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Abstract: This study aims to explore the effects of ultrasonic impact parameters on the surface
modification of a stainless steel coating deposited on a medium-carbon low-alloy steel using argon
arc surfacing welding. Ultrasonic impact treatment (UIT), at three different vibration strike numbers
(40,000 times/(mm2), 57,600 times/(mm2), and 75,000 times/(mm2)) marked UIT–1, UIT–2, and
UIT–3, respectively, was carried out to modify the surface structure and properties of the stainless
steel coating. The surface morphological and structural features, phase compositions, grain size,
topography, micro-mechanical properties, as well as the wear resistance of the coating before and
after UIT with different impact parameters were experimentally investigated. The results of optical
microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and
X-ray diffraction (XRD) analyses revealed that the grain refinement accompanied by the formation of
the strain-induced α′–martensite occurred on the UIT-treated coating surface. With the increase in
the vibration strike number, the surface grain size and roughness decreased, while the α′–martensite
content increased. Micro-hardness after UIT was increased by about 19% (UIT–1), 39% (UIT–2),
and 57% (UIT–3), and the corresponding wear rate obtained was decreased by 39%, 72%, and 85%,
respectively. Significant improvements in wear resistance were achieved using UIT. However, an
excessive vibration strike number on the per unit area (/mm2) might result in unwanted micro-cracks
and delamination on the treated surface, deteriorating the performance of the coating. These findings
validate that UIT parameters (such as the vibration strike number on per unit area) are of great
importance to bringing about improvements in wear performance, and UIT is found to have a high
potential in modifying the surface characteristics and optimizing the mechanical performances of the
deposited coating for a wide range of potential applications.
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1. Introduction

As one of the key parts of diesel engines, camshaft is inevitably subjected to changes
in extrusion stress and friction from the tappet; therefore, it is prone to wear during the
service process, greatly affecting the performance and life of diesel engines. As far as
different kinds of bearings, sealing valves, etc., are concerned, common failure modes are
also related to wear, which significantly decreases the serviceability limit and the effective
utilization of these components [1–3]. Previous studies have suggested that most wear fail-
ures of valves and bearings, usually originating or initiating on their surface and gradually
propagating to the interior, are sensitive to surface performance and microstructure [4,5].
Generally, excellent surface wear resistance can effectively improve the surface durability of
substrate materials in a desirable way and be obtained by means of coating and deposition
technologies, such as physical and chemical vapor deposition [6], electro-deposition [7],
laser cladding [8], thermal spraying [9], surfacing [10], and so on. As an effective coating
technology, surfacing has a stronger designability in terms of coating chemical composition,
high cladding efficiency, low dilution rate and cost, good applicability, and large-scale
interface with excellent metallurgical binding to the substrate. To date, surfacing has
been widely applied in gears, gear shafts, various valves, etc., to repair worn surfaces or
manufacture coatings with excellent properties on vulnerable valve surfaces for wear pro-
tection. Deposited coatings with a dense microstructure and outstanding surface properties
can considerably decrease wear failure risks and effectively prolong the serving life of
these components.

According to their chemical composition, commonly used wear-resistant surfacing
materials essentially include five classification groups: iron-based alloys, cobalt-based
alloys, nickel-based alloys, copper-based alloys, and tungsten carbides [11–13]. Compared
with other surfacing materials, iron-based alloys, showing distinct advantages such as
a simple process, little pollution, low cost, high impact and wear resistance, and good
weldability and processability, have been widely used in surfacing applications [14,15].
The desired performance of the deposited coating can be achieved through adjusting the
composition of iron-based alloy surfacing materials within a wide range. The excellent
wear resistance of an iron-based surfacing coating is largely dependent upon the kind,
quantity, size, morphology, and distribution of the hard phase (carbide or boride) contained
in the coating. So far, a variety of iron-based wear-resistant alloys have been developed
and manufactured, namely Fe–Cr–C, Fe–Cr–B, Fe–Cr–B–C, Fe–Cr–C–V, Fe–Cr–W–V–B,
Fe–Cr–Mo–B, Fe–C–Cr–Nb–B, and Fe–Mn–Cr–Mo–V [16]. However, due to the steep
thermal gradient resulting from the heating of a highly concentrated heat source and its
subsequent cooling, welding tensile stress and deformation are inevitable during surfacing.
The existence of tensile stress decreases the tensile load capacity, affects the dimension and
utilization of the components in some strict situations, and even initiates a micro-crack
between the deposited layer and the substrate. Therefore, subsequent post-weld treatment
after surfacing is desperately desired.

