dried in 25 ◦C air.

The principle of PDA coating preparation is shown in Figure 1. Driven by an electric
field, the anode releases the Ni2+, and the Ni2+ drives the dopamine to move towards
the cathode metal surface. Ni2+ accelerates the polymerization rate of dopamine on the
cathode metal substrate surface; meanwhile, dopamine promotes the deposition of Ni on
the cathode surface. Therefore, the one-step electroplating method can form a stable PDA
coating on the metal surface within a few minutes.
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Figure 1. Schematic diagram for fabrication of PDA coating by one-step electrodeposition.

2.3. Surface Characterization

The surface morphology of the coating was analyzed by focusing ion field-emission
scanning electron microscopy (FIB-SEM, Crossbeam 350, Carl Zeiss AG, Oberkochen,
Germany), and the surface chemical composition of the sample was detected by energy-
dispersive spectroscopy (EDS, OXFORD INSTRUMENTS, Oxford, UK). The static contact
angle of the sample surface was determined by SDS-200 contact Angle tester (SINDIN,
Dongguan, China) using the droplet method. The droplets measured were 3 µL, and
the average contact angle was obtained by measuring three locations of a sample. The
stability of the coating is very important in practical application. Therefore, the adhesive
properties between the coating and Q235 carbon steel substrate were firstly tested by the
tape stripping method in this study. The tape stripping test is as follows: place the sample
on the horizontal table, the surface of the sample is compacted and completely covered
with tape, and then the entire tape is slowly stripped.

Corrosion degradation of metal materials is an electrochemical corrosion process,
which can be analyzed by electrochemistry. CHI660e electrochemical workstation (Shanghai
Chenhua Instrument Co., LTD., Shanghai, China) was used for the electrochemical test
of the sample. A three-electrode system was adopted, with the sample to be tested as
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the working electrode, the platinum electrode as the auxiliary electrode, the saturated
glymeromal electrode (SCE) as the reference electrode, and 3.5 wt.% NaCl solution as
the corrosive solution. The polarization curve (PC) of the samples was measured, with
a scanning potential range from −1.0 to −0.2 V, and the scanning rate was 1 mV/s. A
total of 1 cm2 of the working electrode is exposed as the working face, and the rest part is
sealed with paraffin wax. Each electrode was placed in the electrolyte and connected to an
electrochemical workstation. After hardware test, the open-circuit potential was detected.
When the potential value stabilized (about 15 min), the polarization curve was measured.

3. Molecular Dynamics Calculations
3.1. Model Construction

In this work, we simulated the adsorption process of calcium carbonate in metal plates by
using Materials Studio software (version 19.1.0.2353). As shown in Figure 2, the initial model
is a cuboid box, and Figure 2a is an Fe plate box model with a size of 27.8 × 27.8 × 80.1 Å3,
with a plate area, a solution area, and a vacuum area from bottom to top. Figure 2b shows a
box model containing the PDA molecules. The size is 27.8× 27.8× 94.2 Å3, with a 6.5 Å thick
PDA polymer region added in the middle. Here, to avoid periodic boundary conditions, a
vacuum layer with 20 Å thickness is added along the system’s Z direction. Among them, the
plate contains 621 Fe atoms with a thickness of 8.599 Å, a cubic lattice structure, and a lattice
constant of 2.8664 Å.
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The total simulation time was 4000 ps, with a simulation time step of 1 fs. The
CAMPASS force field was used for simulation [29–32], and the simulation system was an
NVT ensemble. Ewald- and atom-based summation methods were used to calculate the
electrostatic and van der Waals interactions between atoms for non-bond interactions. The
cutoff radius was chosen at 12.5 Å.

