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Abstract: Aiming at the problems of low-resolution steel surface defects imaging, such as defect type
confusion, feature blurring, and low classification accuracy, this paper proposes an autocorrelation
semantic enhancement network (ASENet) for the classification of steel surface defects. It mainly
consists of a backbone network and an autocorrelation semantic enhancement module (ASE), in which
the autocorrelation semantic enhancement module consists of three main learnable modules: the CS
attention module, the autocorrelation computation module, and the contextual feature awareness
module. Specifically, we first use the backbone network to extract the basic features of the image
and then use the designed CS attention module to enhance the basic features. In addition, to
capture different aspects of semantic objects, we use the autocorrelation module to compute the
correlation between neighborhoods and contextualize the basic and augmented features to enhance
the recognizability of the features. Experimental results show that our method produces significant
results, and the classification accuracy reaches 96.24% on the NEU-CLS-64 dataset. Compared with
ViT-B/16, Swin_t, ResNet50, Mobilenet_v3_small, Densenet121, Efficientnet_b2, and baseline, the
accuracy is 9.43%, 5.15%, 4.87%, 3.34%, 3.28%, 3.01%, and 2.72% higher, respectively.

Keywords: surface defects; convolutional neural network; autocorrelation enhancement; attention
mechanism

1. Introduction

In industrial production, steel is one of the basic materials for the manufacture of
various mechanical equipment and components, and it plays an irreplaceable role in the
aerospace industry, automobile manufacturing, shipbuilding, construction, the energy in-
dustry, and other fields [1]. However, the steel production process involves the coordinated
operation of multiple pieces of equipment and complex procedures. If the equipment
parameters are not set correctly or fail, it may lead to defects on the steel surface, such as
oxidized skin, plaques, cracks, pitting, inclusions, scratches, and so on. These defects not
only affect the appearance of steel but may also indicate that the steel has been damaged
internally, seriously affecting the mechanical properties and corrosion resistance, which
leads to a decline in product quality and even causes safety accidents [2]. Therefore, timely
detection of steel surface defects and real-time adjustment of production equipment is
essential to ensure steel quality and reduce production losses.

In the past, manual inspection sufficed to meet the demands of product output at rela-
tively slower production speeds. However, with the escalation of production levels and the
burgeoning market, manual review has become sluggish, inefficient, and labor-intensive.
Prolonged hours of labor increase the chances of worker misdetection, while defect identifi-
cation heavily relies on the inspector’s experience. Furthermore, disparities exist in each
worker’s detection standards, making it arduous to fulfill production requirements.
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Developing an accurate automatic detection solution using machine vision technology
becomes imperative to overcome these challenges. Machine vision offers a non-contact
and automated solution for surface defect detection [3–5]. However, it faces limitations
in complex industrial environments, such as limited equipment universality, light-source
requirements, and high costs. This hampers the efficiency of detection tasks.

With the development of computer vision technology, convolutional-neural-network-
based detection has achieved wide application [6–9]. However, deep learning architectures
have become larger and larger, resulting in an increasing number of parameters and
requiring a large amount of computational resources [10,11]. Moreover, due to the fuzzy
imaging and low resolution of steel defect images, the features learned by the network will
suffer from information loss, feature blurring, as well as the problem of easy confusion. For
this reason, ASENet, an autocorrelation-based semantic enhancement network for steel
surface defects classification, is proposed, which mainly consists of a backbone network
and an ASE module. Specifically, we first extract the basic features of the image through
the backbone network, then use the CS attention module to enhance the basic features, and
then use the autocorrelation module to compute the correlation between neighbors. Finally,
we connect the enhanced features with the base features by residual concatenation to obtain
self-attention features to capture different aspects of the semantic object. Experimental
results show that our approach achieves state-of-the-art results on NEU-CLS-64 [12].

Our contributions are as follows:

• This paper proposes a new autocorrelation semantic enhancement method (ASE),
which enhances the base features and extracts important local area features through
CS attention and autocorrelation modules.

