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Abstract: In this study, we investigated the microstructure, mechanical properties, and thermal
performance of Sn-xBi-1Ag (x = 35, 37, 45, and 47 wt.%) solders, with a particular focus on the effect
of adding trace Si atoms. The impact of different Ag concentrations on the properties of Sn-xBi-Ag-
0.5Si solders was also studied. The results indicated that as the amount of Bi added to Sn-xBi-1Ag
solder alloys increased, the tensile strength, microhardness, melting temperature, and melting range
decreased somewhat, but the wettability improved. The Cu6Sn5 layer between the soldering alloy
and the Cu substrate became thinner upon increasing the Bi content. Adding microcrystalline Si
atoms to the Sn-Bi-1Ag alloy improved the tensile strength and microhardness, but the melting
point and melting range were not significantly changed. The wettability was optimized, and the
diffusion layer formed with the Cu matrix was significantly thinner. By increasing the Ag content in
the Sn-Bi-(1,3)Ag-0.5Si alloy, the tensile strength of the alloy was continuously strengthened, while
the hardness decreased slightly and the melting point and melting range increased slightly. The
wettability was greatly improved, and the Cu6Sn5 layer became thinner.

Keywords: lead-free low-temperature solder; Sn-Bi-Ag-Si; melting point; wettability; tensile strength

1. Introduction

Sn-Pb alloys have been the primary solder alloys due to their excellent wettability,
mechanical properties, and appropriate price [1–5]. However, Sn-Pb solders can no longer
satisfy the demands of current industrial development due to increased environmental con-
sciousness and the introduction of Restriction of Hazardous Substances (RoHS) and Waste
Electrical and Electronic Equipment (WEEE) standards [6–8]. As a result, various types of
lead-free solders, such as Sn-Zn and Sn-Ag, have been suggested as replacements [9–14].
Sn-Bi alloys are ideal lead-free solders because of their non-toxicity and lower melting
point [15–17]. However, the inherent brittleness after adding Bi atoms results in poor
solder reliability [18–20]. The wettability of Sn-Bi solder alloys is much lower than that
of conventional Sn-40Pb solders, and the bias of Bi at the solder/Cu interface causes joint
embrittlement, which greatly reduces the strength of the solder joint [21–25].

Because of its excellent conductivity and wettability, Ag is often added to Sn-Bi solders
to enhance their properties [26–28]. Yang et al. [29] added Ag to a Sn-58Bi solder and
found that the Ag3Sn phase was formed in the alloy, which had fine-grain strengthening
and second-phase strengthening effects that improved the solder’s tensile strength. A
modest quantity of Ag added to the Sn-58Bi solder also enhanced its microhardness [30].
Dong et al. [31] found that the addition of Ag accelerated the wetting reaction’s speed and
enhanced the Sn-58Bi solder’s wettability. Wang et al. [32] further investigated the impact
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of Ag on the wetting of a Sn-58Bi solder. As a result, the addition of Ag not only optimized
the wettability but also restrained the development of the IMC layer (intermetallic layer) at
the interface and enhanced the shear strength of the joint. Furthermore, low-eutectic Sn-Bi
solders have better mechanical properties than eutectic Sn-Bi solders [33–36].

Currently, research on Sn-Bi-Ag solders has predominantly focused on the eutectic part
(Sn-58Bi) and the hypoeutectic part (Sn-10Bi), but eutectic solders have weak mechanical
properties, while hypoeutectic solders have a high melting point. There is little systematic
data on Sn-xBi-Ag (x = 30–50) solders. In addition, during the hot-dipping of Zn-Al alloys,
the addition of an appropriate amount of Si to the molten pool repressed the development
of the intermetallic layer at the coating/steel interface [37,38]. However, there is limited
information about the effect of Si on the properties of Sn-Bi-Ag solder alloys.

The purpose of this work was to study the microstructure, melting point, mechanical
properties, wetting, and interface interactions of Sn-xBi-1Ag (x = 35, 37, 45, and 47 wt.%).
The impact of the Si content on the characteristics of the Sn-Bi-Ag solder alloy and the
IMC layer formed at the solder/Cu interface, as well as the effect of the Ag content on the
properties of Sn-Bi-Ag-Si alloy solder, were also investigated.

