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Abstract: During the production of steel, in view of the manufacturing engineering, transportation,
and other factors, a steel surface may produce some defects, which will endanger the service life
and performance of the steel. Therefore, the detection of defects on a steel surface is one of the
indispensable links in production. The traditional defect detection methods have trouble in meeting
the requirements of high detection accuracy and detection efficiency. Therefore, we propose the
WFRE-YOLOv8s, based on YOLOv8s, for detecting steel surface defects. Firstly, we change the loss
function to WIoU to address quality imbalances between data. Secondly, we newly designed the
CFN in the backbone to replace C2f to reduce the number of parameters and FLOPs of the network.
Thirdly, we utilized RFN to complete a new neck RFN to reduce the computational overhead and,
at the same time, to fuse different scale features well. Finally, we incorporate the EMA attention
module into the backbone to enhance the extraction of valuable features and improve the detection
accuracy of the model. Extensive experiments are carried out on the NEU-DET to prove the validity
of the designed module and model. The mAP0.5 of our proposed model reaches 79.4%, which is 4.7%
higher than that of YOLOv8s.

Keywords: surface defect detection; YOLOv8; WIoU; CFN; deep learning

1. Introduction

Steel is one of the most important industrial materials and is widely applied in the
manufacture of various industrial products; therefore, quality inspection of steel is essential.
During the smelting process, steel is susceptible to various defects caused by various
external factors, which can affect the performance and life of the steel [1–3]. Traditional
surface defect detection methods contain electromagnetic acoustic transducers, ultrasonic
testing, and X-ray inspection. However, this method is inefficient, and it could result
in less reliable results due to the experience of the inspector. Therefore, with the rapid
advancement of machine vision, the industry is beginning to introduce machine vision
technology into the detection of steel surface defects, which replaces the traditional surface
defect detection method. However, conventional machine learning depends heavily on
manual design algorithms in feature extraction. This could result in defect detection
methods that lack versatility and robustness [4].

Recently, deep learning-based object detection algorithms are developing rapidly, and
a great deal of excellent target detection models have emerged. More and more researchers
try to use target detection models to detect different defect types, not only steel surface
defects but also PCB solder joints [5–7], automotive paint detection [8,9], and so on. Deep
learning-powered defect detection methods are separated into one-stage algorithms and
two-stage algorithms. The one-stage algorithms solve the object detection as a regres-
sion problem, mainly SSD [10], YOLOv1 [11], YOLOv2 [12], YOLOv3 [13], YOLOv4 [14],
YOLOv5 [15], YOLOv6 [16], YOLOv7 [17], and so on. The two-stage algorithms utilize
selective search algorithms or region suggestion networks for object detection, such as
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R-CNN [9], Fast R-CNN [18], Faster R-CNN [19], R-FCN [20], and so on. They have the
advantage of high accuracy and the disadvantage of being slow. In contrast, one-stage
algorithms have the advantage of achieving a balance between accuracy and speed. They
are easier to deploy on embedded devices.

In this study, a new steel surface defect detector, called WFRE-YOLOv8s, for detecting
steel surface defects, which is based on YOLOv8s, is proposed. WFRE-YOLOv8s redesigns
the backbone by utilizing the CFN module and EMA attention to reduce the number of
parameters while enhancing the capability of the feature extraction. Besides that, the neck
is improved by proposing a new module, RFN, to better fuse features at different scales.
The main work is as follows:

1. The WIoU is employed as the loss function of WFRE-YOLOv8s. It effectively balances
the gap between high-quality and low-quality data in steel surface defect datasets.

2. We have developed a CFN module that replaces the C2f module in the backbone,
enhancing network detection accuracy and detection speed. Additionally, it minimizes
the number of parameters and FLOPs within the entire network.

3. We have newly designed a neck, named RFN, to reduce the computational over-
head. It can fuse different scale features, thus improving the accuracy of the whole
detection network.

4. We have incorporated the EMA into the backbone to optimize the capacity for the
extraction of valuable features for steel surface defects. This enhancement has been in-
troduced without any additional load on the network, resulting in increased accuracy
in defect detection.

5. We carry out a series of experiments primarily on NEU-DET and GC10-DET. The
experimental outcomes demonstrated that our proposed methodology yields superior
detection results.