• By combining the backbone network and the autocorrelation semantic enhancement
module, our model ASENet can solve the problems of information loss, feature ambi-
guity, and confusion that traditional neural network models would have when dealing
with low-resolution steel defect images.

• Significant classification accuracies are achieved on the NEU-CLS-64 and CIFAR-100
datasets, and comparisons with several benchmark models demonstrate the effective-
ness and superiority of the method.

2. Related Work
2.1. Classification of Steel Defects

Conventional methods for identifying defects on steel surfaces mainly use the wavelet
transform [13,14] double-threshold binarization [15,16], and decision trees [17,18] to analyze
and detect images. In addition to this, Mukhopadhyay et al. used multi-scale morphological
segmentation of gray-scale images to process surface image data [19]; Podulka et al. used
surface topographic image (STI) processing to characterize selected features from the
surface texture [20]; and Ravimal et al. used the intensity of the near-field contrast image
after reflecting light and reflective mirrors, as well as photometric stereoscopic techniques
to recover the normal of the surface mapping for automated surface inspection [21]. By
adopting these techniques, great strides have been made in optimizing productivity and
improving product quality. However, these traditional methods have limitations. An
obvious disadvantage is the relatively slow detection speed and the limited applicability.
The algorithms used in these technologies often require substantial redesign for different
application scenarios. This requirement not only increases the complexity of the process
but also poses a significant obstacle to its widespread application. Another limiting factor
is the high image quality requirement. When the input image is of low resolution, due
to the small number of pixels in the low-resolution image, many details and information
cannot be expressed in the picture, resulting in a decrease in detection accuracy.
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Some recent approaches use convolutional neural networks for steel defect detection.
These techniques are particularly effective in natural scenes, where they have gained
substantial research support. For instance, Li et al. utilized coordinate attention and self-
interaction to identify hot-rolled strip surface defects [22] effectively. Furthermore, Hao
et al. proposed a novel two-stream neural network with sample generation and transfer
learning for classifying steel strip surface defects [23]. Zhang et al. contributed to this
growing research by proposing a novel approach for accurately classifying strip surface
defects using generative adversarial networks and attention mechanisms [24]. Li et al. took
a different approach by submitting a hybrid network architecture (CNN-T) that merged the
CNN and Transformer encoders, achieving significant results on the NEU-CLS dataset [25].
However, these methods also require high-quality defect images.

Therefore, we proposed the ASENet network for low-resolution steel surface defect
images to solve the problems of blurred edges and contours of low-resolution defect images,
which lead to information loss, blurred features, and easy confusion.

2.2. Attention Mechanism

The purpose of the attention mechanism is to let the system learn to focus on areas of
interest or high value from a large amount of information. It has now been successfully
applied to various tasks [26–29]. For example, the self-attention mechanism used in the
Transform model in 2017 has become a significant turning point in developing large-scale
models [10]. Furthermore, SENet [30] introduces a channel attention block for image clas-
sification; it assigns attention weights to different input channels, allowing the network
to focus on the most informative channels. Building upon this, the ECANet [31] further
improved upon the SENet’s strategy by proposing an adequate channel attention (ECA)
block for convolutional neural networks (CNNs), successfully enabling cross-channel inter-
action. CBAM introduces the channel and spatial attention modules to establish the dual
mechanism of channel and spatial attention [32]. While computing image autocorrelation,
conventional approaches often rely on neighborhood correlation [33,34]. However, this
approach is computationally intensive and adds complexity to the model.

In contrast, the ASE module proposed in this paper achieves contextual feature aware-
ness through simple connections after enhancing basic features, eliminating the need for
many redundant parameters. This module allows the model to capture dependencies
between adjacent elements in the input, enhancing contextual understanding.

3. Our Approach

In this section, we focus on the specific implementation of ASENet. Figure 1 shows
the overall architecture of the network. ASENet mainly consists of a backbone network
and ASE modules. The ASE modules consist of three main learnable modules: the CS
attention module, the autocorrelation computation module, and the contextual feature-
aware module, as shown in Figure 2.
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Figure 1. The overall architecture of ASENet.