To achieve further enhancements in surface performance, surface treatment tech-
niques, such as laser shock processing (LSP) [17], mechanical shot peening (MSP) [18],
machine hammer peening (MHP) [19], shot peening (SP) [20,21], surface mechanical attri-
tion treatment (SMAT) [22], and ultrasonic impact treatment (UIT) [23,24], have been put
forward and attracted considerable attention in various surface protection applications.
These methods can provide the treated materials with superior mechanical properties
by contributing to refining grain, improving hardness, prompting phase transformation,
generating work hardening, changing surface topography, inducing residual compressive
stress, and restraining the crack initiation of the treated materials. Among these different
approaches, UIT, based on severe plastic deformation and unrestricted by materials, geo-
metric dimension, form feature, and the application situation of the treated material and
component, shows significant advantages in terms of its simple equipment, easy operation,
low utilization and maintenance costs, larger residual compressive stress, better process
controllability, and a more uniformly treated surface. UIT is considered to be the most
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economic and effective process, particularly in the case of welded parts and components
to eliminate residual stress [25,26], fabricate composite coatings with gradient structure,
enhance the bonding strength at the interface between the coating/weld and substrate,
improve fatigue resistance, and prolong service life [27,28]. UIT processing is very similar
to traditional ultrasonic shot peening but instead of using impact balls, it uses a hemispher-
ical impact needle(s) applied directly to the target materials at a high frequency of more
than 20 kHz, so that the substrate is subjected to severe plastic deformation on its surface.
Under the repeated high-frequency, high-energy impact of the impact needle(s), sustainably
formed severe regional plastic deformation, surface microstructure evolution, and residual
compressive stress are introduced in the treated region of the substrate [29,30]. In this case,
the desired residual compression stress and deformation can be achieved through adjusting
the impact parameters [31].

Up until now, owing to its efficiency, low cost, and minimum geometrical restriction,
UIT has been shown to be a very promising technique to use for surface enhancement, and
the effects of this on the wear properties of the stainless steel coating have been extensively
studied globally. Research on the increased wear resistance of 16MnR steel [30], Ti–6Al–4V
alloy [32], 316L stainless steel [24], AZ31B magnesium alloy micro-arc oxidation composite
coating [33], and Al0.5CoCrFeMnNi high-entropy alloy coatings [34] induced with UIT has
been reported, and many of these studies found that the improvements in wear resistance
can be attributed to the following two reasons: the modification of surface topography and
the synergistic effects of grain refinement and hardness enhancement. It is more effective
to design a coating with a gradient structure in order to achieve excellent tribological
properties [11]. Nevertheless, most of these studies focused on the effects of UIT on the
surface performances of alloys and metallic substrate, whereas limited research has been
devoted to the increased surface modification and strengthening mechanism of coatings
induced with UIT. In addition, the information available regarding the application of UIT
in surfacing and coating engineering is lacking, even though surfacing has undergone very
extensive applications in the manufacture and maintenance of mechanical components.
Therefore, evaluating the surface modification of coatings with a high reliability and long
service life induced with UIT is an interesting topic and of great significance for exploring
the potential domain of UIT, as well as surface protecting and hardening applications.

In light of the challenges described above, this study aims to evaluate the effects of
impact parameters on the microstructure, performance, and wear resistance of the surfac-
ing layer deposited on the camshaft. In our previous study [23], a stainless steel coating
was deposited and sequentially surface-modified on a low-carbon steel substrate using a
combination of argon arc overlaying and UIT technology. Based on these results, the effects
of variations in UIT parameters on the surface modification of cladding coatings were
further investigated. The relation between the impact parameters and surface microstruc-
ture, roughness, micro-mechanical performance, as well as wear resistance obtained from
different parameters was experimentally studied in detail. Moreover, the corresponding
wear mechanism has also been discussed in terms of the modification of surface morpho-
logical and wear properties. This study attempts to elucidate the surface modification of
the microstructure and tribological performances of a stainless steel coating subjected to
UIT at different parameters, which is of great significance for improving the poor surface
wear resistance, especially for these mechanical parts, such as bearings and shafts in auto-
mobile, turbine blades, and landing gears in aerospace, where surface properties (especially
tribological features) are crucial. The results obtained in this study could contribute to a
breakthrough in the limited research on the influences of UIT on the tribological behavior
of coatings, a field which expects an exploration of the potential application of UIT for
improving surface performance in surface protecting and strengthening engineering.
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2. Experimental Procedures
2.1. Materials

A medium-carbon low-alloy structural steel plate, 40Cr (standard GB/T 3077 [35],
purchased from Honghuida Commercial and Trading Co. Ltd., Dalian, China, equivalent
to 41Cr4 EN ISO 683–1: 2018–09 [36]) was chosen as the substrate, and the chemical
composition is outlined in Table 1. Before surfacing, the substrate plate was machined
into rectangular samples with dimensions of 100 mm × 100 mm × 10 mm, followed by
mechanical grinding and cleaning with acetone on the substrate surface to remove oil and
impurities. The surfacing materials used were self-designed multi-component stainless
steel flux-cored wires (FCWs), and the chemical composition of the cored powder for the
stainless steel FCWs is shown in Table 2. According to the determined chemical composition
of the cored powder, raw metal powders were mechanically alloyed in a SX–2 high-energy
planetary ball mill (Tianchuang Powder Technology Co., Ltd., Changsha, China), cleaned,
filtered, dried, and set aside. The stainless steel FCWs were prepared through filling,
compacting, drawing, and rolling sequentially with thin-walled 304 stainless steel seamless
pipes employed as the outer skin. The detailed preparation process is outlined in [23].

Table 1. Chemical composition of substrate in weight %.