2. Experimental Procedure

Sn particles, Bi blocks, Ag particles, and Si pieces with a purity of 99.99% were utilized
in this experiment. Appropriate amounts of pure elements were weighed based on their
nominal constituents. An aggregate mixture weighing 100 g for each solder was measured.
The mixture was sealed in a vacuum quartz tube under an argon environment, melted
at 300 ◦C for 12 h, and finally quenched in cold water. To promote reactions between
components while heating, the quartz tube was shaken upside down for 2 min every
30 min during melting. To verify the sample’s composition uniformity, the quenched
sample was repeatedly melted three times according to the above heat treatment process.

For the Sn-Bi-Ag-Si solders, due to a huge difference between the melting points of
Ag (961.3 ◦C), Si (1410 ◦C), Sn (231.89 ◦C), and Bi (271.5 ◦C), the Ag-0.5Si master alloy
was initially synthesized by arc-melting in a high Ti-gettered argon atmosphere with a
non-consumable tungsten electrode and a water-cooled Cu case. The prepared Ag-0.5Si
master alloy sample was sealed in a vacuum quartz tube under an argon atmosphere,
annealed at 1000 ◦C for 7 days, and finally water quenched. Then, an appropriate amount
of Sn particles, Bi particles, and Ag-0.5Si alloy were sealed in a vacuum quartz tube under
an argon atmosphere, melted at 480 ◦C for 12 h, and quenched in water. All samples were
homogenized by melting three times. A schematic diagram of the samples’ preparation is
shown in Figure 1.
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Figure 1. Schematic diagram of the samples’ preparation: (a) Sn-Bi-Ag alloy and (b) Sn-Bi-Ag-Si alloy.

Prior to observing the alloy’s microstructure, all samples were polished with 0.3 µm
Al2O3 suspension. Scanning electron microscopy (JSM-6510, JEOL, Tokyo, Japan) combined
with an energy-dispersive X-ray spectrometer (Oxford, UK) (SEM-EDS) was utilized to
observe the microstructure. The probe diameter was 1 mm, and the acceleration voltage
was 20 kV. The data in this work are the average of at least three measurements. Phase
identification was performed by using a D/max 2500 PC X-ray diffractometer (Rigaku,
Tokyo, Japan) and Cu Kα radiation for X-ray diffraction (XRD) measurements. Data in the
2θ range of 10–90◦ were collected, and the XRD patterns were indexed and calculated by
the Jade 5.0 software.

A WDT-3030KN universal tensile tester was used to measure both the tensile strength
and elongation of solders. A schematic diagram of the tensile test specimens in this work
is shown in Figure 2. Tensile tests were performed with a loading speed of 1 mm/min
at room temperature. The data in this work were the mean of at least five different
measures. The microhardness of alloys was tested with a Vickers hardness tester (HXD-
1000TMCLCD, XTZ, Shanghai, China) under a load of 0.245 N and a residence time of 5 s
at room temperature.
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To estimate the phase transition point of solder alloys, a NETZSCH DSC 404 F3
(METZSCH, Selb, Germany) differential scanning calorimeter was used at a heating rate of
10 ◦C/min. Wettability tests were carried out by using the hanging drop high-temperature
wettability angle measuring instrument, during which drops of solder alloy liquid from a
dropper fell onto a Cu plate on a platform. Interfacial reactions between the solder alloy
and Cu plate were investigated by analyzing the cross-sectional microstructure of Cu sheets
that were hot-dipped in a Sn-Bi-Ag-based alloy bath at 190 ◦C for 1 min.

3. Results and Discussion
3.1. Microstructure of Solder Alloys

Figure 3a shows an SEM image of the Sn-35Bi-1Ag solder alloy. Based on the differ-
ences in shape and brightness in the grayscale images, there were three different phases in
the alloy. The composition of each typical region marked “P”, “Q”, and “N” in Figure 3a
is shown in Figure 3b–d, respectively. Combined with the EDS analysis, the bright phase
was (Bi), the grey matrix was (Sn), and there was a small amount of dark grey Ag3Sn phase
distributed throughout the (Sn) matrix. Most of the (Bi) phase existed as large granules,
only a few of which were embedded in the (Sn) matrix. The characteristic peaks of the (Sn)
and (Bi) phases were evident from the XRD patterns in Figure 4a,b. The Ag3Sn phase was
not observed, perhaps due to the small amount of Ag added.
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“Q”, and “N”, respectively.