Figure 2. (a) ASE modules, (b) CS attention module, and (c) autocorrelation calculation.

3.1. Overall Architecture

Given a set of steel defect sample images, we extract basic features Z ∈ RH×W×C

using a backbone network. Subsequently, we augment these basic features by the CS
attention module to obtain the augmented feature representation F ∈ RH×W×C. The
autocorrelation is then computed on the augmented feature F to obtain the autocorrelation
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tensor DinRH×W×C1 (C1 = U × V × C) and contextualized with the base feature Z to
produce the self-attention feature A ∈ RH×W×Cg (Cg = C′ + C). Finally, the resulting
features are passed through two output convolutional layers to recover the number of
channels and residual to derive the final output G ∈ RH×W×C from the basic features.

3.2. CS Attention Module

We devised a CS attention method to enhance the channel and spatial information
in the basic features. This method consists of two complete modules: the channel and
spatial attention modules, as shown in Figure 2b. These modules collaborate to generate
the attention weights, which are essential for determining the importance of each track and
its spatial location in the feature.

We calculate each channel’s attention weight within the channel attention module,
denoted as Mc. Specifically, we begin by processing the foundational features using average
pooling, followed by their refinement through a convolutional block. We subsequently map
the final result to an output range between 0 and 1, achieved via a Sigmoid function, thereby
obtaining the channel attention weight Mc. This weight effectively mirrors the importance
of each channel in capturing pertinent information. We can prioritize the channels with
information-rich content by assigning higher weights to channels housing valuable insights
and lower weights to those contributing less.

Similarly, within the spatial attention module, we generate attention weights, denoted
as Ms, for each spatial location within the feature. In this case, we employ a convolutional
block to directly learn the features and subsequently map the results to an output range
constrained between 0 and 1, once again utilizing a Sigmoid function. This process yields
the spatial attention weight Ms, which signifies the significance of each pixel location
in capturing meaningful insights. We can effectively concentrate on the pivotal spatial
positions that drive understanding and context by attributing higher weights to areas that
substantially contribute to the overall comprehension of the data and lower consequences
to those of lesser informative value. Through the weights obtained by Mc and Ms, we can
get the final enhanced feature F ∈ RH×W×C.

F = Z×Mc ×Ms (1)

Unlike previous approaches [32], we have not utilized global max pooling to capture
weights in channel and spatial dimensions or employed MLP (multi-layer perceptron)
for feature extraction. Instead, we have used a convolutional approach to extract feature
information. Additionally, in our CS attention module, we employed a single branch
to learn the relationship between channel and spatial positions. Our experiments have
revealed that lightweight attention modules are more suitable for low-resolution and blurry
image processing tasks while avoiding unnecessary computations.

3.3. Autocorrelation Computation Calculation

To capture the self-similarity of neighborhoods in the image, we employ a calculation
method that involves the Hadamard product. This product is performed between the
C-dimensional vectors at each position x in the enhanced feature F ∈ RH×W×C and their
corresponding values in the neighborhood. The resulting products are then collected into a
self-correlation tensor denoted as D ∈ RH×W×C1 . The self-correlation tensor D. represents
the relationships between different positions in the image. It allows us to identify patterns
and similarities within local neighborhoods. We can obtain a tensor that expresses these
relationships by calculating the Hadamard product and accumulating the results into D.
The dimensionality of D is represented by C1, corresponding to the channel of output
vectors.

D(x, p) =
Z(x)
‖Z(x)‖ �

F(x + p)
‖F(x + p)‖ (2)
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where p ∈ [−dU , dU ]× [−dV , dV ] corresponds to the relative positions in the neighborhood
window. Here, dU and dV represent the maximum displacement in the horizontal and
vertical directions, respectively. The window size is determined by U = 2dU + 1 and
V = 2dV + 1, which includes the center position. Our experiments use a sliding window of
(U, V) ∈ (1, 1). Unlike previous work [35], we do not keep the dimension of U ×V, but
consider it as part of the channel features so that we can obtain the new channel dimension
C1 = U ×V × C′.

