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Abstract: The production of hydrogen using electrolysis contributes to the development of more
important renewable energy sources. Nowadays, the synthesis of alloys, which can be successfully
applied as catalysts instead of precious metals, is carefully investigated. One-step electrodeposition is
a surface engineering method that allows for the control of the morphology of the deposit by changing
deposition parameters. It is a simple and low-cost process based on electrochemical synthesis from
electrolytes, usually non-toxic crystal modifiers. In this work, a conical Ni structure on Cu foil
was produced using this technique. The effect of the copper substrate on the morphology of the
developed nanocones was analyzed using a Scanning Electron Microscope (SEM). Then, the catalytic
performance of the synthesized coatings was carefully analyzed based on the results of a linear
sweep voltammetry experiment and the measurements of their wettability and electrochemical active
surface area. The proposed method of Cu treatment, including polishing with sandpapers, influenced
the growth of cones and, consequently, increased the catalytic activity and active surface area of the
Ni coatings in comparison to the bulk Ni sample.

Keywords: electrodeposition; nanocones; crystal modifier; substrate preparation; hydrogen evolution
reaction

1. Introduction

Surface engineering defines all technologies that improve component performance
in different science and engineering applications [1]. However, one of the first steps in
this process is the preparation of a substrate relative to the used method [2]. In the case of
metal surfaces for catalytic applications, surface engineering relies mainly on the behavior
of materials to design the most promising catalysts [3]. Numerical simulations can be
successfully applied to understand some phenomena [4,5]. The importance of surface
preparation on catalytic activity has already been confirmed in [6,7].

Nickel and its alloys are commonly used catalysts in many reactions, such as water-
splitting [8–10], ethanol oxidation [11,12], and CO2 reforming of methane [13,14]. They
can be synthesized in several forms, e.g., bulk coatings [15,16], thin films [17,18], micro-
patterned electrodes [19,20], nanosheets [21,22], and sponges [23,24]. However, the sub-
strate used is also essential in enhancing catalytic performance [25]. The one-step method
is a chemical approach to surface engineering [26]. It is just a simple electrodeposition
process performed in an electrolyte containing an addition of a crystal modifier. This
chemical component is usually a non-toxic substance [27–29]. By blocking the horizontal
direction of growth and promoting the vertical one, conical structures can be synthesized.
The mechanism of their growth is still not well understood. However, it is believed to be
based on the screw-dislocation-driven crystal growth theory [30,31]. Cl− ions are crucial to
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controlling the direction of growth, allowing for the fabrication of cones [32]. By means of
the one-step method, the active surface area of the coating can be easily increased [33].

In this work, the influence of substrate preparation on the morphology and, above all,
on the catalytic activity of Ni nanocones was carefully examined. The novelty of this paper
relates to the detailed investigation of one of the parameters of surface engineering in an
example of the one-step method. In our research, cones grew in all directions, and then
the increase in the value of the active surface area of the conical samples was noticeable.
The received results highlight the importance of the substrate preparation procedure in
synthesizing catalysts.

2. Materials and Methods

Copper foil, with a thickness of 0.3 mm, was chosen as a substrate for the deposition
of Nickel coatings. The surface of the Cu plates was 2.8 cm2. Before the deposition, the
procedure of copper preparation was investigated. Chemical etching was performed in a
mixture of H3PO4, HNO3, and CH3COOH concentrated acids in a 1:1:1 volume ratio at
80 ◦C. The chosen substrates were polished with 400-, 800-, and 1200-grit sandpapers. The
procedure for their polishing was repeated always in the same way.

The deposition of Nickel samples was performed in a two-electrode cell with a Cu
working electrode (WE) and Pt foil as a counter electrode (CE). The pH of the electrolyte
containing the crystal modifier was 4. A bulk sample refers to a Nickel coating electrode-
posited from the electrolyte without adding the crystal modifier. The parameters of the
electrochemical deposition are listed in Table 1. The deposition was performed using an
SP200 BioLogic potentiostat (Seyssinet-Pariset, France).

Table 1. Parameters of the bulk and structured Ni coatings.