Figure 5 shows the SEM images of the Sn-xBi-1Ag solder alloys with different Bi
contents. More (Bi) precipitated as the Bi content increased. Figure 5 shows the SEM images
of the Sn-xBi-1Ag-0.5Si solder alloys with different Bi contents. Similarly, the (Bi) phase
grew as the Bi concentration rose. By comparing the SEM images in Figures 5 and 6, it can
be seen that adding a small amount of Si refined the structure, and the (Bi) phase changed
from large blocks to a smaller network. The amount of needle-like (Bi) phase embedded
in the (Sn) matrix increased. A plausible explanation for this fine structure was that after
adding particles, undercooling of the Sn-rich solder was reduced, thereby inhibiting the
growth of intermetallic compounds and further refining the microstructure [39,40].
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Figure 7 shows the SEM images of Sn-xBi-3Ag-0.5Si alloys with different Bi contents.
Compared with Figure 5, the content of the dark black Ag3Sn phase increased significantly
upon increasing the Ag content. However, the Ag3Sn phase was still not detected in the
XRD patterns shown in Figure 4b as its content was still below the detection limit.
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3.2. Mechanical Properties of the Solder Alloys
3.2.1. Tensile Strength

Solder alloys with a high tensile strength can help increase the solder’s stability.
Figure 8 shows the tensile strength of 12 kinds of solder alloys in this experiment. For Sn-xBi-
1Ag solder alloys, when the Ag content remained unchanged, a higher Bi content decreased
the tensile strength of the alloy. According to the microstructure shown in Figures 5–7, the
(Bi) phase increased as the Bi concentration rose and segregation became more visible. The
solid solution and precipitation of Bi in the Sn matrix improved the strength and hardness
of the alloy, but this also reduced its plasticity and toughness. Therefore, the tensile strength
of Sn-xBi-1Ag solder alloys declined as the Bi content increased.
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When the concentrations of Ag and Bi were identical, adding trace Si greatly increased
the alloy’s tensile strength, as shown in Figure 8. After adding a small amount of Si atoms
to the Sn-45Bi-1Ag solder alloy, the tensile strength improved by 18.2%. The addition of
trace Si might refine the eutectic phase, inhibiting the segregation of the coarse brittle (Bi)
phase and reducing the alloy’s brittleness. As a second-phase strengthening mechanism,
the addition of Si enhanced the tensile strength of the solder alloy. When the Ag content of
the Sn-xBi-yAg-0.5Si solder alloy increased, the alloy’s tensile strength might have been
further improved. The Sn-45Bi-3Ag-0.5Si alloy’s tensile strength even exceeded that of
the Sn-35Bi-1Ag-0.5Si alloy. The tensile strength of the Sn-35Bi-3Ag-0.5Si alloy reached
90.87 MPa. A plausible explanation is that as the Ag content increased, more Ag3Sn phase
precipitated in the alloy’s microstructure. The Ag3Sn phase in the solder alloy tended to be
coarse, which prevented dislocation movement. Slip was hampered during deformation,
resulting in unequal plastic deformation throughout the matrix. Finally, the local plastic
constraint of the solder was strengthened, so that the solder alloy’s tensile strength was
greatly increased. When adding 2 wt.% Ag to the Sn-0.7Cu eutectic alloy, El-Daly and
Hammad [41] also found that the Ag3Sn phase formed in the microstructure enhanced the
solder’s tensile strength and elongation at break.