2. Related Works

The defect detection methods have been comprehensively divided into conventional
machine learning methods and deep learning-powered methods.

2.1. Conventional Machine Learning Methods

Machine learning has played an essential role in defect detection, and there are still
many organizations that use machine learning methods to inspect their products. Franz [21]
proposed using a Bayesian network classifier to detect surface defects on rough steel
blocks. This method can effectively classify the defects, and the accuracy can reach 98%.
Yun [22] proposed using the undecimated wavelet transform and vertical projection profile
for detecting vertical line defects. Song et al. [23] proposed a new detection method
incorporating saliency linear scanning morphology. This involved extracting visual saliency
to eliminate background clutter and applying morphology edge processing to eliminate oil
pollution edges.

Tian et al. [24] devised an enhanced ELM machine learning algorithm, incorporating a
genetic algorithm, which they employed to detect surface defects on hot-rolled steel plates.
Wang et al. [25] presented an improved random forest algorithm with the optimal multi-
feature set fusion (OMFF-RF algorithm) for distributed defect recognition on steel surfaces.
Gong et al. [26] proposed a novel multi-hypersphere support vector machine (MHSVM+)
with additional information for multi-class steel surface defect classification. Chu et al. [27]
developed multi-informative twin support vector machines (MTSVMs) based on binary
twin support vector machines to detect steel surface defects. Zhang et al. [28] proposed a
method that involves merging the Gaussian function, which is fitted to the histogram of the
testing image, with the membership matrix to identify and diagnose defects. Ji et al. [29]
proposed an MGH, a hybrid method utilizing machine learning and genetic algorithms, for
assessing the quality of hot-rolled steel strips in production systems.
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2.2. Deep Learning Approaches

The advancement of deep learning has led to the use of convolutional neural networks
for target detection tasks that cannot be handled by machine learning. Object detection
algorithms based on deep learning have been categorized as one-stage algorithms and
two-stage algorithms. The majority of defect detection networks rely on target detection
networks, while only a small portion utilize segmentation algorithms.

Bulnes [30] developed a novel defect detection technique utilizing a genetic algorithm
to optimize configuration parameters. Additionally, a neural network is used for defect
classification. Guan et al. [31] used VGG19 for pre-training, SVM (support vector machine),
and decision trees to assess feature images’ quality. Then they adjusted the parameters and
structure of VGG19, thus obtaining a new VSD network for classifying steel surface defects.
Xiao et al. [32] developed an image pyramid convolutional neural network (IPCNN) model
based on Mask-R CNN to detect surface defects in images. Zhao et al. [33] used deformable
convolution in Faster R-CNN and introduced a feature pyramid network to obtain an
improved Faster R-CNN network for steel surface defect detection.

Zhao et al. [34] proposed a variant of YOLOv5L, called RDD-YOLO, to identify steel
surface defects. It changed the original backbone component to Res2Net based on YOLOv5
and designed a dual feature pyramid network (DFPN) to deepen the network. Additionally,
this approach utilizes a decoupling header to separate the regression and classification
to improve the precision. Wang et al. [35] proposed a variant of YOLOv5s, called multi-
scale-YOLOv5, to complete the detection of steel surface defects. Li et al. [36] proposed
a variant of YOLOv4 for detecting defects on steel strip surfaces, which improves the
precision of detection by incorporating the CBAM, where the SPP module is replaced
with the RFB module. Liu et al. [37] proposed a DLF-YOLOF for defect detection on steel
plate surfaces, which uses an anchorless detector to reduce the hyperparameters, utilizes
a deformable convolutional network and a local spatial attention module to expand the
contextual information in the feature maps, and employs a soft non-maximal suppression
to improve the detection accuracy. Wang et al. [38] proposed a unique method, which is
based on YOLOv7, to improve the accuracy of detecting strip steel surface defects. The
ConvNeXt module has been integrated into the backbone while the attention mechanism
has been incorporated into the pooling layer to enhance the ability of YOLOv7 to extract
features and identify small features. Shao et al. [39] proposed a steel surface defect detection
model based on a multi-scale lightweight network. This network can effectively reduce the
number of parameters while achieving better model accuracy and efficiency. Inspired by
YOLOv8, we propose a model named WFRE-YOLOv8s to improve detection accuracy and
reduce the number of parameters and FLOPs. Compared with YOLOv8s, WFRE-YOLOv8s
significantly improves prediction accuracy and identifies a wider range of defects.