Coating
Composition of Electrolyte [g/L]

Time [min] Current Density
[mA/cm2]

Temperature
[◦C]NiSO4·7H2O NiCl2·6H2O H3BO3 NH4Cl

Bulk 200 - 40 - 10
10

Room
Conically
structured - 200 100 20 5 60

The influence of the Cu substrate preparation was analyzed based on microstructure
observations performed using the Optical Microscope Nikon Elipse LV150 (Nikon, Tokyo,
Japan) at a magnification of ×100.

Top-view images of the bulk coatings were taken using SEM JEOL-6000 Plus (Tokyo,
Japan). The detailed morphology of the conical structures was investigated using a Hitachi
SU-70 SEM (Hitachi, Tokyo, Japan) Scanning Electron Microscope (SEM). All the specimens
were 40◦ tilted during SEM observation to visualize the deposited cones better. The
chemical compositions of the conical Ni coatings were analyzed using SEM JEOL-6000 Plus
equipped (JEOL, Tokyo, Japan) with an Energy Dispersive X-ray Spectrometer (EDS). The
SEM images (top views and tilted) were analyzed using the Image J software to determine
the number of cones per 1 µm2 and their height. The roughness of the polished substrates
and conical samples was characterized using Atomic Force Microscopy (AFM) NTegra Aura
NT MDT (Moscow, Russia) in a semicontact mode using an NSG03 tip. X-ray diffraction
(XRD) of the Ni cones deposited on the etched Cu was performed with a Rigaku MiniFlex
II apparatus (Tokyo, Japan).

All the electrochemical experiments, i.e., the CV scans and linear sweep voltammetry
(LSV), were performed with an SP300 BioLogic potentiostat (Seyssinet-Pariset, France). The
geometric surface of the samples was 0.79 cm2. The electrochemical active surface area
(ECSA) measurements were based on performing CV at a very tight range of potentials,
where no currents connected with the reaction on the electrodes would be registered, just
the ones from the loading of the double-layer. The registered changes in the double-layer
capacity (CDL) with the CV scan rate allowed for the determination of the ECSA. The
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measurements were performed in a 1 M NaOH solution. The catalytic activity was analyzed
in a three-electrode cell with the Ni coating as a working electrode, a Pt foil as the anode,
and a Saturated Calomel Electrode (SCE) as the reference electrode. The linear sweep
voltammetry (LSV) measurements ranged from the Open Circuit Potential (OCP) value to
1.5 V vs. the SCE in the non-stirred 1 M NaOH solution. The scan rate was equal to 5 mV/s
The onset potential (EONSET) values, at which hydrogen evolution started were determined,
were determined based on the obtained curves. The stability of the conical electrodes was
analyzed with the chronoamperometry technique by applying 1.3 V for 120 min.

The wettability measurements were performed using a high-speed camera Model:9501
with the HiBestViewer 1.0.5.1 software. A 10 µL droplet of deionized water was applied
four times to the surface of each sample. The contact angle was determined through contour
analysis utilizing the Image J software version 1.8.0. The measurements were performed
on freshly deposited coatings.

3. Results and Discussion
3.1. Procedure of Substrate Preparation

Copper has been successfully used as a substrate for the deposition of cones in [32,34].
However, the influence of its preparation on the conical structures was not investigated in
these works.

3.1.1. Chemical Etching

Chemical etching was performed from 0 to 60 s. This process allows for the removal
from the substrate surface of oxides and impurities originating from the production and
transport processes. Photos of the Cu substrates before and after chemical etching are
shown in Figure 1.
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Based on the photos taken, it can be assumed that 30 s of chemical etching smoothens
the surface by removing scratches developed by the producer during the rolling process.
Increasing the etching time results in hole formation, as is visible in the left-down corner
in Figure 1f. The etching time was set to half a minute for the next step of the preparation
procedure.