3.2.2. Microhardness

Figure 9 compares the microhardness of Sn-Bi-1Ag, Sn-Bi-1Ag-0.5Si, and Sn-Bi-3Ag-
0.5Si series solder alloys. Compared with the microhardness of the Sn-Bi-1Ag alloy, these
alloys showed a higher microhardness after adding 0.5 wt.% Si, an increase of about 4.5%.
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The reason for this phenomenon was that Si inhibited the formation and segregation of
coarse and brittle Bi in the alloy, which refined the microstructure. Figure 9 illustrates
that the microhardness values of the Sn-Bi-3Ag-0.5Si solder alloys were all lower than
those of the Sn-Bi-1Ag-0.5Si solder alloys. By comparing the microstructures shown in
Figures 6 and 7, the excessive addition of Ag in the Sn-Bi-3Ag-0.5Si solder alloys led to a
more coarse Ag3Sn phase precipitating in the alloy, and the Bi content in the substrate
was relatively higher than that in Sn-Bi-1Ag-0.5Si solder alloys, so more white tiny (Bi)
were precipitated, resulting in a decrease in the microhardness of the alloys [42]. The
size of the Ag3Sn phase may also play a key role in limiting lamellae formation and
microstructure refinement [29].
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For the Sn-Bi-1Ag series solders, the alloys’ hardness and tensile strength both steadily
declined as the Bi content increased. After adding a small amount of Si, the alloy’s mi-
crohardness and tensile strength were both enhanced. The hardness of the Sn-Bi-Ag-0.5Si
solder alloy decreased as the Ag percentage rose, while the tensile strength increased.

3.3. Melting Properties of the Solder Alloys

Figures 10–12 show the DSC curves of Sn-Bi-1Ag, Sn-Bi-1Ag-0.5Si, and Sn-Bi-3Ag-0.5Si
series solder alloys. Here, the intersection of the tangent line at the maximum slope of the
leading edge of the heat absorption peak in the DSC curve with the front baseline extension
is Tm. In addition, the intersection of the tangent at the maximum slope of the trailing edge
of the endothermic peak and the extension line of the back baseline is Tn. The difference
between Tn and Tm is regarded as the melting range of the solder alloy. The values of Tm,
Tn, and the melting ranges of the 12 solder alloys were collected in Tables 1–3.
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Table 1. Phase transition temperature and melting range of the Sn-xBi-1Ag solder alloys.

Alloys Tm/◦C Tn/◦C Melting Range/◦C

Sn-35Bi-1Ag 138.6 192.7 54.1
Sn-37Bi-1Ag 138.7 188.3 49.6
Sn-45Bi-1Ag 141.6 155.7 14.1
Sn-47Bi-1Ag 140.5 152.7 12.2

Table 2. Phase transition temperature and melting range of the Sn-xBi-1Ag-0.5Si solder alloys.

Alloys Tm/◦C Tn/◦C Melting Range/◦C

Sn-35Bi-1Ag-0.5Si 139.5 195.1 55.6
Sn-37Bi-1Ag-0.5Si 139.6 190.7 51.1
Sn-45Bi-1Ag-0.5Si 142.2 156.2 14
Sn-47Bi-1Ag-0.5Si 141.3 153.1 11.8

Table 3. Phase transition temperature and melting range of the Sn-xBi-3Ag-0.5Si solder alloys.

Alloys Tm/◦C Tn/◦C Melting Range/◦C

Sn-35Bi-3Ag-0.5Si 139.3 183.3 44
Sn-37Bi-3Ag-0.5Si 138.9 181.3 42.4
Sn-45Bi-3Ag-0.5Si 140.2 166.9 26.7
Sn-47Bi-3Ag-0.5Si 140.6 162.5 21.9

Figure 10 shows that the DSC curves of the Sn-45Bi-1Ag and Sn-47Bi-1Ag solder alloys had
only one main peak, while those of the Sn-35Bi-1Ag and Sn-37Bi-1Ag solder alloys also had a
secondary peak near 165 ◦C. The secondary peak appeared because the alloy was incompletely
melted after the eutectic reaction, and there were still primary phases that continued to melt.
For the Sn-Bi-1Ag series solder alloys, as the Bi content increased from 35 wt.% to 47 wt.%,
the starting temperature of the solder alloy did not change much. The difference was within
2 ◦C, and the main peak temperature was also basically the same. The termination point varied
greatly, so changes in the Bi content affected the initial phase crystallization temperature of
the alloy, i.e., the liquidus temperature. When there was only one main peak in the curve, the
melting range was within 15 ◦C. When a secondary peak appeared, the melting range of the
alloy broadened significantly to 50 ◦C. The melting range of the alloy steadily widened as the
Bi concentration decreased and the secondary peak value increased. The termination point
temperature gradually decreased as the Bi concentration rose, i.e., the temperature required to
completely melt the solder alloy decreased continuously. Billah et al. [43] suggested that the
temperature required for complete melting gradually decreased as the Bi content increased
and approached the eutectic point of the Sn-Bi binary alloy.