3. Methods
3.1. The YOLOv8 Algorithm
3.1.1. YOLO Algorithm

The YOLO is a one-stage object detection algorithm that not only focuses on accuracy
but also speed. YOLO consists of four parts: input, backbone, neck, and head. Whether it is
YOLOv3, YOLOv4, or even the latest YOLOv8, their overall architecture is similar without
much change. The specific detection and recognition process of YOLOv8 for the object is
shown in Figure 1. The image is scaled to the appropriate size, then it is input into the CNN.
The location, size, and class of the detector are obtained through backbone, neck, and head,
and the loss function is utilized to calculate the gap between the predicted frame and the
real frame. The gradient descent iteration is used to narrow the gap between the predicted
frame and the real frame. Finally, the weight matrix and deviation at the minimum loss
function in the total number of iterations are taken to get the prediction information of the
object to be detected.
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3.1.2. The Structure of YOLOv8

The YOLO algorithm has been iterated for several versions, and on 10 January 2023,
Ultralytics, Inc. released YOLOv8, which is another upgrade to the many YOLO algo-
rithms that preceded it. The YOLOv8 algorithm is similar to the YOLOv3 and YOLOv5
algorithms. It contains five versions, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
and YOLOv8x, and among these five models, YOLOv8n is the smallest and YOLOv8x is
the largest. The performance differences of these models are shown in Table 1 below.

Table 1. The performance comparison of different models of YOLOv8.

Model Size
(Pixels)

mAP
(0.5:0.95)

Parameters
(M)

FLOPs
(G)

Speed
(ms)

YOLOv8n 640 × 640 37.3 3.2 8.7 0.99
YOLOv8s 640 × 640 44.9 11.2 11.2 1.20
YOLOv8m 640 × 640 50.2 25.9 25.9 1.83
YOLOv8L 640 × 640 52.9 43.7 43.7 2.39
YOLOv8x 640 × 640 53.9 68.2 68.2 3.53

From Table 1, it is evident that YOLOv8n has the fastest detection speed among these
five models. Additionally, it has the lowest amount of FLOPs and number of parameters. In
contrast, YOLOv8x has the slowest detection speed among these five models and a higher
amount of FLOPs and number of parameters. The difference between the models is due to
their sizes. The YOLOv8 algorithm mainly consists of input, backbone, neck, and head.
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The structure of YOLOv8s is shown in Figure 1:

1. The backbone is utilized for feature extraction and consists of the CBS, C2f, and
SPPF modules. The CBS makes a convolution operation on the input information,
applies batch normalization, and activates the information stream by SiLU activation.
C2f module replaces the C3 module in YOLOv5 for residual feature learning, which
enriches the information stream of the feature extraction network while maintaining a
lighter weight compared to C3. The SPPF module is the same as in YOLOv5, which
converts arbitrary feature maps into fixed-size feature vectors.

2. The neck adopts the structure of FPN + PAN to realize the fusion between multi-scale
information. Compared to YOLOv5, C3 was updated to C3.

3. The head is utilized to output the coordinates of the predicted box and the confidence
of each category. Compared with YOLOv5, this part adopts a more advanced decou-
pled head (decoupled head). The decoupled head makes use of two independent
branches to complete the task of object classification and location prediction and uses
different loss functions in these two branches.

3.2. Improvement of YOLOv8s Network

In the pursuit of greater precision in detecting steel surface defects, we propose our
novel model called WFRE-YOLOv8s, which is delineated in detail in Figure 2. The backbone
mainly consists of CBS, SPPF, the newly proposed CFN module in this paper, and the EMA.
The CFN module is a new module specially designed to replace the C2f module for steel
inspection tasks. It has the advantage of using fewer parameters and less computation
than the C2f module. The neck part adopts Unsample, CBS, and the RFN module in
this paper. The head part is unchanged, and the WIoU is adopted as the loss function of
WFRE-YOLOv8s. The RFN module is also utilized to design a new neck for the first time,
which gives the model faster detection speed and higher accuracy.
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3.2.1. Improvement of the Loss Function

YOLOv8 utilizes a blend of DFL [40] and CIoU (Complete-IoU) [41] for the regression
loss. However, CIoU does not take into account the balance between complex and easy
samples. It also ignores the discrepancies between the bounding box and the ground truth
bounding box when the penalty factor is equal to aspect ratio of the bounding box and the
ground truth bounding box. As a result, CIoU boosts the computational complexity of the
model. Formulas (1) and (2) illustrate the expression for the CIoU and the bounding box
loss function, respectively.