3.2. Equilibrium Judgment of Simulated System

The fluctuation curves of energy and temperature are usually used to determine the
equilibrium of the system. When the fluctuation range of energy and temperature curves
is within 5%–10%, the equilibrium of the system has been achieved [7]. The energy and
temperature curves of the simulation system with or without PDA coating (Figure 2a,b)
are shown in Figure 3. Within 1000 ps after the equilibrium stage, the temperature and
energy of the system fluctuated very little, which is within the uncertainty of 5%–10%.
Therefore, it indicates that the energy and temperature of the simulation system have
reached the equilibration phase, further confirming the reliability of using 1000 ps during
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the equilibrium phase to carry out the result analysis, indicating that the system reached
the equilibrium state.
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4. Results and Discussion
4.1. Experimental Section
4.1.1. Surface Morphology and Coating Composition

Figure 4a shows a macroscopic image of the coating of carbon steel prepared with
a one-step electroplating process. The prepared coating appears uniformly dark brown.
Figure 4b shows the SEM image of the surface morphology of the coating. It can be seen that
the carbon steel surface is a “coral-like” cluster structure composed of nanoscale spheres,
with cluster diameters ranging from 50 to 200 nm. The chemical composition of the sample
surface was detected by the EDS spectral analyzer, as shown in Figure 4c,d. Elements Ni,
C, N, and O exist in the prepared coating, and all elements are evenly distributed on the
surface of the substrate (Figure 4d), where C, N, and O are the main component elements
of PDA. The results show that the prepared coating is a PDA coating with nanostructures.

4.1.2. Coating Stability

In practical applications, coating stability is critical for preserving surface function and
durability. The tape stripping method was used to test the coating stability [33]. Figure 5
shows the change in the water contact angle on the surface of the PDA coating after
different strip times. The static water contact angle of the sample surface was measured
by a contact-angle-measuring instrument. The contact angle of water on the surface of
carbon steel is 72.01 ± 0.3◦, and the contact angle of water on the surface of the PDA
coating is 60.45 ± 0.3◦. If the coating is glued away during the tape stripping test, the
contact angle will rise markedly. After performing tape stripping experiments 50 times,
the water contact angle on the surface of the sample slightly increased from 60.45 ± 0.3◦ to
62.22 ± 1◦. In the subsequent 150 times of tape stripping experiments, the water contact
angle was 62.69 ± 0.3◦, and the contact angle only increased by 0.47◦. The coating prepared
by electrodeposition consists of two parts: physical adsorption and stable adsorption.
During the first 50 tape stripping experiments, the physical adsorption part was stripped
off by the tape, so the contact angle changed. The remaining stable adsorption part can
hardly be removed by the tape, so the contact angle changes little after 150 times. The tape
experiment shows that the PDA coating has good stability on the carbon steel substrate.
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4.1.3. Anti-Corrosion Performance

The electrochemical methods were used to study the electrochemical corrosion
characteristics of different samples after soaking in 3.5 wt.% NaCl solution for 24 h.
The potentiodynamic polarization curves of carbon steel and PDA coating are shown
in Figure 6. The electrochemical method has the advantages of fast measurement speed
and a short experiment period. The corrosion parameters of carbon steel (CS) and PDA
coating obtained by potentiodynamic polarization curves are listed in Table 1 [23,34,35].
A positive corrosion potential (Ecorr) represents a lower thermodynamic corrosion trend,
and a smaller corrosion current density (Jcorr) represents a lower corrosion kinetic rate.
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Therefore, the more positive the corrosion potential and the smaller the corrosion current
density, the better the corrosion-inhibition performance of the coating [36]. Compared with
Q235 carbon steel, the modified surface with PDA coating has lower corrosion current
density and higher corrosion potential. The corrosion current density is 8.534 µA·cm−2,
which is about 1/9 of the carbon steel substrate. Usually, the polarization resistance (Rp)
is also one of the parameters that reflect the degree of corrosion resistance of the material.
The polarization resistance Rp is calculated by the following formula:

Rp =
ba × |bc|

2.303× (ba + |bc|)× Jcorr
(1)

where Rp is the polarization resistance, Jcorr is the self-corrosion current density, and ba and
bc are the Tafel slope of anode and cathode, respectively. In general, the greater the Rp, the
less likely the material is to corrode. As can be seen from Table 1, the Rp of PDA coating is
seven times more in comparison with that of the Q235 carbon steel substrate.
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Table 1. Corrosion parameters of carbon steel (CS) and PDA coating obtained by potentiodynamic
polarization curves.