The DSC curves of Sn-Bi-Ag-0.5Si solder alloys with different Bi contents are shown in
Figure 11. Comparing Figures 10 and 11, as well as Tables 1 and 2, shows that the starting
melting temperature of the solder alloy remained almost unchanged after adding 0.5 wt.%
Si to the Sn-Bi-Ag series solder alloys, which have a maximum difference of only 0.9 ◦C.
The main peak temperature and the secondary peak temperature were basically the same.
In addition, the termination point did not significantly change, showing that the Bi content
had no discernible influence on the solder alloy’s melting range.

Figure 12 shows the DSC curves of the Sn-xBi-3Ag-0.5Si series solder alloys with
different Ag contents. Table 3 shows the starting melting temperature of the Sn-xBi-3Ag-
0.5Si solder alloy. Increasing the Ag content in the Sn-Bi-Ag-0.5Si series solder alloys
produced essentially no change in the onset point of the Sn-Bi-Ag-Si solder alloy and had
no significant effect on the primary and secondary peak temperatures. Nevertheless, when
the Bi content was low (≤37 wt.%), the termination temperature of the alloys diminished
marginally, and the maximum difference reached 11.8 ◦C. When the Bi content exceeded
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45 wt.%, the termination temperature of the solder alloy increased, and the maximum
difference reached 10.7 ◦C. When the Bi content was less than 40 wt.%, the inclusion of Ag
limited the alloy’s melting range due to interactions between Ag and Sn, which produced
the intermetallic complex Ag3Sn. The melting point of the eutectic compound was lower
than that of Sn, and Sn was consumed during the generation of the compound. As more
Ag was added, more Sn was consumed, which resulted in little change in the liquid phase
line temperature and a decrease in the solid phase line temperature. This led to a reduction
in the solder alloy’s melting range. When the Bi content was too high (≥45 wt.%), as more
Ag was added, the solidus temperature increased while the liquidus temperature did not
change much, thus increasing the alloy’s melting range.

3.4. Wettability of the Solder Alloys

Wettability is a crucial metric for determining the solderability of an alloy. Generally,
wettability is reflected by the contact angle of the solder alloy on a Cu substrate, which may
be affected by many factors, such as surface roughness and operating parameters [44]. To
evaluate the wettability of solder alloys, we measured the contact angle of molten solder
alloy droplets on a Cu plate. In general, a smaller contact angle indicates better wettability
of the solder alloy toward the Cu sheet.

Figures 13–15 show the wetting spreading diagrams of Sn-xBi-1Ag, Sn-xBi-1Ag-0.5Si,
and Sn-xBi-1Ag-0.5Si solders on a Cu sheet, respectively. The contact angle curves of all
solder alloys are shown in Figure 16. The contact angle of Sn-Bi-Ag series solder alloys
on Cu substrates decreased upon increasing the Bi content. Bismuth improved the alloy’s
wettability because it is a surface-active element that can depress the interfacial tension
of welding materials. Although the wettability of the alloys was better, the contact angle
remained high. Furthermore, the contact angle of the Sn-35Bi-1Ag-0.5Si solder alloy on the
Cu sheet was 65◦, which was approximately 35% lower than that of the Sn-35Bi-1Ag solder
alloy. When the Bi content reached 45 wt.%, the contact angle was approximately 33.5◦.
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When the contact angle was greater than 0 and less than 20◦, the wettability was
excellent, but when the contact angle was higher than 40◦, the wettability was poor [45].
As shown in Figure 16, the contact angles of Sn-Bi-3Ag-0.5Si series solders on Cu sheets
were usually small, and the contact angle of Sn-47Bi-3Ag-0.5Si solder was even close to
20◦. Since the surface tension of Ag is very low (0.03 N/m), the addition of Ag reduced the
surface tension of the Sn-Bi-Ag-Si series solder alloys, thereby reducing their contact angle
on the Cu sheet and increasing their wettability, which was consistent with the results of
this experiment. In addition, due to the wetting and diffusion of molten solder on the Cu
substrate, an intermetallic compound layer formed at the interface. This thin intermetallic
compound layer helped ensure a strong metal bonding between the molten solder and Cu.
However, an excessively thick compound layer increased the surface tension. Silver atoms
reduced the surface tension of Sn on the compound layer, thereby reducing the surface
tension of the solder on the Cu substrate. Therefore, upon increasing the Ag content, the
wettability of the Sn-Bi-Ag-Si solder alloy was improved. In summary, the wettability of
the Sn-45Bi-1Ag-0.5Si, Sn-47Bi-1Ag-0.5Si, Sn-45Bi-3Ag-0.5Si, and Sn-47Bi-3Ag-0.5Si solders
were all superior to that of the traditional Sn60Pb40 solder.