C Cr Ni Mn Si Mo S P Cu Fe

0.37–0.44 0.8–1.1 <0.3 0.5–0.8 0.17–0.37 <0.1 <0.035 0.035 ≤0.25 Bal.

Table 2. Chemical composition of the cored powder for the stainless steel FCWs in weight %.

C Cr Ni Mn Si Mo B Re Fe

0.03 <15.5 <8.0 1.0~1.2 0.45~0.55 1.5~2.0 <4.5 <0.05 Bal.

2.2. Surfacing and UIT Experiments

The stainless steel coating was deposited with conventional gas tungsten arc welding
(GTAW). Due to the poor weldability of the substrate, a preheating treatment was carried
out, and the preheating temperature was kept uniform from start to finish during surfacing.
To meet the size requirements of the test specification of the sample preparation, multi-pass
surfacing processing was adopted. The detailed surfacing conditions are shown in Table 3.

Table 3. Processing parameters of GTAW.

Parameters Conditions

Power polarity Direct current straight polarity (DCSP)
Gas flow (L/min) 12–15

Welding current (A) 150–180
Tungsten diameter (mm) 3.2

Inter-pass temperature (◦C) 100–150
Preheat temperature (◦C) ~150
Welding speed (mm/min) 80–120

The macroscopic appearance of the cladding coating after surfacing is shown in
Figure 1. It can be seen that the deposited coating with a dense structure is well bonded
to the substrate. There are no obvious pores, micro-cracks, or other defects observed
in the interface between the coating and substrate and its vicinity region. Subsequently,
UIT processing was carried out on the deposited coating surface using HY–2050 equip-
ment (manufactured by Shandong Huayun Electromechanical Technology Co., Ltd., Jinan,
China), as shown in Figure 2. This UIT equipment mainly consists of an output power
supply of approximately 1.5 kW and an ultrasonic generator with a working frequency
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of approximately 20 kHz, and the two are connected with a cable. The ultrasonic gen-
erator consists of a piezoelectric ceramic transducer, a step-like ultrasonic horn, and a
tungsten carbide spherical impact tip mounted on the horn tip. During UIT processing,
the ultrasonic oscillator signal generated by the ultrasonic generator is converted into
ultrasonic mechanical vibration by the ultrasonic transducer and then amplified using the
ultrasonic amplifying rod and transmitted to the impact head. Under the static pressure
and high-power ultrasonic drive, the impact head acts directly on the coating surface tens
of thousands of strikes per second and moves between the horn tip and the treated coating
surface freely.
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Figure 2. Schematic and instruments of UIT system.

To assure the stability and uniformity of UIT and provide the most reliable impact
results, UIT experiments were carried out on a numerical control machine system, as shown
in Figure 3. During UIT processing, the impact tip (a tungsten carbide ball with a diameter
of 2.38 mm) was attached to the ultrasonic device scans over the coating surface to be
treated at a high striking frequency of 20 kHz. A self-designed guideway-sliding block
mechanism employed as a positioning and clamping device was fixed to the numerical
control machine and controlled the movements of the impact gun along with the impact tip.
To obtain effective contact between the impact tip and the coating surface, a constant static
load (generally 10 N to 50 N) was applied to the impact tip against the coating surface,
driving the impact tip into the coating surface. Considering the synthetic action of impact
parameters, such as the static load, amplitude (ranges from 10 to 50 µm), scan speed, and
intervals, between neighboring scans on the stability and uniformity of the impact results,
“vibration strike numbers N on per unit area (/mm2)” was applied and taken as the impact
parameter indicator. The number of vibration strikes N (in times/mm2) of the coating
surface to be treated relates to the applied ultrasonic frequency f, and the relationship
between the two is provided in Equation (1) below.

N =
60× f
υ× S

(1)
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where υ (in mm/s) is the feed velocity of impact tip and S (in mm/rev) is the feed of
the main shaft of the ultrasonic vibratory device. Based on previous findings outlined
in [23] and data collected after many attempts, for the sake of generating analysis results
accurately and reliably, three groups of impact parameters designated UIT–1, UIT–2, and
UIT–3 with different vibration strike numbers were determined, and they are presented in
Table 4. The UIT experiment was performed under the condition of a static load of 30 N,
and an amplitude of 50 µm was employed.
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Table 4. Parameters of UIT processing.

No. Vibration of Strike
Number (Times/mm2)

Feed Rate
S (mm/rev)

Feed Speed
ν (m/min)

Time
t (min)

Current
I (A)

UIT–1 40,000
0.05

36 15
1.4–1.6UIT–2 57,600 25 25

UIT–3 75,000 20 45

2.3. Surface Morphological and Structural Characterization

The cross-sectional microstructure of the samples was observed using optical mi-
croscopy (OM, Axio Vert.A1, Carl ZEISS, Jena, Germany) and scanning electron microscopy
(SEM, Zeiss Supra 55, Carl Zeiss AG, Oberkochen, Germany) equipped with electron
backscatter diffraction (EBSD). The microstructure evolution of the coating surface layer
was analyzed using EBSD. The surface phase component and grain size of the coating
were investigated using an X-ray diffractometer (Rigaku D/max–2400, Rigaku Corporation,
Tokyo, Japan) with Cu–Kα radiation. According to the XRD results, the content of the
deformation-induced α′–martensite volume fraction (in vol.%) can be estimated using the
direct contrast method, and the average grain size can also be determined based on the
Scherrer and Wilsone equation [37,38]. The surface roughness before and after UIT with
different parameters was measured using an ET4000A probe roughness profiler (produced
by Kosaka Co., Ltd., Tokyo, Japan). During the experiment, surface roughness Ra was
measured along three different straight test paths (length about 6 mm) on the coating
surface in the width direction using standard [39] and was selected as the assessment
indices. The average obtained value of Ra was taken as the result.