3.1.2. Polishing

To increase the surface of a substrate and activate the growth on the boundaries, the
Cu was polished using sandpaper with different grits. All the photos of the substrates are
shown in Figure 2.
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Figure 2. Copper substrates after (a–d) 30 s of chemical etching and polishing with (b) 400-, (c) 800-,
and (d) 1200-grit sandpapers. The scale bar is 100 µm.

As shown in Figure 2b–d, the applied polishing produced scratches on the surface
compared to Figure 2a. They are deeper for the lower grit of the sandpaper. The bulk and
structured Ni coatings were deposited on each substrate, as shown in Figure 2.

Additionally, the roughness of the polished substrates was investigated using the
AFM method. 3D images are shown in Figure 3. The scanned area was 20 µm × 20 µm.
The average surface roughness Sa was determined. It is calculated as the arithmetic mean
height difference of each point to the average height of the surface.

The images, as expected, show the scratches visible in Figure 2. The lower the grit
of the sandpaper, the more scrapes are visible. The roughness values obtained for the
polished substrates are the following: 195.4 nm, 235.8 nm, and 75.5 nm for the samples
polished with 400-, 800-, and 1200-grit sandpaper, respectively. It means that the shallowest
scratched lines were made with the 1200-grit sandpaper and the deepest with the 800-grit
one. However, the difference between the scratches produced with 400 and 800 grits is
about 40 nm. This variety is probably connected to the chosen area on the substrate and
has an approximate character.
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Figure 3. 3D images of the substrates, polished with (a) 400-, (b) 800-, and (c) 1200-grit sandpaper,
acquired using the AFM.

3.2. Synthesis of Ni Cones

Nickel coatings were deposited as described in the Section 2. The difference in the mor-
phology of the coatings was analyzed based on the SEM photos. The chemical composition
of the samples had been measured and compared before using the EDS and XPS methods.
The results are described in [35,36]. Both the bulk and conical coatings are composed of
metallic Ni and its oxide on the surface. The presence of Ni/NiO on the surface is desirable
to increase catalytic performance.

3.2.1. Bulk Coatings

The Ni bulk coatings were first deposited on the etched Cu substrates, as shown in
Figure 4.
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Figure 4. Ni bulks deposited on (a,b) chemically etched Cu substrates.

As shown in Figure 4, the deposited bulk coatings are flat. The measured average
roughness of this coating is about 64 nm [36].
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3.2.2. Nickel Cones

Generally, the synthesis of cones is desirable to increase the active surface area and,
consequently, enhance the catalytic properties of coatings. Ni cones are usually electrode-
posited as a mix of smaller and bigger sharp-ended deposits [32]. Conical structures were
deposited on the etched and polished substrates (Figure 2). The SEM observations of the
Ni cones performed on tilted samples are shown in Figure 5. The chemical composition of
the Ni cones synthesized on different substrates was analyzed using the EDS. The results
are listed in the Supplementary Materials (Table S1). There is no influence of the applied
procedure of substrate preparation on the content of Ni, O, and Cl. The chlorine content
is within the margin of error. Moreover, an XRD analysis was performed (Figure S1). The
obtained diffraction pattern confirmed the synthesis of cubic Ni.
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It can be noticed that, in the case of conical structures, 5 min of deposition is enough to
cover the scratches made with the 1200-grit sandpaper (Figure 5g,h). However, the cones
are better developed than the ones deposited on the just-etched substrate (Figure 5a,b). For
the conical structures synthesized on the Cu substrates polished with 400-(Figure 5c,d) and
800 (Figure 5e,f)-grit sandpapers, the cones were growing in all directions which should
significantly increase the active surface area. A few developed structures are especially
visible in the left corner of Figure 5f. To compare the coatings’ morphology, the number
and height of the cones were determined based on the SEM photos, as shown in Figure 6.
To count the structures, three squares of 2 µm × 2 µm were drawn in the top-view photo.
Then, the number of tips in each figure was noted and divided by four, and the results are
listed in Table 2. The tilted photo was chosen to measure the height of the 20 cones.
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Table 2. Influence of the substrate preparation on the number of cones and their height.

