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Abstract: The influence of impurities present in steel on fatigue strength has been the subject of
research conducted for many years. Despite a large number of studies, there is no unambiguous
explanation of the influence of impurities on the fatigue life of steel. The interpretation of the results
becomes more complicated as the ductility of the steel increases. For this reason, most of the research
concerns low-ductility hard steels. In addition, the studies presented in the literature mostly concern
laboratory conditions, which the authors of the papers have tried (with varying degrees of success)
to adapt to industrial research. There are a few studies on the influence of impurities in steel on
the fatigue resistance factor. The coefficient k is the result of the fatigue strength zg divided by the
hardness of the steel. With its help, it is possible to determine the fatigue strength depending on
the hardness of the steel. In the presented work, an attempt was made to determine the impact of
impurities of different sizes and located at different distances from each other on the fatigue strength
coefficient. The analysis was carried out at seven heats made in industrial conditions. Melting was
carried out in electric furnaces with a capacity of 140 tons. Steel from all melts was subjected to
desulfurization. Samples with a diameter of 18 mm were taken. The samples were hardened from
the austenitizing temperature of 880 ◦C. To diversify the microstructure and mechanical properties,
the steel was tempered at temperatures from 200 to 600 ◦C. After heat treatment, the samples were
subjected to rotational bending. Based on the tests, it was found that the fatigue strength coefficient k
depends on the size of the impurities and the distance between the inclusions. A difference in the
specific k-factors was noted depending on the microstructure of the steel.
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1. Introduction

Steel is currently one of the most popular construction materials. Its microstructure
determines its functional properties, and therefore its application. The properties of steel
depend on many, often interrelated, factors. These include the chemical composition,
widely understood method of production, heat treatment, etc. [1–6]. Impurities have a
large impact on the mechanical properties of high-quality steel and the role of impurities in
steel may be different [7–10]. It depends on the type, size, shape of the impurities, and the
distribution of the inclusions, but also on the structure of the steel, which is their matrix of
impurities. Unfortunately, non-metallic impurities mainly play a negative role [11–17].

Despite the research conducted for many years to improve the manufacturing pro-
cesses, it has not been possible to eliminate non-metallic inclusions from the steel mi-
crostructure. Their almost complete elimination is expensive and very difficult to achieve
in industrial conditions. In practice, the pursuit of the complete elimination of impurities in
most metal alloys is unjustified both in economics and in terms of their material properties.
Usually, the impurity content in steel is small, but their influence on the technological and
strength properties, especially fatigue life and fatigue strength, is significant [18–22].

The tendency to form and then develop micro-cracks during variable loads are the
factors determining the fatigue life of the material [23–25]. Therefore, an important role
in shaping the properties of the construction material is played by the dimensional struc-
ture of the inclusions in connection with its distribution. The placement of non-metallic
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inclusions is also important [26–30]. A single inclusion has a different effect than a cluster
of inclusions. Additionally, the distance between impurities can affect the properties of
the steel. Assuming a constant volume of impurities in the steel, small distances mean
the presence of a large amount of fine impurities, while large distances mean the presence
of a small amount of impurities, but of large dimensions. Non-metallic inclusions may
cause inconsistencies at the precipitation-matrix interface during plastic processing and
heat treatment. The quality, quantity, size, geometric shape, and distribution of impurities
in the steel microstructure also depend on the production process [31–39].

The possibility of micro-crack formation, and then the speed of their growth, but
also the amount of stresses in the steel that may affect the fatigue life of the elements,
may be caused by the resistance encountered by dislocations moving in the material. This
resistance can be measured by the hardness or tensile strength of the steel. A solution
to the problem is also sought by considering local stresses and deformations in the steel
microstructure, formation, joining, and development of microcracks [40–42]. Many papers
have presented the results of studies on the impact of non-metallic inclusions on the fatigue
properties of hard matrix steels, for example, bearing steels [43–46].