2.4. Characterization of Tribological Properties

The friction and wear performances before and after UIT with different parameters
was evaluated on an MRH–5A-type tester machine (supplied by Yihua Tribology Testing
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Technology Co., Ltd., Jinan, China) under oil-lubricated conditions at room temperature.
Figure 4 shows the upper and lower friction counterpart pairs used in the wear experiment.
A ring-shaped GCr15 steel with a thickness of 10 mm was employed as the upper friction
counterpart pair. The coating samples machined into an annulus with the same thickness
were the lower friction counterpart’s pair. During the wear test, the upper friction coun-
terpart pair was fixed to the rotation spindle and rotated together with the spindle which
was driven by the hydraulic motor at a constant speed. The stationary lower counterpart
was closely contacted with the upper friction counterpart and subjected to the applied
load from the upper counterpart on their appressed contact interface. The wear test was
performed on the appressed contact interface when the upper friction counterparts were
driven to rotate by the spindle under the certain test conditions of loads, speed, time, etc.
A constant rotation speed of 380 r/min was selected under the different applied loads of
200 N, 400 N, 600 N, 800 N, and 1000 N for 1–5 h, respectively. The lubricating medium
used was the ordinary CD40 diesel engine oil (purchased from Jiexuan lubricants Co., Ltd.,
Guangzhou, China) with a density of about 0.8957 g/cm3 and a viscosity of 139.6 and
12.5 cSt at 40 and 100 ◦C, respectively. Before each test, all the specimens were polished
and weighed using the electronic balance with an accuracy of 0.0001 g. After the wear tests,
the specimens were ultrasonically cleaned, dried, weighed again, and the wear mass loss as
well as the wear rate under different conditions were obtained. SEM analysis was used to
observe the worn surface morphology and understand the wear mechanism. The detailed
testing process has been described elsewhere in [23,40].
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2.5. Characterization of Micro-Mechanical Properties

To reveal the influence of UIT parameters on the micro-mechanical properties of the
coating surface, nano-indentation tests were performed on the cross-section using a TI
950 Triboindenter with a Berkovich diamond indenter (Hysitron Inc., Minneapolis, MN,
USA). The samples were firstly cross-sectioned along their thickness direction and then
impregnated in thermosetting resin, ground with SiC papers, and finally polished. Micro-
mechanical properties, including the elastic modulus and micro-hardness of the nine test
points (marked as 1, 2, 3, 4, 5, 6, 7, 8, and 9 in red as shown in Figure 5a) with different depths
(5 µm, 15 µm, 25 µm, 45 µm, 75 µm, 100 µm, 150 µm, 200 µm, and 250 µm) away from the
coating top surface, were measured along the thickness direction, respectively. Considering
the nonuniform distribution of the coating structure along its thickness direction, multi-
point averaging was applied to improve the measurement precision and prevent calculation
failure at the same depth, and the average of 5 adjacent points was taken as the final result.
During the test, the maximum load was 1000 µN and the holding time was 20 s. According
to the Oliver and Pharr method, the corresponding micro-hardness and elastic modulus
were obtained using the recorded load–displacement curves [41].
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Figure 5. Optical micrograph of cross-section microstructure of near-surface coating: (a) before UIT;
(b) after UIT–1; (c) after UIT–2; (d) after UIT–3. The selected regions A, C in white dashed box indicate
the most top surface layers of the coating.

3. Results and Discussion
3.1. Evolution of Surface Microstructure and Morphology

Figure 5 shows the cross-sectional microstructure before and after UIT with different
parameters. Before UIT, the typical equiaxed austenite coarse grains can be observed in the
deposited coating surface, as shown in Figure 5a, and the distribution of the grain size was
roughly uniform. After UIT, the surface morphology of the coating changed significantly,
as shown in Figure 5b–d. Original coarse austenite grains underwent a severe plastic
deformation and were distinctly refined. An obvious plastic deformation layer (PDL) with
a certain depth was formed on the top surface and naturally transitioned into the coarse
grain matrix along the thickness direction. There were no observable boundaries between
the plastic deformation layer and the coarse grain matrix. By comparing the microstructure
of the UIT-treated coatings with different parameters, it can be found that both the improved
refining of the grains and deeper PDL can be achieved at a larger vibration strike number.
When N increased from 40,000 times/mm2 to 57,600 times/mm2 and 75,000 times/mm2,
the corresponding thickness ranges of PDL were ~150 µm, 220–220 µm, and 200–230 µm,
respectively. Clearly, the relationship between the depth of the plastic deformation layer
and the vibration strike numbers was not linear. The thickness of PDL increases and
gradually reaches stabilization as N increases.