Coating Deposited on
Cu Substrate Number of Cones per 1 µm2 Height of Cones [nm]

Etched 11 ± 1 463 ± 126
Etched and polished (400 grit) 12 ± 1 499 ± 98
Etched and polished (800 grit) 14 ± 2 510 ± 85

Etched and polished (1200 grit) 16 ± 1 545 ± 119

Based on the obtained results, the higher the value of the paper grit, the higher the
height of the cones. Moreover, the higher the grit of the sandpaper, the more cones were
deposited. This suggests that the scratches act as areas of nucleation of the deposits.
Compared to the results obtained in [32], the conditions applied in this work allowed for
the deposition of more cones per 1 µm2 for most cases.

The roughness of the coatings was also measured for the Ni cones deposited on the
polished substrates (Figure 7).
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Figure 7. AFM images of Ni cones deposited on Cu substrates polished with (a) 400-, (b) 800-, and
(c) 1200-grit sandpapers.

The values of Sa determined based on Figure 7a, b and c are 33.5 nm, 133.4 nm, and
90.9 nm, respectively. The lowest value was obtained for the substrate polished with the
400-grit sandpaper. On this substrate, the conical structures grew in all directions, as
shown in Figure 5d. It means that, during the AFM scans, instead of analyzing a cone’s
tip, its sidewall was detected. In the case of the higher grit (800), the cones were also
growing upwards. For these cones, the difference between the measured point and the
average height of the surface was the largest. There were no visible scratches for the sample
deposited on a substrate polished with 1200 grit, meaning that the measured roughness is
related to the cones. However, many fine structures are visible (Figure 5h).
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3.3. Catalytic Activity
3.3.1. Active Surface Area

One of the crucial factors determining the catalytic activity of catalysts is their active
surface area. As mentioned, the aim of the synthesis of conical Ni structures is the de-
velopment of this site. The electrochemical active surface area (ECSA) was determined
using Helmholtz double-layer capacitance (DLC) measurements during the CV scans, as
described in [37]. In this work, the CV scans were performed for a narrow range of scan
rate values, from 0.02 to 0.2 V/s.

The ECSA can be calculated based on the following equation:

ECSA = CDL/C (1)

CDL is the double layer’s capacity, and C is the capacitance of a catalyst’s ideal flat sur-
face, commonly assumed to be 0.04 mF/cm2 [35,37]. CV scans allow for the determination
of the current values in the function of the scan rates (Figure 8). The slope of the obtained
curve is equal to the value of the CDL. The results for the coatings synthesized in this work
are listed in Table 3.

Coatings 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

determination of the current values in the function of the scan rates (Figure 8). The slope 
of the obtained curve is equal to the value of the CDL. The results for the coatings synthe-
sized in this work are listed in Table 3.  

 
Figure 8. Dependency between the charging currents and scan rates for the Ni cones synthesized on 
the etched Cu substrate. The linear trendline is marked with its slope in the graph. 

Table 3. Results of the ECSA measurements. 

Sample Substrate Preparation ECSA [cm2] 
Ni bulk Etched 0.7 

Ni cones 

Etched 2.1 
Etched and polished (400 grit) 2.2 
Etched and polished (800 grit) 2.5 
Etched and polished (1200 grit) 5.1 

The geometric surface of sample Sg was 0.79 cm2. As listed in Table 3, the synthesis of 
conical structures, especially on the Cu substrate etched and polished with 1200 grit, in-
creased the active surface area of the coatings. The higher the grit, the higher the active 
surface area. This can be related to the increased number of cones (Table 2). The value for 
the Ni bulk is slightly smaller than the geometric one, probably because of the approxi-
mate character of this determination, i.e., C = 0.04 mF/cm2. 

3.3.2. Wettability 
Wettability is an essential factor in a hydrogen evolution reaction. The decrease in the 

value of the contact angle results in the evolution of smaller bubbles [38]. The bulk coating 
showed a hydrophobic character with a contact angle equal to 112° ± 3°. The received 
result complies with previous research [39], where Ni coatings were deposited from three 
electrolytes and showed hydrophobic properties.  

The same analyses were performed for the conical structures synthesized on just 
etched and polished surfaces (Figure 9). 