A solution to the problem is also sought by considering the local stresses and strains in
the steel microstructure, nucleation, and the development and joining of microcracks. For a
full analysis of the issue, it is necessary to consider the behavior not only of the inclusions
themselves and their morphology, but also in connection with the impurity matrix, which is
the steel microstructure [47–52]. Many papers have presented the results of studies on the
impact of impurities on the fatigue properties of hard matrix steels, for example, bearing
and small-volume steels. There are not many studies analyzing the durability of steels with
a low carbon content and high ductility. These shortcomings also confirm the desirability
of the analysis presented in this paper. Conducting fatigue strength tests is time-consuming
and expensive, especially for melts carried out on an industrial scale. For these reasons,
computer simulations are increasingly carried out in practice [53,54]. These simulations try
to reflect the material manufacturing conditions. However, in order to be able to simulate
industrial production, they should be carried out on the basis of data obtained in industrial
conditions. There are known models and equations that allow one to determine the fatigue
strength as a function of strength from a static tensile test. Because Equation (1) [55]:

zg = m · Rm, (1)

and Equation (2)
Rm = n · HV, (2)

then replacing the coefficients m and n with the coefficient k in Equation (3)

k = zg · HV−1, (3)

where:
zg—fatigue strength, MPa;
m—coefficient of the equation compares the fatigue strength with the static strength;
n—coefficient of the equation compares the tensile strength with hardness;
Rm—tensile strength, MPa;
HV—Vickers hardness, MPa;
k—fatigue strength coefficient.
In industrial practice and for better adaptation of computer programs to determine the

fatigue strength coefficient, on the basis of knowledge of other parameters, stereological
parameters are also used. Many papers have been devoted to the analysis of impurities
present in steel and its fatigue strength. However, only a few papers in the literature
have analyzed the effect of impurities present in industrially produced steel on the factor
k described by Equation (3). An analysis based on an experiment performed in real
conditions on an industrial scale (presented in this paper) is necessary to correctly relate the
fatigue strength to hardness under assumed conditions, particularly at a certain content of
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impurities. Determination of the k coefficient on the basis of the conducted industrial tests
enables a quick and cheap estimation of the fatigue strength of steel based on the impurity
spacing and microstructure, which can represent the tempering temperature.

The main aim of the paper was to determine the fatigue strength coefficient of
steel with different microstructures depending on the size and average distance between
the impurities.

2. Materials and Methods

In order to obtain data that could perfectly reflect the industrial conditions, the tests
were carried out on steel heated in industrial conditions. The tests were carried out on
steel classified as low-carbon steel, although the carbon content of the tested steel lies
on the border of low-carbon and medium-carbon steel. In order to enable the analysis
of the impact of impurities contained in the microstructure matrix of different hardness
and ductility, the steel was subjected to heat treatment consisting of hardening and low,
medium, and high tempering. High purity steel weighing 140 tons was heated in an electric
furnace. For seven independent heats, pig iron with the addition of about 25% of steel
scrap was used each time. After each heating, the metal was lowered into a seven-ton ladle.
Each of the heats was subjected to desulfurization. After the metal crystallization process,
billets of 100 mm × 100 mm were rolled using traditional methods.

Sections were taken from the rolled billets for the analysis of the chemical composition
of steel, microscopic examination, and quantitative and qualitative analysis of the impurities
in the form of oxide inclusions. The chemical composition of steel was tested using the AFL
FICA quantometer, LECO analyzers, and classical chemistry. The volume of impurities on
the surface of the metallographic microsection was divided into groups of sizes from: 2 µm,
5 µm, 10 µm, 15 µm, 25 µm, 35 µm, and 45 µm was assessed at 400×magnification using
the Quantimet video microscope. The real relative volume of inclusions was determined
using chemical extraction methods. The volume of particles with a size of less than 2 µm
was the difference between the total volume of inclusions and the volume of impurities
with a size of 2 µm and larger. During the analysis of the test results, it was found that the
volume of impurities of the Me–S type was below the limit value of the determination error.
It was also the basis for omitting Me–S type inclusions from further analysis. Non-metallic
inclusions of the Me–O type were subjected to further analysis.

The real average chemical composition of the tested steel and its standard deviation
from seven heats is presented in Table 1.

Table 1. Average chemical composition and standard deviation of the tested steel from seven
heats (wt. %).