Figure 6 exhibits the higher magnification morphologies of the selected regions (A)
on the coating near the surface shown in Figure 5b–d. A thin-layered deformation band
structure, several dozens of µm thick, was detected on the topmost coating surface. This
layered band structure can be called the fine crystalline layer (FCL), exhibiting obvious
rheologic features, where no crystallographic characteristics can be identified. Comparing
Figure 6a–c, it is obvious that the grain refinement of the treated samples at a higher strike
number outmatched that at a relatively lower strike number. Increasing the vibration strike
number N on the per unit area (/mm2) is favorable for improving grain refinement. The
XRD analysis results in the sections that follow have also confirmed this finding. With
N increasing from 40,000 times/mm2 to 57,600 times/mm2 and 75,000 times/mm2, the
obtained depths of FCL were within certain ranges of ~30 µm, 40–50 µm, and 35–45 µm,
respectively. Obviously, the thickness of the fine crystalline layer increased first and then
tended to reach saturation even with a slight decline in the vibration strike number. This
phenomenon may be related to the work hardening caused by the increased strike number,
resulting in the continuous formation of more high-density dislocation. Meanwhile, under
the repeated impact, the densely deformed near-surface layer of the treated coating ac-
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companied by the continuous refinement of the austenite matrix, the deformation-induced
α′–martensitic phase emerged in the austenite matrix due to higher local strains. A similar
localized deformation with inhomogeneous high-density dislocation has also been reported
regarding the severe plastic deformation processing on 300 series stainless steel [37,42,43]
and other materials [44–46]. This will be favorable for improving the wear performance of
the coating.
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Figure 6. Magnification morphologies of the selected regions (A) shown in Figure 5b–d: (a) after
UIT–1; (b) after UIT–2; (c) after UIT–3. White arrows indicate α′–martensite appearance. The selected
region C in white dashed box denotes the top surface layers of FCL.

Figure 7 shows the EBSD observation and grain orientation distribution of the selected
regions C on the near-surface coating shown in Figures 5a and 6 before and after UIT. As
clearly revealed, the initial microstructure of the coating surface was the primary bulky
and uneven grain austenitic matrix, showing obvious welding metallurgy solidification
characteristics [23], and the grain boundaries were mainly straight and parallel with a
preferential orientation. After UIT, an obvious gradient structure distribution can be ob-
served along the thickness direction of the coating, and the minimum grains were mainly
distributed over the top surface. The microstructure of the coating surface was composed
of ultra-fine equiaxial grains with random orientation. By comparing the surface morpholo-
gies with different parameters, it can clearly be seen that the gradient morphologies do
change as the vibration strike number N changes on the per unit area. After being treated
with UIT–1 (40,000 times/mm), a fine equiaxed grain structure with a certain depth and
random orientation distribution was formed on the coating surface. When N increases
to 57,600 times/mm2 (UIT–2), the depth and the random distribution tendency were im-
proved, and the surface average grain size obtained was obviously smaller than that of
UIT–1. As N continues to 75,000 times/mm2 (UIT–3), compared with those of UIT–1 and
UIT–2, the depth of the ultra-fine grain layer slightly increased, the grain size dramatically
decreased, and the surface microstructure tended to become denser. It can be found that
with the vibration strike number N on the per unit area(/mm2) increasing to a certain range,
the grain refinement of the coating surface improved and became gradually stable. The
possible reasons for this phenomenon may relate to the grain refinement and the formation
of the deformation-induced α′–martensitic phase in the austenite matrix being induced by
the repeated impact on the treated regions during UIT processing. It due to the combined
effects of grain refinement strengthening and martensitic transformation strengthening
that it will be difficult to achieve further plastic deformation and grain refinement, and the
ultra-fine grain layer will no longer be deeper but rather reach saturation. If the vibration
strike number continues to increase, this will lead to the initiation of microscopic cracks
and fractures on the coating surface, deteriorating the performance of the coating instead.
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3.2. Analysis of XRD Measurement Results

Figure 8 indicates the phase analysis performed on the top surface layer of the coating
before and after UIT with different parameters. Before UIT, the phase structure of the
deposited coating was evaluated to be mainly face-centered cubic (FCC), which is nearly
in single austenitic phase (γ–Fe), accompanying small amounts of other intermetallic
dispersed in the austenitic matrix. To clarify the effects of the UIT parameters, only the
major phase γ–Fe is taken into account without considering other phases and metallic
compounds. From the XRD pattern of the UIT-treated coatings, it was found that compared
with the as-deposited coating, the full width at half maximum (FWHM) of the diffraction
peaks significantly broadened, and the diffraction peaks intensity decreased significantly.
The diffraction peaks corresponded to the martensite phase, with a body-centered cubic
(BCC) structure observed in the XRD spectrum. According to a previous study [23], this
demonstrates that the austenite grains have been refined, and a certain amount of the
deformation-induced α′–martensite phases (α′–Fe) emerged in the austenite matrix. This
further validates the veracity of the morphology observations discussed earlier. The
formation of the deformation-induced α–martensite can be attributed to the improvements
in the hardness and wear resistance of the coating surface. A similar phenomenon was
reported in [37,47]. For the UIT-treated coatings, the diffraction peaks are broadened, and
the intensity of which tends to become weaker with an increasing vibration strike number.
This means that improvements in the grain refinement and α′–Fe content were achieved,
along with an increase in the vibration strike number [48,49].
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Figure 8. XRD patterns of the coating surface before and after UIT at different impact parameters.