CIoU = IoU−
ρ2
(

b, bgt
)

c2 −av (1)

LCIOU= 1 − IoU+
ρ2
(

b, bgt
)

c2 + av (2)

In Formulas (1) and (2), IoU denotes the intersection and concatenation ratio between
the bounding box and the ground truth bounding box; b, bgt denotes the centroid of the
ground truth bounding box and the centroid of the bounding box; a is a parameter for
balancing proportionality, and v is utilized for measuring the proportionality consistency
between the widths and heights of the bounding box and the ground truth bounding box.

There are frequent instances of inferior samples within the dataset of steel surface
defects. This paper introduces WIoU (Wise-IoU) [42] to replace the CIoU combined with
DFL to form the regression loss of the WFRE-YOLOv8s algorithm. WIoU utilizes the
dynamic non-maximum suppression to assess overlap between the predicted bounding box
and the ground truth bounding box. This loss function effectively improves the imbalance
between the high-quality and low-quality data in dataset and the accuracy of the object
detection algorithm. The calculation formula of WIoU is shown in Formulas (3) and (4):

LWIoU= RWIoU × (1−IoU) (3)

RWIoU= exp
(x − xgt)

2 + (y − ygt)
2

(Wg2 + Hg2)∗
(4)

In Formula (4), x and y represent the coordinates of the centroid of the bounding box,
xgt and ygt represent the coordinates of the centroid of the ground truth bounding box,
and wg and hg represent the width and height of the minimum bounding box, respectively.
* represents the separation operation.

3.2.2. Improvement of the Backbone

The C2f is newly proposed in YOLOv8 to replace the C3 in YOLOv5. The C2f is designed
with reference to C3 and the ELAN concept to ensure that YOLOv8 is able to acquire gradient
flow information efficiently while maintaining its light weight. However, the module contains
more convolutional layers, which require many convolution operations, resulting in increased
computation and slowing down the model’s inference speed to some extent.

Chen et al. [43] proposed a novel convolution PConv, exploiting the redundancy of
the feature map to optimize costs. PConv was also utilized in the FasterNet Block and
FasterNet. PConv utilizes a standard convolutional operation to extract spatial features
from a subset of the input channel while keeping the residual channels. This method
has the benefit of reducing computational redundancy and memory access at the same
time. The structure of PConv, FasterNet Block, and FasterNet are shown in Figure 3. The
FasterNet Block comprises a PConv, 1 × 1 Conv, and 1 × 1 Conv. Formula (5) explains how
to calculate the FLOPs of PConv.

FLOPsPConv = h × w × k × k × cp × cp (5)
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FLOPsConv = h × w × k × k × c × c (6)
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Figure 3. The structure of FastNet, FasterNet Block, and PConv. (a–c) represent the structure of
FastNet, Pconv, and FastNet Block, respectively. * represent the convolution.

Formula (6) demonstrates how to calculate the FLOPs of Conv. When the ratio of cp to
the number of input feature channels c is 1/4, the FLOPs of PConv decrease to only 1/16
of those required for conventional convolution. This leads to the conclusion that PConv
reduces both the FLOPs of the network and the number of parameters.

The design of a CFN module was inspired by the C3 module and FasterNet Block,
illustrated in Figure 4. CFN is composed of FasterNet Block, CBS, and Concat. It differs
from the traditional C3 structure in that the BottleNeck is replaced with FasterNet Block.
The FasterNet Block replaces the BottleNeck in C3. Compared to the BottleNeck, this
substitution improves the efficiency of feature extraction and compresses the network
volume. Consequently, we replaced the C2f with the CFN to reconstruct the backbone. This
approach results in a decrease in the number of parameters, FLOPs, and model size that
effectively improves the model's inference speed.
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FastNet Block, and Concat. The core of CFN is FastNet Block; it can effectively reduce the number of
FLOPs and parameters.