Chemical Element C Mn Cr Ni Mo Si Cu P S B

Contents 0.26 1.18 0.52 0.50 0.25 0.24 0.15 0.02 0.01 0.003
Standard deviation 0.03 0.19 0.03 0.04 0.02 0.07 0.04 0.003 0.003 0.001

Cylindrical samples with a diameter of 10 mm with symmetry axes arranged parallel
to the direction of plastic working were taken from 100 mm × 100 mm billets. Test samples
were prepared in accordance with the standards of PN-H/74-04327:1974 [56]. Next, the
samples were hardened from the temperature of 880 ◦C. After hardening, the samples
were tempered and cooled in air. The fatigue strength test was carried out on 73 samples
tempered at 200 ◦C, 75 at 300 ◦C, 71 at 400 ◦C, 73 at 500 ◦C, and 74 at 600 ◦C.

The fatigue strength of the steel was determined on the VEB Werkstoffprufmaschinen
rotary bending fatigue strength test machine. The rotational bending speed was 6000 rpm.
Two-sided rotating handles were used. The research were carried out based on the PN-
74/H-04327 standard. The samples were bent to breakage or to 107 cycles. The load on the
samples during the tests was selected experimentally based on the initial fatigue strength
and then the load was made dependent on the tempering temperature of the steel. The
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applied load guaranteed a minimum durability of 104 cycles. The following loads were
applied to the rotationally bent samples: 650 MPa for a tempering temperature of 200 ◦C,
600 MPa for 300 ◦C, 600 MPa for 400 ◦C, 600 MPa for 500 ◦C, and 540 MPa for 600 ◦C.

The arithmetic average distances between non-metallic inclusions λ were calculated
using the following Formula (4):

λ =
2
3

d
(

1
V
− 1

)
(4)

where:
d—average diameter of impurity, µm,
V—relative volume of non-metallic inclusions, %.
The fatigue strength coefficients determined for the tested steel depending on the

tempering temperatures were presented in the general form of Equation (5):

k(tempering temperature) = a · λ + b, (5)

where:
k(tempering temperature)—fatigue strength coefficient depending on the tempering temperature;
a, b—coefficients of the equation;
λ—impurities spacing, µm.
The significance of the regression equation represented by the correlation coefficients

r was checked based on the distribution of the Student’s t function for α = 0.05 and the
degrees of freedom f = n − 1.

The scattering coefficient δ(tempering temperature) for the regression equation
k(tempering temperature) was calculated by Equation (6):

δ(tempering temperature) =
2·s√
1− r2

(6)

where:
s—standard deviation;
r—correlation coefficient.

3. Results

The microstructures of the researched steel after hardening at 880 ◦C and tempering at
different temperatures from 200 ◦C to 600 ◦C are presented in Figure 1: 1a—low tempered
martensite, 1b—medium tempered martensite, 1c—medium tempered martensite with
cementite formations, 1d—sorbitol, 1f—spheroidite.
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Figure 1. Microstructure of the tested steel after being hardened at 880 ◦C and tempered at (a) 200 ◦C,
(b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, and (e) 600 ◦C.

An exemplary distribution of non-metallic inclusions in individual dimensional ranges
for one of the heats is shown in Figure 2.

Exemplary results of the qualitative and quantitative analysis of non-metallic inclu-
sions for one of the melts carried out using XRD are shown in Figure 3.

The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at 200 ◦C, depending on the size and spacing of
impurities λ, is shown in Figure 4.

The regression equation with correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at 200 ◦C are presented in Equation (7).

k(200) = −0.0251 · λ + 0.911 and r = 0.9545 (7)

The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at 300 ◦C, depending on the size and spacing of
impurities λ, is shown in Figure 5.
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Figure 2. An exemplary distribution of non-metallic inclusions in individual dimensional ranges in
the tested steel.
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Figure 3. Exemplary results of the qualitative and quantitative analysis of non-metallic inclusions in
the tested steel.
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Figure 4. Fatigue strength coefficient, k, of tested steel after hardening from 880 ◦C and tempering at
200 ◦C depends on the impurities spacing λ.
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Figure 5. Fatigue strength coefficient, k, of the tested steel after hardening from 880 ◦C and tempering
at 300 ◦C depends on the impurities spacing λ.

Regression equation with correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at 300 ◦C are presented in Equation (8).

k(300) = −0.0247 · λ + 1.3539 and r = 0.9087 (8)
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The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at 400 ◦C, depending on the size and spacing of
impurities λ, is shown in Figure 6.