Based on the XRD analysis, the variations in the average grain size and the contents of
the deformation-induced α′–martensite of the UIT-treated coating were estimated, and the
results are shown in Figure 9. It can be seen that when the vibration strike number increased
from 40,000 times/mm2 (duration about 15 min) to 57,600 times/mm2 (duration about
25 min) to 75,000 times/mm2 (duration about 45 min), the average grain size of the top
surface was decreased to 120 nm (UIT–1), 80 nm (UIT–2), and 60 nm (UIT–3), respectively.
The corresponding content estimation of the α′–Fe in austenite matrix was about 0.087%,
0.136%, and 0.172% in volume fraction. Obviously, when the vibration strike number and
time increase, the grain size of the coating surface gradually decreases, even reaching a
nanometer scale, while the content of the α′–Fe phase continues to increase. However, an
excessive strike number and time may result in microscopic cracks or local damage on the
treated coating surface. The appropriate strike numbers and time will be beneficial to attain
the desirable properties of the coating.
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Figure 9. Variations in the average grain size and α′–martensite content of the UIT-treated coating
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3.3. Variation in Surface Roughness

Figure 10 shows the surface roughness curves of the coating before and after UIT
with different parameters. It is noted that the surface roughness profile of the deposited
coating presents an obvious sawtooth shape and irregular distribution. The difference
in the vibration amplitudes between the peaks and valleys is great, and the conversion
frequency of the two is high. After UIT, the numbers of the peaks/valleys in the roughness
curves were significantly reduced within the same tested length, and the difference between
the two also decreased. This suggests that the original rough appearance of the deposited
coating has been improved under the effects of UIT. Comparing the surface roughness
obtained at different impact parameters, it can also be found that the fluctuations of the
peaks/valleys in the roughness curves present a weakening trend with the increase in the
vibration strike number N per area.



Coatings 2023, 13, 2024 12 of 19

Coatings 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

roughness obtained at different impact parameters, it can also be found that the fluctua-

tions of the peaks/valleys in the roughness curves present a weakening trend with the 

increase in the vibration strike number N per area. 

 

Figure 10. Surface roughness profiles of the coating: (a) before UIT; (b) after UIT–1; (c) after UIT–2; 

(d) after UIT–3. 

Figure 11 shows the corresponding average surface roughness (Ra). It can be seen 

that as the vibration strike number N increased to 40,000 times/mm2, 57,600 times/mm2, 

and 75,000 times/mm2, the surface roughness decreased from 2.85 (before UIT) to 1.83 

(UIT–1), 0.75 (UIT–2), and 0.26 (UIT–3), respectively. Obviously, the surface roughness 

has been effectively reduced under the effects of UIT. A smooth surface morphology can 

be achieved by increasing the number of vibration strike N in per unit area. This will be 

beneficial to improve the surface service performance and fatigue life of the coating. 

 

Figure 11. Variation in surface roughness Ra of the coating surface. 

3.4. Modification of Micro-Mechanical Properties 

Figure 12 shows the load–displacement curves of the selected nine points (P1 corre-

sponding to point 1, P2 to point 2, etc.) on the near-surface coating before and after UIT at 

different parameters. It can be seen that both the maximum and residual displacements of 

each test point on the UIT-treated coating surface are smaller than those with the same 

depth before UIT under the same test conditions. As the number of vibration strike N on 

the per unit area increased to 40,000 times/mm2, 57,600 times/mm2, and 75,000 times/mm2, 

the maximum displacements were reduced from 220 nm (before UIT) to 95 nm (UIT–1), 

Figure 10. Surface roughness profiles of the coating: (a) before UIT; (b) after UIT–1; (c) after UIT–2;
(d) after UIT–3.

Figure 11 shows the corresponding average surface roughness (Ra). It can be seen that
as the vibration strike number N increased to 40,000 times/mm2, 57,600 times/mm2, and
75,000 times/mm2, the surface roughness decreased from 2.85 (before UIT) to 1.83 (UIT–1),
0.75 (UIT–2), and 0.26 (UIT–3), respectively. Obviously, the surface roughness has been
effectively reduced under the effects of UIT. A smooth surface morphology can be achieved
by increasing the number of vibration strike N in per unit area. This will be beneficial to
improve the surface service performance and fatigue life of the coating.
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3.4. Modification of Micro-Mechanical Properties