3.2.3. Improvement of the Neck

The neck of YOLOv8s is still a continuation of the neck structure in YOLOv5, where
the FPN + PAN structure is used to complete the integration of features extracted by the
backbone at varying stages to enhance the model’s ability to identify features at varying
scales. More and more structures about neck have been proposed to enhance the neck for
full integration between multi-scale information, but also increase the computational cost
simultaneously. In our study, we opted not to design novel neck modules to circumvent
additional connections and fusions among feature pyramids. DAMO-YOLO [44] proposed
a new EfficientRepGFPN based on GFPN, which significantly improves the accuracy of
the model by utilizing various scales of feature maps for different channel dimensions in
feature fusion.
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The RFN is illustrated in Figure 5. Input is composed of three layers, and 1 × 1 Conv
adjusts the number of channels on two parallel branches after Concat. Multiple Rep 3 × 3
Conv and 3 × 3 Conv form the efficient layer aggregation network (ElAN) [16]. RepConv is
a model re-referencing technique that improves the efficiency and performance of models
by merging multiple computational modules into one during the inference phase. ELAN
fuses features from different layers by introducing a multi-scale feature fusion module.
This can make full use of different levels of semantic information to enhance the ability to
demonstrate the model's features. Due to the RFN incorporating RepConv and ELAN, the
RFN can achieve much higher precision without bringing an extra computational burden.
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Inspired by RFN, we redesigned the neck in WFRE-YOLOv8s based on the design idea
of the DAMO-YOLO network and replaced the C2f with RFN in the neck part of the initial
network, which brings the higher accuracy and real-time detection of the whole detection
network. The improved neck is shown in Figure 6.
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3.2.4. Integration of EMA

Attention is widely used in computer vision, and incorporating attention into a net-
work enables it to pay close attention to different regions of the feature map to some extent,
leading to better accuracy in target identification. Attention can be mainly classified into
channel attention, spatial attention, and channel spatial attention.

Due to the complexity of steel surface defects and the low pixel size of the dataset
utilized, some defects are not detected or are inaccurately detected. In this paper, we will
incorporate attention into the backbone to achieve higher detection accuracy. Notably,
usual attention mechanisms used include CBAM [45], SE [46], ECA [47], SA [48], CA [49],
and others. However, the attention models using channel dimensionality reduction to
model cross-channel relationships may bring some side effects when extracting deep
visual representations. Nonetheless, an efficient multi-scale attention (EMA) [50] module
based on coordinate attention (CA) is proposed to better address this issue. It encodes
global information to recalibrate the channel weights in each parallel branch while further
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aggregating the output features of the two parallel branches through cross-dimensional
interaction to capture the pixel-level pairwise relationship, achieving the goal of reducing
computational overhead while preserving the information of each channel. CA attention
first divides the input information according to the two directions of width and height,
thus obtaining the feature information of width and height. The global average pooling
formulas for both are shown in Formulas (7) and (8).

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (7)

zw
c (w) =

1
W ∑

0≤i≤H
xc(j, w) (8)

Next, the feature maps of the global perceptual field in both the width and height
directions are spliced, and feature transformations are performed using 1 × 1 convolution,
batch normalization algorithm, and nonlinear activation. Immediately after that, the feature
transformation is achieved by 1 × 1 convolution and Sigmoid activation function so that its
dimension is the same as the input X vector, and then the attentional weights gh and gw
are computed for the achieved feature maps in the width direction and height direction.
Finally, the output gh and gw are combined into a weight matrix by weighted multiplication
computation on the original feature maps, and the result is shown in Formula (9). CA is
shown in Figure 7a.
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structure of CA and EMA is shown in (a,b).

EMA borrows the idea of CA and designs three parallel routes to extract the attention
weight descriptors of grouped feature maps. The two routes on the left, similar to CA, are
named 1 × 1 branches and the rightmost route is named 3 × 3 branch.

yc(i, j)= xc(i, j)× gh
c (i)× gw

c (j) (9)
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In the 1 × 1 branch, similar to CA attention, the X and Y global average pooling
module is used to extract feature information in the width and height directions, the feature
information is spliced, and 1 × 1 convolution is used to prevent dimensionality reduction.
The 3 × 3 branch utilizes the 3 × 3 convolution to capture local cross-channel interactions
to expand the feature space.