3.4. Contextual Feature Perception

Even though autocorrelation computing may determine how similar two images are
to one another, it lacks the local semantic cues that the original convolutional features pro-
vided. We use a straightforward fusion step to create a contextual feature-aware semantic
representation to capture various properties of the semantic objects. We specifically sew Z
and D together to make the contextual semantic characteristics A ∈ RH×W×Cg , as shown
below.

A(i,j) =
[

ZT
(i,j), DT

(i,j)

]T
(3)

To analyze the contextual relationships in A, convolution and bulk normalization
operations are performed through the first convolutional layer to extract more semantically
meaningful feature information. The extracted feature tensor is then subjected to a re-
convolution operation to reduce the number of feature channels to the number of input
channels to obtain a more compact feature representation. The convolution kernels for
the two above convolutions’ blocks are both of size 1 × 1. The convolution block h()
learns contextual relationships without padding and aggregates local correlation patterns,
restoring the channel dimension to C, ensuring that the output h(h(A)) is the same size as
Z. We then combine these two representations to generate the final feature representation
G ∈ RH×W×C.

G = h(h(A)) + Z (4)

Using an autocorrelation semantic enhancement network to augment the basic features
helps to locate the essential regions of the target object. It enhances the recognizability of
the features, which better achieves accurate classification in low-resolution images and
improves the network’s performance.

4. Experimental Results

In this section, we evaluate the performance of ASENet on the NEU-CLS-64 and
CIFAR-100 datasets and compare it to other methods. In addition, we perform ablation
studies and compare them with other attention methods to validate the effectiveness of the
autocorrelation semantic enhancement networks. Figure 3 shows the test results of different
models running 100 epochs on the NEU-CLS-64 dataset under the same experimental setup.
Figure 4 shows the loss curves for the other models.
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Figure 3. Test results of different models running 100 epochs on the NEU-CLS-64 dataset.

Figure 4. Loss curves of different models running on the NEU-CLS-64 dataset for 100 epochs.

4.1. Dataset

In the Northeastern University (NEU) Surface Defect Database [12], six typical surface
defects of hot-rolled steel strips are collected, namely rolling scale (RS), patches (Pa), cracks
(Cr), pitting surface (PS), inclusions (In), and scratches (Sc). The NEU-CLS-64 dataset
used in this experiment includes an additional three defects: oil stains (Sp), pits (Gg), and
rust (Rp). Furthermore, compared to the NEU dataset, all images in the NEU-CLS-64
dataset are of a fixed size of 64 × 64 pixels. The number of images per category varies
(for instance, the pits (Gg) category has 296 images, while the oil stains (Sp) category
has 438 images), as shown in Figure 5. CIFAR-100 is a widely used dataset in computer
vision research. It consists of 60,000 color images, each of size 32 × 32 pixels, belonging to
100 different classes. The dataset is divided into two sets: a training set with 50,000 images
and a test set with 10,000 images. This lower-resolution imagery undoubtedly poses more
significant challenges for accurate classification by the neural network.
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Figure 5. Sample images of 9 typical surface defects in the NEU-CLS-64 dataset.

4.2. Experimental Details

This study conducted experiments using the PyTorch 1.8 deep learning framework
on a system equipped with an NVIDIA 2080Ti GPU and an Intel i7 9700K CPU. The NEU-
CLS-64 dataset is divided into training and test sets in the ratio of 80:20, where 80% of
the data is used for training, and the remaining 20% is used for testing, and CIFAR-100
uses 500 images of each class as the training set and 100 images as the test set. In these
experiments, the NEU-CLS-64 input image size is 64 × 64 pixels, CIFAR-100 input image
size is 32 × 32 pixels, ConvNet-4 is used for the backbone network, and 3 × 3 convolution
kernels are used for each convolutional block. The number of channels in each Conv block
increased to 64-160-320-640 to capture more semantic information in the feature maps. For
optimization, the SGD (stochastic gradient descent) optimizer was used with a momentum
of 0.9. The initial learning rate was set at 0.01, with a decay factor of 0.05. The training
was performed on the NEU-CLS-64 dataset for 100 epochs, with a batch size of 64 samples.
Learning rate annealing was applied after the 80th and 90th epochs by reducing the learning
rate by 0.1.