Figure 8. Dependency between the charging currents and scan rates for the Ni cones synthesized on
the etched Cu substrate. The linear trendline is marked with its slope in the graph.

Table 3. Results of the ECSA measurements.

Sample Substrate Preparation ECSA [cm2]

Ni bulk Etched 0.7

Ni cones

Etched 2.1
Etched and polished (400 grit) 2.2
Etched and polished (800 grit) 2.5
Etched and polished (1200 grit) 5.1

The geometric surface of sample Sg was 0.79 cm2. As listed in Table 3, the synthesis
of conical structures, especially on the Cu substrate etched and polished with 1200 grit,
increased the active surface area of the coatings. The higher the grit, the higher the active
surface area. This can be related to the increased number of cones (Table 2). The value for
the Ni bulk is slightly smaller than the geometric one, probably because of the approximate
character of this determination, i.e., C = 0.04 mF/cm2.
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3.3.2. Wettability

Wettability is an essential factor in a hydrogen evolution reaction. The decrease in the
value of the contact angle results in the evolution of smaller bubbles [38]. The bulk coating
showed a hydrophobic character with a contact angle equal to 112◦ ± 3◦. The received
result complies with previous research [39], where Ni coatings were deposited from three
electrolytes and showed hydrophobic properties.

The same analyses were performed for the conical structures synthesized on just
etched and polished surfaces (Figure 9).
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Figure 9. Wettability of Ni cones.

As expected, the values of the determined contact angles for the Ni cones are higher
than for the bulk coating [35]. There is no clear influence of the polishing process on this
value. However, the lowest angle value with the lowest standard deviation was noted for
the sample deposited on the Cu substrate polished with 1200-grit sandpaper. As shown in
Figure 5g,h, there are no scratches visible anymore on the sample surface, and the cones are
better developed than the ones synthesized on the etched Cu (Figure 5a,b). Furthermore,
the contact angle is slightly higher for this coating. Moreover, the slightly higher wettability
of the sample polished with the 800-grit sandpaper is in accordance with the roughness
measurements.

3.3.3. Hydrogen Evolution Reaction

Nickel and its alloys are well known for their catalytic activity in hydrogen evolution
reaction (HER) [40–47]. In this work, the catalytic performance of the Cu substrate was not
investigated. Before each LSV measurement, the ohmic drop determination technique was
applied. This method allows for the IR determination and compensation by means of the
impedance measurement technique (ZIR).

The LSV curves for all the synthesized coatings are shown in Figure 10. The geometric
surface was considered for all the samples to determine the current density.

As expected, the synthesis of Ni in conical structures increased the coatings’ catalytic
performance. The best catalytic activity was shown in the sample deposited on the substrate
etched and polished with the 400-grit sandpaper. However, there is no clear dependency
between the preparation of the Cu substrate and the activity of the cones. During intensive
evolution, hydrogen bubbles were probably trapped between the cones synthesized on the
polished samples. This phenomenon can influence the results of the hydrogen evolution.
Indeed, stuck bubbles can block the surface of the electrode and, therefore, its further
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reaction. But, even if the catalytic performance was worsened due to the blocking of the
active sites, the Ni catalyst, synthesized on the Cu etched and polished with 1200-grit
sandpaper, showed a better activity than the bulk Ni electrode.
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The values of the ONSET potential, at which hydrogen evolution started, are listed in
Table 4. To determine the values of this potential, two tangents were plotted on the curve of
the potential dependence on the current density (Figure 10). The point of their intersection
indicates the ONSET potential (Figure S2).

Table 4. Values of the determined EONSET.

Sample Substrate Preparation EONSET [V]

Ni bulk Etched −1.33

Ni cones

Etched −1.25
Etched and polished (400 grit) −1.26
Etched and polished (800 grit) −1.26
Etched and polished (1200 grit) −1.29

The earliest evolution of hydrogen was observed on the Ni cones deposited on the
etched substrates. This process began last for the bulk coating. Therefore, the etching of Cu
is the best way to prepare the substrate for the deposition of a suitable conical Ni catalyst.