In the cross-space learning module, the global spatial information in the output of the
1 × 1 branch is first encoded using global average pooling, after which a Softmax function
is fitted to the linear transform to ensure efficient computation. Finally, the output of the
parallel processing is multiplied by the matrix dot product operation to obtain the first
spatial attention map.

Then, the second spatial attention map retaining the exact spatial location information
is obtained by employing global average pooling and fitting a linear transformation with
the Softmax function at the 3 × 3 branch. Finally, the output feature maps for each group
are calculated by summing the two spatial attention weight values that were generated
using the sigmoid function. The global average pooling operates as shown in Formula (10).

zc(h) =
1

H × W

H

∑
j

W

∑
i

xc(i, j) (10)

As shown in Figure 8, the EMA attention is incorporated prior to the spatial pyramid
pooling module of the YOLOv8s backbone network. This integration boosts the accuracy of
WFRE-YOLOv8s for identifying surface flaws in steel. Additionally, this enhancement is ac-
complished without placing additional computational burden on the network infrastructure.
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4. Experiments
4.1. Experimental Introduction
4.1.1. Experimental Setup

The running environment of the experiment is as follows: the operating system is
Windows 10 Professional, the CPU is Intel I5-12490F, the GPU is NVIDIA GeForce RTX3060
12 G, and the RAM is 16 G. Some specific functions may be missing between versions
causing the environment to crash. The version of Python and the version of Torch, CUDA,
and CUDNN must match, or else the model will not start running. Therefore, the Python
environment is based on Anaconda’s Python 3.8, the Pytorch version is 1.9, the CUDA
version is 11.5, and the CUDNN version is 8005.

The specific training parameters are set as follows: the image size is 640 × 480, the
initial learning rate is 0.01, the number of iterations is 200, the batch size is 16, Num_Workers
is 2, and the mosaic enhancement is turned off after 190 epoch.
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4.1.2. Evaluation Indicators

In this study, mAP (mean average precision), recall, precision, parameters, and FLOPs
were used to evaluate the performance of the improved algorithm. The formula for
calculating the mean values of recall, precision, and mAP are shown:

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

AP =
∫ 1

0
P(R)dR (13)

mAP =
1
N ∑N

i=1 APi (14)

where TP represents the number of road objects predicted correctly, FP represents the
number of road objects predicted incorrectly, and FN represents the number of road objects
missed. P(R) represents the value of precision under the point recall.

4.1.3. Dataset

Due to the fact that the images in the NEU-DET dataset are derived from the real
steelmaking process, its defects are closer to the actual situation; this is the reason why
we use the NEU-DET to validate the effectiveness of WFRE-YOLOv8s. GC10-DET con-
tains a wider variety of metal surface defects, it can help validate the model's versatility
and robustness across a broader range of defect categories. We applied mosaic image
enhancement to the NEU-DET and GC10-DET. NEU-DET [51] was proposed by the team
of Kechen Song at Northeastern University in 2022. NEU-DET includes six types of steel
surface defects, namely, patches (pa), silvering (cr), inclusions (in), roll marks (rs), scratches
(sc), and pitting surfaces (ps). The number of images per defect category is 300 and the
resolution of each image is 200 × 200. The ratio of the training set to the validation set of
NEU-DET is set as 9:1, which means there are 1620 images for training and 180 images for
validation. GC10-DET [52] was proposed by the team of Xiaoming Lv in 2020. GC10-DET
consists of ten types of metallic surface defects, namely, water spot (ws), punching (pu),
silk spot (ss), crescent gap (cg), oil spot (os), waist folding (wf), inclusion (in), rolled pit
(rp), crease (cr), and weld line (wl). The GC10-DET has 2294 images, and the resolution of
each image is 2048 × 1000. The ratio of the training set to the validation set of GC10-DET is
set as 9:1, which means there are 2064 images for training and 230 images for validation.

4.1.4. Experimental Datum Processing

After completing training for each model, a result folder is generated, and a new folder
for organizing experimental data is created on the computer. Subclass folders are then
created based on different models. To ensure data authenticity, we conducted 20 training
sessions for each model and uniformly stored the results in the subclass folder. The final
experimental result is determined as the closest result to the average.