4.3. Results

Table 1 shows that on the NEU-CLS-64 dataset, the proposed method outperforms all
other methods in terms of accuracy, achieving an impressive 96.24%. Compared to ViT-
B/16, Swin-t, ResNet50, MobileNetV3 Small, DenseNet121, and EfficientNetB2, it achieves
an improvement of 9.43%, 5.15%, 4.87%, 3.34%, 3.28%, and 3.01%, respectively. Figure 3
clearly illustrates that ASENet consistently maintains a high correct rate throughout the
testing process. In contrast, ViT-B/16 exhibits a relatively smoother but substantially lower
correct rate compared to the other models. Turning our attention to the loss curve, it
becomes evident that ASENet achieves the lowest loss among the seven different model
types and exhibits the smoothest loss curve, as depicted in Figure 4. Our method also
achieved the best results on the CIFAR-100 dataset, showing that ASENet performs better
even on a 32 × 32 pixel dataset. When considering the parameter size, our method stands
out with only 3.04MB, which is significantly smaller compared to other approaches. This
implies that our method is more efficient in terms of memory usage.
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Table 1. Comparison results with other methods on the NEU-CLS-64 and CIFAR-100 dataset.

Method NEU-CLS-64 CIFAR-100 Params Size (M) FLOPs (G)

ViT-B/16 [36] 86.81 56.19 326.74 MB 93.09 GFLOPs

Swin_t [37] 91.09 58.24 71.94 MB 47.33 GFLOPs

ResNet50 [38] 91.37 61.08 89.75 MB 21.59 GFLOPs

Mobilenet_v3_small [39] 92.90 59.44 5.83 MB 0.38 GFLOPs

Densenet121 [40] 92.96 66.30 31.01 MB 15.13 GFLOPs

Efficientnet_b2 [41] 93.23 60.32 34.75 MB 3.74 GFLOPs

ASENet(Ours) 96.24 71.66 3.04 MB 17.61 GFLOPs

It is worth noting that the latest ViT and Swin models exhibited the worst performance
during the experiments. These two models have the most complex computations and
parameters and deliver the poorest results. This can be attributed to the fact that when the
input image size is small, the divided sub-patches are relatively tiny, containing limited in-
formation in each sub-patch. This limitation hinders the classifier from capturing sufficient
information, thus affecting the model’s performance. Additionally, Transformer encoders
have difficulty handling local features effectively. Therefore, traditional convolutional
neural network (CNN) models perform better when dealing with low-resolution images.

4.4. Ablation Studies

To evaluate the effectiveness of ASENet, we created a baseline model (ConvNet-4)
without any additional modules. We performed ablation experiments on the NEU-CLS-
64 dataset. As shown in Table 2, we compare the three learnable modules in two-by-
two combinations with the baseline model and ASENet. In scenario (b), where only
autocorrelation computation and contextual features are used, the accuracy achieved is
95.30%. Adding the CS attention module in method (c) slightly increases the accuracy
to 95.47%. Similarly, including autocorrelation computation in scenario (d) with the CS
attention module but without contextual features results in an accuracy of 95.68%. However,
the most impressive improvement in accuracy is observed in scenario (e), where all three
modules are used concurrently. An accuracy of 96.24% is achieved, the highest among all
the methods.

Table 2. Adding the effects of different modules.