3.5. Interfacial Reactions of the Solder Alloys with Cu Sheet

The formation of a thin and continuous intermetallic compound layer during welding
is necessary for good wetting and connections and improves the mechanical properties of
solder joints [46]. However, since intermetallic compounds are brittle, an excessively thick
compound layer will significantly reduce the reliability of solder joints.
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Figure 17 shows the SEM images of the interface between the Sn-xBi-1Ag solder and
Cu substrate after reacting at 190 ◦C for 1 min. The EDS analysis showed that the IMC
layer was Cu6Sn5 phase. In addition, (Sn), (Bi), and Ag3Sn phases were observed close to
the Cu6Sn5 IMC layer. This indicated that Sn in the solder solution preferentially diffused
throughout the Cu matrix, while Bi and Ag atoms did not react with the Cu matrix. The
formation and growth of the Cu6Sn5 layer were mainly controlled by diffusion. Cu atoms
were dissolved in a molten Sn-based solder and reacted with Sn atoms. The relationship
between the thickness of the Cu6Sn5 IMC layer and the Bi content is shown in Figure 18. A
higher Bi content decreased the thickness of the IMC layer, probably because of the content
of Sn atoms in the solder. As shown in Figure 16, the wetting angles of the Sn-xBi-Ag solder
solutions on the Cu substrate decreased with increasing Bi content, which facilitated the
interfacial reaction between Cu and Sn. When the Cu substrate was covered with Cu-Sn
IMC, the interfacial reaction would be inhibited and the thickness of Cu-Sn IMC would be
limited. So, a higher Bi content restricted the development of the IMC layer.

Coatings 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

layer was Cu6Sn5 phase. In addition, (Sn), (Bi), and Ag3Sn phases were observed close to 
the Cu6Sn5 IMC layer. This indicated that Sn in the solder solution preferentially diffused 
throughout the Cu matrix, while Bi and Ag atoms did not react with the Cu matrix. The 
formation and growth of the Cu6Sn5 layer were mainly controlled by diffusion. Cu atoms 
were dissolved in a molten Sn-based solder and reacted with Sn atoms. The relationship 
between the thickness of the Cu6Sn5 IMC layer and the Bi content is shown in Figure 18. A 
higher Bi content decreased the thickness of the IMC layer, probably because of the con-
tent of Sn atoms in the solder. As shown in Figure 16, the wetting angles of the Sn-xBi-Ag 
solder solutions on the Cu substrate decreased with increasing Bi content, which facili-
tated the interfacial reaction between Cu and Sn. When the Cu substrate was covered with 
Cu-Sn IMC, the interfacial reaction would be inhibited and the thickness of Cu-Sn IMC 
would be limited. So, a higher Bi content restricted the development of the IMC layer. 

 
Figure 17. SEM images showing the interfacial morphology of Sn-xBi-1Ag/Cu at 190 °C: (a) x = 35, 
(b) x = 37, (c) x = 45, and (d) x = 47 

 
Figure 18. Thickness of solder/Cu reaction layers. 

Figure 17. SEM images showing the interfacial morphology of Sn-xBi-1Ag/Cu at 190 ◦C: (a) x = 35,
(b) x = 37, (c) x = 45, and (d) x = 47.