Samples Ecorr/V Jcorr/µA·cm−2 η/% Rp/kΩ · cm−2

CS −0.855 74.62 - 0.466
PDA coating −0.506 8.534 88.56% 3.262

The corrosion-suppression efficiency η is defined as [37]:

η =
[(

J0
corr − Jcorr

)
/J0

corr

]
× 100% (2)

where η is the corrosion-inhibition efficiency, and J0
corr and Jcorr are the self-corrosion current

density of Q235 carbon steel and PDA coating, respectively. The inhibition efficiency of
PDA coating on the Q235 carbon steel is 88.56%.

4.1.4. Anti-Scale Performance

The inhibition of calcium carbonate crystalline scale by PDA coating was evaluated
by weighing method. The test solution was calcium carbonate supersaturated, and the
concentrations of Ca2+ and CO3

2− were 360 mg/L. The carbon steel and PDA coating
samples were statically immersed in calcium-carbonate-saturated solution for 12 h and
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then naturally dried at ambient temperature. Formula (3) was used to calculate the scale
deposition per unit area [23].

Wper area =
WS −W0

A
(3)

where W0 and Ws are the quality of the samples before and after the experiment, respec-
tively, and A is the surface area of the sample. Response surface methodology using
ANOVA can be useful for better data evaluation and model development [38]. This is a
topic for future work.

Figure 7 shows the amount of scale deposition of carbon steel and PDA coating
after being immersed in calcium carbonate solution at 70 ◦C and 90 ◦C for 12 h. The
amount of CaCO3 scale deposition on the carbon steel surface is 0.667 and 0.672 mg/cm2,
respectively. For the PDA coating surface, the amount of calcium carbonate scale is 0.300
and 0.222 mg/cm2, respectively, and the corresponding anti-scale rates of the coating
are 55.02% and 66.96%, respectively. The results show that PDA coating has a higher
scale-inhibition effect in high-temperature solution.
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4.2. Molecular Dynamics Simulations
4.2.1. Adsorption Configuration of CaCO3

The adsorption configuration of CaCO3 in 0.8 mol/L supersaturated solution for Fe
plate with or without PDA coating at different times is displayed in Figure 8. At the initial
moment, the ions are uniformly distributed in the solution. For uncoated plates, ions
near the plate were preferentially adsorbed to the plate under van der Waals attraction.
However, the ions in the bulk phase are far away from the plate, and there is a strong
electrostatic attraction between Ca2+ and CO3

2−. During the Brownian motion of ions,
CaCO3 clusters are formed (Figure 8a 1 ns). Subsequently, the CaCO3 cluster underwent
irregular Brownian motion, and when the cluster was close to the plate during the thermal
motion of the cluster, the van der Waals attraction between the cluster and the Fe atom
increased significantly, and finally the clusters adsorbed on the plate surface at 4 ns. For
the PDA coating surface (Figure 8b), only a portion of CaCO3 ions absorbed on the coating
surface at 4 ns. The simulation results show that compared with the metal plate, it was
found that the probability of scale adsorption of PDA coating was significantly reduced,
while the PDA coating presents the scale-inhibition effect. The scale-inhibition mechanism
of PDA coating is analyzed in detail in the following section.
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Figure 8. Adsorption configurations of CaCO3 on (a) Fe plate and (b) PDA coating.

4.2.2. Water Molecular Adsorption Layer on the Surface

Figure 9 shows the number density of water molecules along the Z direction of the
system at the initial moment (the deepened area in the figure is the plate). For an Fe plate
without coating, the presence of two peaks near 2.9 Å and 5.9 Å from the surface represents
two dense layers of water molecule adsorption distributed near the plate (as indicated in
red and blue in the illustration). This is due to the strong van der Waals force between
the Fe plate and nearby water molecules, and the thickness of the water adsorption layer
is 6.9 Å at the second trough of the number density distribution. For the plate with PDA
coating, there is no obvious peak of water molecular number density, indicating that a
dense water molecule adsorption layer is not formed on the coating surface, which may be
the reason why the PDA coating has an increased scale-inhibition performance.
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In order to compare and analyze the water molecular adsorption layer near the
Fe surface with or without PDA coating, the interaction energy Einteraction calculation
expression [39] is as follows:

Einteraction = Etotal − (Esurface + E1) (4)

where Einteraction, Esurface, and E1 represent the total energy of the computational system, the
energy of the solid plate, and the energy of the water molecular within 6.9 Å, respectively.
When Einteraction is negative, it represents the attraction force, and the value of Einteraction
indicates the adsorption force of the plate to water molecular layers.