Id CS Attention Autocorrelation Computation Contextual Feature Accuracy (%)

(a) × × × 93.52
(b) × X X 95.30
(c) X × X 95.47
(d) X X × 95.68

(e) X X X 96.24

Moreover, to analyze the impact of different values of the sliding window (U, V) on
the network’s autocorrelation computation, we conducted a comparison between (U, V) ∈
(1, 1), (U, V) ∈ (3, 3), and (U, V) ∈ (5, 5), which we named as A, B, and C, respectively. It is
important to note that (U, V) ∈ (1, 1), referred to as A, represents the sliding window used
by ASENet. From Figure 6, it can be seen that as the value of (U, V) increases gradually,
the network performance decreases, which is due to the small size of the defective image,
though the backbone-network-extracted feature maps are also relatively small, so a larger
sliding window will lead to the loss of important information in the extraction process.
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Figure 6. The impact of U and V values on the network.

4.5. Comparison with Other Attention Modules

Table 3 compares the accuracy, number of parameters, and computational complexity
of the autocorrelation semantic enhancement modules (ASE) and other attention modules.
According to the study results, ASE outperforms other attention modules on NEU-CLS-64
by 2.72% over the baseline model. Although ASE performs well in accuracy, it is not the
lightest in model parameter size. Regarding parameter size, ShuffleAttention is optimal
at only 0.05 MB, while ASE has 1.27 MB of parameters. However, a slight parameter
increase compared to performance may be acceptable, especially if computational resources
allow it. Regarding computational complexity, our method is comparable mainly to the SE
module, achieving the highest accuracy while maintaining competitive parameter sizes
and computational complexity. This demonstrates the effectiveness of our approach in
capturing important features and improving classification accuracy.

Table 3. Comparison results with other attention modules.

Method Accuracy (%) Params Size (M) FLOPs (G)

Baseline 93.52 0 MB 0 GFLOPs

TripletAttention [42] 95.03 0.06 MB 0.14 GFLOPs

ShuffleAttention [43] 95.37 0.05 MB 0.01 GFLOPs

PSA [44] 95.44 0.78 MB 10.10 GFLOPs

CoTAttention [45] 95.45 1.08 MB 18.56 GFLOPs

MobileViTv2Attention [46] 95.51 1.17 MB 20.14 GFLOPs

Coord_attention [47] 95.65 0.07 MB 0.13 GFLOPs

SE [30] 95.68 0.08 MB 1.39 GFLOPs

CBAM [32] 95.76 0.10 MB 0.02 GFLOPs

ASE (Ours) 96.24 1.27 MB 1.32 GFLOPs

4.6. Visualisation

Figure 7 showcases heatmap visualizations of various models [48]. The illustration
reveals that the attention patterns in both the ViT and Swin models exhibit a more dispersed
distribution. Conversely, the approach advocated in this paper, enhanced by the autocorre-
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lation semantic enhancement module, effectively sieves out extraneous regions, channeling
attention towards more pivotal image characteristics. Particularly for defects such as Cr,
In, Pa, Rp, and Rs, it adeptly pinpoints their locations with superior accuracy compared
to alternative methods. Furthermore, ASENet amalgamates features across diverse scales,
rendering it more adept at discerning valuable features in intricate settings.

Figure 7. Results of different model visualizations.

5. Conclusions

In this study, we propose the autocorrelation semantic enhancement network (ASENet)
to address the challenge of imaging defects on low-resolution steel surfaces. ASENet consists
of a backbone network and an ASE module, where the ASE contains a CS attention module,
an autocorrelation computation module, and a contextual feature-aware module. The ASE
module captures different aspects of feature semantics and enhances feature recognizability
by augmenting the underlying features and computing correlations between neighboring
domains. Experimental results on NEU-CLS-64 datasets show that the proposed ASENet
can effectively solve the problems of defect type confusion, feature ambiguity, and low
classification accuracy in low-resolution steel surface defect imaging. Compared with the
existing models, the enhanced feature recognition capability of ASENet gives it superior
performance, making it a promising method for steel surface defect classification.
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