Figure 12 shows the load–displacement curves of the selected nine points (P1 corre-
sponding to point 1, P2 to point 2, etc.) on the near-surface coating before and after UIT at
different parameters. It can be seen that both the maximum and residual displacements
of each test point on the UIT-treated coating surface are smaller than those with the same
depth before UIT under the same test conditions. As the number of vibration strike N on the
per unit area increased to 40,000 times/mm2, 57,600 times/mm2, and 75,000 times/mm2,
the maximum displacements were reduced from 220 nm (before UIT) to 95 nm (UIT–1),
84 nm (UIT–2), and 76 nm (UIT–3), and the corresponding residual displacements obtained
decreased from 190 nm to 68 nm, 65 nm, and 60 nm, respectively. The sharp drops in
both the maximum and residual displacements indicate that the surface micro-hardness
of the UIT-treated coating was considerably higher than that of the coating before UIT.
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Obviously, the coating surface was strengthened during UIT processing. By comparing the
load–displacement curves shown in Figure 12b–d, it can also be found that by being closer
to the impacted top surface within a certain depth range, both the maximum and residual
displacements are far smaller than those of other test points far away from the top surface,
where the minimum values can be obtained.
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The corresponding elastic modulus (Er) and nano-hardness (Hr) of each test point
on the coating surface obtained from the nanoindentation measurement are shown in
Figure 13. It can be seen that the maximum Er and Hr both occur on the top surface before
and after UIT, and the maximum Er and Hr obtained at the same position of the latter are
obviously larger than those of the former under the same conditions. The maximum Er
and Hr of the coating top surface before UIT are 158 GPa and 4.12 GPa, respectively. After
UIT, the maximum Er obtained is 182.59 GPa (UIT–1), 192.89 Gpa (UIT–2), and 210.56 GPa
(UIT–3), and the corresponding Hr reached 4.94 GPa, 5.73 GPa, and 6.46 GPa, respectively.
Meanwhile, there are striking differences in the distributions of both Er and Hr between the
cladding coating and the UIT-treated coating. Before UIT, despite each point corresponding
to a different depth, there were few or not many differences in the distributions of Er and
Hr. In the case of the UIT-treated coating, the distributions of Er and Hr were entirely
different from those before UIT, showing an obvious gradient structure characteristic. It is
worth noting that both the distribution and magnitude of Er and Hr after UIT present a
similar gradient distribution tendency. As the depth away from the top surface increases
within certain limits, the maximum Er and Hr continuously decrease and then gradually
reach saturation when the depth ranges beyond the thickness of the plastic deformation
layer. It is evident that surface Er and Hr have been significantly improved after UIT. The
increased micro-hardness of the UIT-treated coating surface can be interpreted by the grain
refinement according to the Hall–Petch relationship [50,51] and the transformation of the
strengthening of the α′–martensite phase. A larger strike number N on the per unit area
favors an improvement in the micro-mechanical properties of the coating surface.
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Existing findings show that as the elastic modulus (E) and hardness (H) increase, the
stiffness and wear resistance of the metal materials increase [52]. A high ratio of hard-
ness/elastic modulus (H/E) is favorable to achieve excellent surface wear resistance [53].
Therefore, the wear resistance of the coating surface can also be evaluated by the variations
in Hr/Er before and after UIT. Here, Hr/Er of the coating before UIT is about 0.026, and
the corresponding ratios after UIT are 0.0271 (UIT–1), 0.0297 (UIT–2), and 0.0307 (UIT–3),
respectively. Obviously, Hr/Er is increased significantly after UIT. This means that the wear
resistance of the coating has been improved. Meanwhile, the larger the vibration strike
number on the per unit area, the higher Hr/Er becomes. That is, the wear resistance of the
coating surface can be improved with the increase in the vibration strike number. Remark-
ably, damage or cracks may occur on the UIT-treated coating surface as N increases beyond
a reasonable level. In such a case, instead of being improved, the surface performances of
the coating, including wear resistance, will degrade.

3.5. Evolution of Wear Performances and Characteristics

Figure 14 shows the variations in the friction force, friction coefficient, and wear loss
before and after UIT, with the applied load changing in the range of 200 to 1000 N at a
rotation speed of 380 r/min for 3 h at room temperature under oil-lubricated conditions.
As shown in Figure 14, all the friction force, friction coefficient, and wear loss of the coating
before and after UIT obviously increase as the applied load increases. Compared with
the deposited coating before UIT, all these UIT-treated coatings are much smaller under
the same test conditions. This indicates that the wear resistance of the coating has been
improved after UIT. By comparing the results with different parameters, it can be also
found that the friction force, friction coefficient, and wear loss obtained tend to decrease
with the increase in the strike number. The higher the vibration strike number, the smaller
the corresponding friction force, friction coefficient, and wear loss obtained under the same
test conditions. This further demonstrates that the wear resistance of the coating has been
improved as the strike number increases. The reason for this phenomenon may be the grain
refinement and α′–martensitic transformation strengthening of the coating surface induced
with UIT, leading to enhancements in surface hardness and wear resistance.