The interaction energies are listed in Table 2. It is calculated that the interaction energy
between the Fe plate and the water molecular layer in 6.9 Å is −27.44 eV for the uncoated
model. For the PDA coating model, the interaction energy between the plate (including the
Fe plate and the PDA coating) and the water molecular layer is −7.51 eV. The adsorption
force of the water molecular layer is much less for the uncoated Fe plate model. Therefore,
the weak interaction between the PDA coating and water molecules leads to the absence of
a dense water adsorption layer.

Table 2. Interaction energy of the surface with the water molecular layer within 6.9 Å.

Simulated Condition Etotal/eV EFe/eV EH2O/eV Einteraction/eV

Fe surface
(Fe-6.9 Å H2O) −2769.95 −2748.79 6.28 −27.44

PDA coating surface
(plate-6.9 Å H2O) −2816.38 −2809.11 0.24 −7.51

4.2.3. Interaction between PDA Coating and CaCO3

The adsorption strength can be expressed by the interaction energy [40]. In order to
reveal the interaction between the PDA coating and CaCO3, the interaction energy between
CaCO3 and the Fe plate with or without the PDA coating, as well as water adsorption layer
at the initial moment, is calculated according to Equation (4), and the results are shown in
Figure 10. For the Fe plate model, the interaction energy between the plate and CaCO3 is
−1.53 eV, and the interaction energy between the surface water adsorption layer and CaCO3
is −84.22 eV, which is almost 55 times in comparison with the attraction energy between
the Fe plate and CaCO3. In addition, the interaction energy between the surface water
adsorption layer and CaCO3 is negative, indicating a strong attraction between the surface
water adsorption layer and CaCO3. Therefore, the presence of dense water adsorption layers
is the main reason that leads to the adsorption behavior of CaCO3 towards the Fe plate.
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For the PDA-coated model, the interaction energies between the plate (including Fe
plate and PDA coating) and CaCO3, and the water molecular layer within 6.9 Å near
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the coating surface and CaCO3, are −0.29 eV and −0.35 eV, respectively. There is no
dense water adsorption layer near the PDA coating surface, and it shows weak attraction
to CaCO3; therefore, PDA coating has the ability to inhibit CaCO3 scale. As shown in
Figure 8b, for the PDA coating model, although a small amount of calcium carbonate
adsorbs on the plate, the interaction energy between the plate and the absorbed CaCO3
cluster is only −1.85 eV, and the absorbed CaCO3 can be easily removed from the PDA
coating surface.

It was found that the dense water adsorption layer near the Fe surface is the main
driving force of CaCO3 scale formation by using MD simulations. The experiment test
confirmed that PDA coating has the ability to inhibit CaCO3 scale deposition. The anti-scale
mechanism of PDA coating is that PDA molecules have a weak interaction with water
molecules, and there is no dense water adsorption layer near the PDA coating surface;
therefore, the adsorption probability of the CaCO3 scale on the PDA surface reduces.

5. Conclusions

In this study, our proposed efficient one-step electroplating method can prepare sta-
ble PDA coating on the metal surface. By conducted an experimental test of the stability,
corrosion resistance, and scale-inhibition performance of the PDA coating surface, and qual-
itatively revealing the anti-scale mechanism by molecular dynamics simulation, we found:

The water contact angle of the PDA coating surface changed by 2.24% after 200 tape
stripping experiments, and the water contact angle demonstrated the excellent stability
of the PDA coating. The corrosion-inhibition efficiency of PDA coating was 88.56%. The
scale-inhibition test showed that the anti-scale rates of PDA coating were 55.02% and
66.96% after being immersed in the supersaturated solution of calcium carbonate at 70 ◦C
and 90 ◦C for 12 h, respectively.

Dense water adsorption layers existed near the Fe plate, and there was a strong
interaction energy (−84.22 eV) between the water adsorption layer and CaCO3, which was
the main driving force in the early stages of CaCO3 scale deposition. There was a weak
interaction between the PDA coating and water molecules, resulting in the absence of a
dense water adsorption layer on the PDA coating surface, which reduced the adsorption
probability of CaCO3 on the PDA coating surface. Therefore, the PDA coating inhibited the
CaCO3 scale deposition.
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