Regression equation with correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at 400 ◦C is presented in Equation (9).

k(400) = −0.0255 · λ + 1.4253 and r = 0.8023 (9)

The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at 500 ◦C, depending on the size and spacing of
impurities λ, is shown in Figure 7.
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Figure 6. Fatigue strength coefficient, k, of the tested steel after hardening from 880 ◦C and tempering
at 400 ◦C depends on impurities spacing λ.
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Figure 7. Fatigue strength coefficient, k, of the tested steel after hardening from 880 ◦C and tempering
at 500 ◦C depends on impurities spacing λ.

Regression equation with the correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at 500 ◦C are presented in Equation (10).

k(500) = −0.0197 · λ + 1.286 and r = 0.9180 (10)

The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at 600 ◦C, depending on the size and spacing of
impurities λ, is shown in Figure 8.
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Regression equation with correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at 600 ◦C are presented in Equation (11).

k(600) = −0.0212 · λ + 1.3078 and r = 0.8480 (11)

The fatigue strength coefficient determined for rotational bending k of the tested steel
after hardening at 880 ◦C and tempering at all tempering temperatures, depending on the
size and spacing of impurities λ, is shown in Figure 9.
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Figure 8. Fatigue strength coefficient, k, of the tested steel after hardening from 880 ◦C and tempering
at 600 ◦C depends on impurities spacing λ.

Coatings 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 8. Fatigue strength coefficient, k, of the tested steel after hardening from 880 °C and temper-

ing at 600 °C depends on impurities spacing λ. 

Regression equation with correlation coefficient r of the tested steel after hardening 

from 880 °C and tempering at 600 °C are presented in Equation (11). 

k(600) = −0.0212 · λ + 1.3078 and r = 0.8480 (11) 

The fatigue strength coefficient determined for rotational bending k of the tested steel 

after hardening at 880 °C and tempering at all tempering temperatures, depending on the 

size and spacing of impurities λ, is shown in Figure 9. 

 

Figure 9. Fatigue strength coefficient, k, of the tested steel after hardening from 880 °C and temper-

ing for all tempering temperatures depends on impurities spacing λ. 

Regression equation with correlation coefficient r of the tested steel after hardening 

from 880 °C and tempering at all tempering temperatures is presented in Equation (12). 

k(all) = −0.0251 · λ + 1.4041 and r = 0.8454 (12) 

The statistical parameters for the mathematical model (5), correlation coefficients, 

and the degree of dissipation, k, around the regression line are presented in Table 2. 

Table 2. Statistical parameters representing mathematical Equation (5), correlation coefficients, and 

dissipation (6). 

Tempering 

Temperature 

°C 

Correlation 

Coefficient r 

Degree of Dissipation, δ 

(6), Around Regression  

Line (5) 

tα = 0.05 
tα = 0.05 from 

Student’s  

0.6

0.7

0.8

0.9

1

1.1

1.2

10 12 14 16 18 20 22 24 26

F
at

ig
u

e 
st

re
n

g
th

 c
o

ef
fi

ci
en

t 
k

Impurities spacing λ, μm

0.6

0.7

0.8

0.9

1

1.1

1.2

10 12 14 16 18 20 22 24 26

F
at

ig
u

e 
st

re
n

g
th

 c
o

ef
fi

ci
en

t 
k

Impurities spacing λ, μm

Figure 9. Fatigue strength coefficient, k, of the tested steel after hardening from 880 ◦C and tempering
for all tempering temperatures depends on impurities spacing λ.

Regression equation with correlation coefficient r of the tested steel after hardening
from 880 ◦C and tempering at all tempering temperatures is presented in Equation (12).

k(all) = −0.0251 · λ + 1.4041 and r = 0.8454 (12)

The statistical parameters for the mathematical model (5), correlation coefficients, and
the degree of dissipation, k, around the regression line are presented in Table 2.
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Table 2. Statistical parameters representing mathematical Equation (5), correlation coefficients, and
dissipation (6).