4.2. Comparisons with Related Methods
4.2.1. Comparisons with Prevailing Methods on NEU-DET

To evaluate the effectiveness of WFRE-YOLOv8s, we compare our method with several
mainstream methods. The YOLO algorithms are now commonly used in various fields. At
present, most researchers have also adopted the YOLO algorithm to design steel defect detec-
tors. Furthermore, WFRE-YOLOv8s is based on YOLOv8, so in order to ensure the objectivity
of the experiments, we chose these algorithms as the comparative objects. These methods
include YOLOv3s, YOLOv4, YOLOv5s, YOLOv7, YOLOv8s, YOLOv8m, and YOLOv8L.

It is evident from the data presented in Figure 9b and Table 2 that the model introduced
in this study outperforms others in terms of mAP0.5 and mAP0.95. Compared to YOLOv8s,
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the mAP0.5 and mAP0.95 have increased by 4.7% and 2.3%, respectively, while the number
of parameters and FLOPs have only increased by 20% and 13%. Compared to YOLOv8L,
which has the highest accuracy among other models, WFRE-YOLOv8s is 1.2% and 1.4%
higher on mAP0.5 and mAP0.95, respectively, and the number of parameters and the
FLOPs in WFRE-YOLOv8s are 68.5% and 80.3% lower than in YOLOv8L. Compared to the
well-known YOLOv3s and YOLOv5, our proposed WFRE-YOLOv8s is higher than these
two models by 27.5% and 20.7% and 9.9% and 7.7% on mAP0.5 and mAP0.95, respectively.
Furthermore, WFRE-YOLOv8s outperforms YOLOv4 and YOLOv7 in terms of mAP0.5
and mAP0.95 while utilizing significantly fewer parameters and FLOPs. Additionally, the
mAP0.5 of WFRE-YOLOv8s is 10% higher than that of YOLOv4 and 5.7% higher than
that of YOLOv7. Therefore, the WFRE-YOLOv8s proposed in this paper can achieve good
accuracy and maintain good detection results with the average number of parameters and
computational effort.
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Table 2. Comparison of different network performances on NEU-DET. This table illustrates the
experimental results of the different methods on NEU-DET. (The indicator of focus is mAP (0.5)).

Model mAP
(0.5)

mAP
(0.5:0.95) Recall Precision Parameters FLOPs

(G)

YOLOv3s 51.9% 21.8% 45.4% 49.5% 9322387 23.4
YOLOv4 69.4% 33.8% 79.3% 53.1% 63964611 142

YOLOV5s 69.5% 34.8% 72.7% 60.8% 7026307 15.8
YOLOv7 73.7% 34.4% 68.6% 66.3% 37223526 105.2

YOLOv8s (baseline) 74.7% 39.4% 69.0% 69.1% 11127906 28.4
YOLOv8m 76.7% 41.1% 69.2% 74.5% 25843234 78.7
YOLOv8L 78.2% 41.1% 71.0% 75.8% 43611234 164.8

WFRE-YOLOv8s (ours) 79.4% 42.5% 75.9% 73.6% 13775472 32.6

4.2.2. Comparisons with Prevailing Methods on GC10-DET

For further exploration of the effectiveness of WFRE-YOLOv8s, we conducted some
experiments on GC10-DET. The results of detection are shown in Table 3. We can still
observe a 3.8% increase of mAP0.5 in favor of WFRE-YOLOv8s over YOLOv8s, indicating
that WFRE continues to outperform YOLOv8s. Meanwhile, the number of parameters and
FLOPs have only increased by 23.8% and 14.3%. Compared to YOLOv3s and YOLOv5s,
WFRE-YOLOv8s is still superior to both models in terms of mAP0.5 and mAP0.95. The
mAP0.5 of WFRE-YOLOv8s is 8.9%, 5.2%, 2.4%, and 0.8% higher than YOLOv4, YOLOv7,
YOLOv8m, and YOLOv8L, respectively. From the above data, WFRE-YOLOv8s is not only
effective for detecting the six types of defects in NEU-DET but also has good effectiveness
for detecting the ten types of defects in GC10-DET.

Table 3. Comparison of different network performances on GC10-DET. This table illustrates the
experimental results of the different methods on GC10-DET. (The indicator of focus is mAP (0.5)).