Moreover, the stability of the Ni cones deposited on the etched Cu was investigated in
1 M NaOH. The obtained curve is shown in Figure 11.

The result of the stability test confirms that conical Ni structures are a suitable material
for a catalyst in an HER.



Coatings 2023, 13, 2067 12 of 14

Coatings 2023, 13, x FOR PEER REVIEW 14 of 17 
 

 

Moreover, the stability of the Ni cones deposited on the etched Cu was investigated 
in 1 M NaOH. The obtained curve is shown in Figure 11. 

 
Figure 11. Results of chronoamperometry measurements for the Ni cones deposited on the etched 
Cu substrate. 

The result of the stability test confirms that conical Ni structures are a suitable mate-
rial for a catalyst in an HER.  

4. Conclusions 
Nickel cones can be successfully produced on Cu substrate using the one-step 

method. However, the influence of substrate preparation on the quality of Ni cones has 
not been investigated before. After choosing the proper chemical etching time, Cu foil was 
also polished with sandpaper. SEM observations were performed to compare the mor-
phology of the developed Ni deposits, as well as their size and number. Smaller and larger 
cones were produced, growing in all directions, on the scratches after polishing. The evo-
lution of such morphology suggests an increase in active surface area. The double-layer 
capacitance measurements confirmed this observation, however, without the evident in-
fluence of the polishing process. The wettability of the samples was also determined. All 
the coatings showed hydrophobic properties. The results of hydrogen evolution confirm 
the enhancement of catalytic properties due to the conical shape of the deposits. However, 
they are not significantly influenced by substrate preparation. The main obstacle in the 
case of polishing the substrate seems to be the further blocking of nucleating hydrogen 
bubbles between the cones. Therefore, etching is a sufficient procedure for surface prepa-
ration. Generally, substrate preparation procedures can significantly influence the depo-
sition of cones of other metals and alloys and should always be considered. 

Supplementary Materials: The following supporting information can be downloaded at 
www.mdpi.com/xxx/s1: Table S1: Chemical compositions determined by the EDS technique. Figure 
S1: XRD diffraction pattern of the conical Ni coating deposited on the etched Cu substrate. Figure 
S2: Determination of the ONSET potential. 

0 2000 4000 6000 8000
−10

−8

−6

−4

−2

0

C
ur

re
nt

 d
en

si
ty

 [m
A/

cm
2 ]

Time [sec]

Figure 11. Results of chronoamperometry measurements for the Ni cones deposited on the etched
Cu substrate.

4. Conclusions

Nickel cones can be successfully produced on Cu substrate using the one-step method.
However, the influence of substrate preparation on the quality of Ni cones has not been
investigated before. After choosing the proper chemical etching time, Cu foil was also
polished with sandpaper. SEM observations were performed to compare the morphology
of the developed Ni deposits, as well as their size and number. Smaller and larger cones
were produced, growing in all directions, on the scratches after polishing. The evolution of
such morphology suggests an increase in active surface area. The double-layer capacitance
measurements confirmed this observation, however, without the evident influence of the
polishing process. The wettability of the samples was also determined. All the coatings
showed hydrophobic properties. The results of hydrogen evolution confirm the enhance-
ment of catalytic properties due to the conical shape of the deposits. However, they are not
significantly influenced by substrate preparation. The main obstacle in the case of polishing
the substrate seems to be the further blocking of nucleating hydrogen bubbles between
the cones. Therefore, etching is a sufficient procedure for surface preparation. Generally,
substrate preparation procedures can significantly influence the deposition of cones of
other metals and alloys and should always be considered.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/coatings13122067/s1: Table S1: Chemical compositions determined
by the EDS technique. Figure S1: XRD diffraction pattern of the conical Ni coating deposited on the
etched Cu substrate. Figure S2: Determination of the ONSET potential.
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34. Skibińska, D.; Kutyła, K.; Kołczyk-Siedlecka, M.M.; Marzec, R.; Kowalik, P.Ż. Synthesis of conical Co-Fe alloys structures obtained
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