Tempering
Temperature ◦C

Correlation
Coefficient r

Degree of
Dissipation, δ (6),

Around Regression
Line (5)

tα = 0.05

tα = 0.05 from
Student’s

Distribution for
p = (n − 1)

200 0.9545 0.0867 7.8402
300 0.9087 0.0605 5.3320
400 0.8023 0.1828 3.2923 2.4469
500 0.918 0.0811 5.6701
600 0.848 0.1048 3.9192
all 0.8454 0.1238 9.2289 2.0452

4. Discussion of the Research Results

The steel analyzed in this paper contained an average of 0.26% C with a standard
deviation of 0.03% (Table 1). Taking into account the traditional division of steel in terms of
the limiting carbon content into low-carbon (up to 0.25% C) and medium-carbon (above
0.25% C), it can be concluded that this steel lies on the border of low-carbon and medium-
carbon steel. Hardening and tempering carried out at different temperatures resulted in
the diversification of the microstructure as well as the microstructure-related properties of
the steel. Microstructures of low, medium, and high tempered martensite were obtained.
The analysis of the share of non-metallic inclusions in steel (Figure 2) indicates the highest
content of impurities above 2 µm. The share of impurities considered in the literature to be
large above 10 µm was much smaller and constituted about 0.06% of the steel volume. This
proves the high purity of the tested material. Quite a high content of impurities was found
for the dimensional range below 2 µm. Their share in the volume of steel was about 0.04%,
but considering their size, one should expect a large number of these inclusions. On the
basis of the XRD analysis, it was found that the highest number of Al2O3 inclusions was
found in the tested steel. For the analyzed melt, their volume was determined to be about
39% of the volume of all impurities. Much smaller shares were found for other impurities
(e.g., about: 18% SiO2, 11% MnO). Other groups of pollutants were below 10% (Figure 3).

By analyzing the fatigue strength coefficient of steel as a function of the size and
impurities spacing λ for individual variants of heat treatment represented by the tempering
temperatures, it was found that the fatigue strength decreased with the increase in λ

(Figures 4–8). A similar relationship was also noted simultaneously for the compilation
of results for all tempering temperatures (Figure 9). It should be emphasized that this
effect was achieved for steel melted in industrial conditions, but still of high purity. In
addition, it should be taken into account that the tested steel contained a large number of
small inclusions. It should also be noted that all of the presented Equations (7)–(12) had
high statistical significance, which was confirmed by the analysis of Table 2. Analyzing
parameter (5) of the regression Equations (7)–(12), a negative slope was found in all
equations. This means that as the value of λ increases, the values of k decrease. High
coefficient correlations among all variants were obtained for hard steels after tempering at
200 and 300 ◦C. Low dispersion coefficients were also obtained for the same parameters.
For the fatigue strength tests, a random distribution of cracks in the tested samples should
be assumed. Nevertheless, it can be concluded with high probability that the fatigue
strength coefficient decreases with the increase in λ. Such a consideration is consistent
with the theory known from the literature, according to which large impurities reduce
the fatigue strength of steel. In the discussed results, the increase in impurities spacing
in connection with the size of non-metallic inclusions λ (4), assuming a constant value of
the volume of impurities in the microstructure, is directly proportional to the size of the
impurities. Thus, when λ is greater, non-metallic inclusions with larger dimensions should
be expected. Large inclusions, on the other hand, cause a reduction in fatigue strength,
and thus the k-coefficient. Analyzing the obtained test results and comparing them with
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the results of other papers, it is necessary to indicate the need for further research on fine
inclusions. These inclusions, due to their small volume and thus low energy, should take
forms similar to spheroids. This may cause an increase in the stacking error energy and
thus enable the slip to be activated, mainly with materials capable of plastic deformation.
A completely different mechanism is to be expected from large inclusions. They will have a
large volume (larger than 10 µm), and therefore energy that may favor the formation of
larger precipitates. In addition, large precipitates will have a greater ability to crack, which
may result in a reduction in the analyzed coefficient k.

5. Conclusions

The research carried out on an industrial scale allowed for:

1. Determination of the fatigue strength coefficient taking into account non-metallic
inclusions for different tempering temperatures;

2. Analysis of the size and impurities spacing of non-metallic inclusions for different
tempering temperatures;

3. Showing that the fatigue strength coefficient can be represented with a sufficiently
high accuracy in the form of a single equation for all tempering temperatures;

4. Indication of the area of future work, namely, the impact of fine particles on the fatigue
strength parameters of steel.
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