Figure 15 shows the wear rate before and after UIT under the applied load of 1000 N
at a sliding speed of 380 r/min. As shown in Figure 15, the wear rate continues to in-
crease as time passes. Under the applied load of 1000 N after 5 h, the wear rate of the
deposited coating was about 1.466 × 10−2 g/h. Regarding the UIT-treated coating, the
corresponding wear rates decreased to 0.896× 10−2 g/h (UIT–1), 0.413× 10−2 g/h (UIT–2),
and 0.218 × 10−2 g/h (UIT–3), respectively. Obviously, the wear rates of the coating af-
ter UIT significantly reduce, keep declining, and gradually tend to slow with the strike
number. This suggests that the wear resistance of the coating surface has been improved
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significantly. Through the comparison and analysis, it can also be found that after being
treated with UIT–3, optimal improvements in the wear resistance can be achieved in terms
of the variation in the wear rate. According to the well-known Hall–Petch relationship [54],
hardness is related to the grain size of the metal material. Based on the previous analysis of
the microstructure evolution of the coating surface mentioned above, the improvements in
hardness on the coating surface layer can be attributed to fine-grained strengthening [47].
Moreover, the formation of α′–martensitic transformation will also help to improve the
hardness on the treated coating surface. In this case, the wear resistance of the coating
surface has been improved considerably in the form of increased surface hardness.
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The worn surface subjected to the applied load of 1000 N after 5 h is shown in Figure 16.
Compared with the non-impacted coating, the abrasion failures of the UIT-treated coating
significantly diminished, and the failure modes also changed. As shown in Figure 16a,
larger areas of peelings and spots formed on the worn surface of the non-treated coating,
which shows a strong adhesion wear morphology feature. When the strike number N
increases to 40,000 times/mm2, there is a small number of scaly fragments that are not
fully exfoliated and are accompanied by some bright grooves parallel to the wear rotation
direction produced on the worn surface of the coating, as shown in Figure 16b. This
indicates that the wear form is mainly comprises fatigue spalling with a small number of
furrows, and the main wear mechanism of the coating is adhesive wear combined with
some abrasive wear under the effect of parameter UIT–1. As shown in Figure 16c, the
amount of the lamellar peelings is reduced, and more wide and shallow furrows with
some shallow flaking pits appear on the coating worn surface as the strike number N
increases to 57,600 times/mm2. This suggests that the main wear mechanism is abrasive
wear accompanied by a small amount of adhesive wear under the effect of parameter UIT–2.
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When the strike number N increases to 75,000 times/mm2, a large number of micro-cuttings
and furrows with uneven widths and depths are produced on the worn surface, as shown
in Figure 16d. This presents the typical abrasive wear morphology, and the main failure
modes are micro-cuttings and furrows under the effect of parameter UIT–3. It can clearly
be seen that the wear performance of the coating surface has been improved after UIT, and
the corresponding wear mechanism and failure modes also changed with the increase in
the strike number N regarding per unit area.
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4. Conclusions

In this study, a stainless steel coating was deposited and surface-modified using argon
arc surfacing and a subsequent ultrasonic impact treatment. The effects of the UIT process
and parameters (vibration strike number N on per area (/mm2)) on the surface modification
of the coating were investigated by comparing the surface morphology, microstructure,
roughness, micro-mechanical properties, and tribological performances before and after
UIT. The conclusions are as follows:

(1) The plastic deformation layer associated with an evident refined fine crystalline
structure was formed on the UIT-treated coating surface. Increasing the vibration
strike number, the depth of the two showed a tendency to increase and gradually
reached stability.

(2) Grain refinement accompanied by the formation of a small amount of the deformation-
induced α′–martensite occurred on the treated coating surface. A larger vibration
strike number contributes to a higher refining effect and α′–martensite amount.
After being treated at the vibration strike number of 40,000 times/mm2 (UIT–1),
57,600 times/mm2 (UIT–2), and 75,000 times/mm2 (UIT–3), the average grain size
decreased to 120 nm, 80 nm, and 60 nm, and the α′–martensite content reached 0.087%,
0.136%, and 0.172%, respectively.

(3) UIT can significantly improve the surface smoothness and performance of the coating.
The surface roughness Ra after UIT with three vibration strike numbers decreased
by 36%~74%, and the elastic modulus (Er) and micro-hardness (Hr) increased by
15.6%~33% and 19.8%~56.9%.
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(4) Increasing the vibration strike number can effectively reduce the average friction
coefficient and wear rate, which indicates that the wear resistance has been improved.
With the increase in the vibration strike number, the wear rates are 0.896 × 10−2 g/h
(UIT–1), 0.413 × 10−2 g/h (UIT–2), and 0.218 × 10−2 g/h (UIT–3), respectively.
Taking the lowest wear rate as the optimization target, the vibration strike number of
75,000 times/mm2 (UIT–3) is selected as the optimal parameter.

(5) Grain refinement strengthening and α′–martensite transformation strengthening
induced with UIT contribute to the improvements in the hardness and wear resistance
of the coating. The failure form changed from strong adhesive wear before UIT
to adhesive wear combined with some abrasive wear after UIT-1, abrasive wear
accompanied by a small amount of adhesive wear after UIT–2, and abrasive wear
after UIT–3.

In summary, UIT has been found to have a high potential in modifying the surface
characteristics and optimizing the mechanical performances of the deposited coating for
a wide range of potential applications, including wear and corrosion. Future studies
should mainly focus on the influence of UIT parameters on microstructural features such
as crystallographic orientation, dislocation density, etc., and should be carried out using
advanced characterization technologies, such as EBSD and high-resolution transmission
electron microscopy (TEM).
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