Coatings 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

layer was Cu6Sn5 phase. In addition, (Sn), (Bi), and Ag3Sn phases were observed close to 
the Cu6Sn5 IMC layer. This indicated that Sn in the solder solution preferentially diffused 
throughout the Cu matrix, while Bi and Ag atoms did not react with the Cu matrix. The 
formation and growth of the Cu6Sn5 layer were mainly controlled by diffusion. Cu atoms 
were dissolved in a molten Sn-based solder and reacted with Sn atoms. The relationship 
between the thickness of the Cu6Sn5 IMC layer and the Bi content is shown in Figure 18. A 
higher Bi content decreased the thickness of the IMC layer, probably because of the con-
tent of Sn atoms in the solder. As shown in Figure 16, the wetting angles of the Sn-xBi-Ag 
solder solutions on the Cu substrate decreased with increasing Bi content, which facili-
tated the interfacial reaction between Cu and Sn. When the Cu substrate was covered with 
Cu-Sn IMC, the interfacial reaction would be inhibited and the thickness of Cu-Sn IMC 
would be limited. So, a higher Bi content restricted the development of the IMC layer. 

 
Figure 17. SEM images showing the interfacial morphology of Sn-xBi-1Ag/Cu at 190 °C: (a) x = 35, 
(b) x = 37, (c) x = 45, and (d) x = 47 

 
Figure 18. Thickness of solder/Cu reaction layers. Figure 18. Thickness of solder/Cu reaction layers.



Coatings 2023, 13, 285 14 of 17

Figure 19 shows the SEM images of the interface between the Sn-xBi-1Ag-0.5Si solder
and Cu substrate after reacting at 190 ◦C for 1 min. The IMC’s thickness decreased due
to the addition of Si. In particular, when the Bi content was 45 wt.%, the thickness of the
interfacial reaction layer decreased by nearly 42% after adding Si. The addition of Si did
not result in the formation of intermetallic compounds but only formed Si particles, which
hindered the diffusion of Cu atoms into the molten solder. Figure 20 shows the SEM images
of the interface between the Sn-xBi-3Ag-0.5Si alloy and Cu substrate after reacting at 190 ◦C
for 1 min. The IMC layer’s thicknesses of Sn-35Bi-3Ag-0.5Si/Cu and Sn-37Bi-3Ag-0.5Si/Cu
were much thinner than those of Sn-35Bi-1Ag-0.5Si/Cu and Sn-37Bi-1Ag-0.5Si/Cu. Upon
increasing the Ag content, the Ag3Sn phase content greatly increased and coarsened, which
hindered interfacial passage during atomic diffusion and reduced the interface growth rate.
Therefore, the formation and growth of an IMC layer at the interface were inhibited. The
Ag3Sn phase helped improve the strength of the matrix at the front of the IMC layer, which
helped inhibit the fracture of Sn-Bi-Ag-Si/Cu joints in the matrix and made them more
likely to occur at the intersection between the matrix and IMC layer.
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4. Conclusions

The main conclusions of this experiment were as follows:

(1) For Sn-x (x = 35, 37, 45, and 47) Bi-1Ag solder alloys, the segregation of Bi became more
obvious, and bright, irregular-shaped areas continued to increase upon increasing
the Bi content. The mechanical properties of the alloy decreased upon increasing the
Bi content, and the melting point and melting range were slightly reduced, but the
wettability was improved. The thickness of the Cu6Sn5 IMC layer decreased upon
increasing the Bi content.

(2) After adding Si to the Sn-xBi-1Ag alloy, the structure was refined. In particular, the
size of the Bi phase decreased from the large blocks into a network shape. The amount
of needle-like Bi phase embedded in the Sn matrix increased. After adding trace Si,
the melting point and melting range of the alloys did not markedly change, while
tensile strength and hardness were improved, the wettability was optimized, and
the thickness of the diffusion layer formed with the Cu substrate was significantly
reduced.

(3) Upon increasing the Ag content in the Sn-Bi-Ag-0.5Si alloy, the dark black Ag3Sn phase
increased significantly. The tensile strength of the Sn-Bi-Ag-0.5Si solder continued to
increase, while its hardness decreased slightly. The melting point and melting range
increased slightly. Moreover, the wettability of the Sn-Bi-3Ag-0.5Si series solder alloys
improved greatly, and the width of the Cu6Sn5 layer decreased.
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