Model mAP
(0.5)

mAP
(0.5:0.95) Recall Precision Parameters FLOPs

(G)

YOLOv3s 55.0% 27.3% 58.0% 51.4%% 9333175 23.4
YOLOv4 60.5% 30.4% 68.0% 46.1% 8081831 20.6
YOLOv5s 63.3% 33.0% 54.7% 69.2% 7037095 15.8
YOLOv7 64.2% 32.1% 57.8% 69.3% 37245102 105.3

YOLOv8s (baseline) 65.6% 34.9% 61.6% 29.9% 11129454 28.5
YOLOv8m 67.0% 35.0% 55.5% 81.0% 25845550 78.7
YOLOv8L 68.6% 36.5% 73.0% 60.7% 43637550 165.48

WFRE-YOLOv8s (ours) 69.4% 35.7% 62.6% 64.8% 13775472 32.6

4.2.3. Experimental Comparison on Different Datasets

For further exploration of the versatility and robustness of WFRE on different classes of
defects, we also conducted experiments on the Lv-DET [53] and PKU-Market-PCB datasets [54],
and the specific experimental results as well as the performance are shown in Table 4.

Table 4. Comparison of experimental results for different datasets. This table shows a comparison of
the experimental results of YOLOv8s and WFRE-YOLOv8s on different defective datasets.

Model Model mAP (0.5) mAP (0.5:0.95)

NEU-DET
YOLOv8s 74.7% 39.4%

WFRE-YOLOv8s 79.4% 42.5%

GC10-DET
YOLOv8s 65.6% 34.9%

WFRE-YOLOv8s 69.4% 35.7%

Lv-DET
YOLOv8s 56.4% 34.5%

WFRE-YOLOv8s 59.2% 35.4%

PCB
YOLOv8s 82.0% 42.7%

WFRE-YOLOv8s 85.3% 44.0%
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From Table 4, we can find that WFRE-YOLOv8s outperforms YOLOv8s on different
datasets. On NEU-DET and GC10-DET, the mAP0.5 of WFRE-YOLOv8s is 4.7% and 3.8%
higher than YOLOv8s. On the other hand, our models have achieved excellent results in the
detection of non-steel defects. In aluminum defect detection, the mAP0.5 of WFRE-YOLOv8
is 2.8% higher YOLOv8s. In pcb defect detection, the mAP0.5 of WFRE-YOLOv8s is 3.3%
higher than YOLOv8s. From the above comparative experimental results, our proposed
model has good versatility and robustness.

4.3. Ablation Experiments

To verify whether our proposed method is stable and effective, we conducted ablation
experiments on the NEU-DET, and the specific experimental comparison results are shown
in Table 5 and Figure 9. The YOLOv8s model is the baseline model. Firstly, in order to
validate the effectiveness of the WIoU loss function in the model proposed in this paper,
the WIoU loss function is used to replace the CIoU loss function, and the model is named
W-YOLOv8s. Secondly, the CFN module proposed in this paper is utilized to replace
the C2f module in the backbone, and the model is named WF-YOLOv8s. Thirdly, the
RFN module is introduced into the neck, and the module is utilized to replace the C2f
module, and the model is named WFR-YOLOv8s. Finally, an EMA attentional mechanism
is incorporated into the WFR-YOLOv8s. The addition of EMA improves the extraction of
valuable features and overall detection accuracy of the whole model. The model resulting
from this adjustment is dubbed WFRE-YOLOv8s.

Table 5. Ablation experiments. This table illustrates the experimental results of the different stages of
the improved methodology. (The indicator of focus is mAP (0.5)).

Model mAP
(0.5)

mAP
(0.5:0.95) Recall Precision Parameters FLOPs

(G)

YOLOv8s 74.7% 39.4% 69.0% 69.1% 11127906 28.4
W-YOLOv8s 75.6% 40.6% 70.7% 69.8% 11127906 28.4

WF-YOLOV8s 76.6% 41.2% 71.4% 71.1% 9434466 23.5
WFR-YOLOv8s 78.1% 41.8% 72.8% 73.2% 13644386 32.2

WFRE-YOLOv8s 79.4% 42.5% 75.9% 73.6% 13775472 32.6

4.3.1. The Performance of WIoU

As shown in Table 5, after we improve the original loss function CIoU to WIoU, the
mAP0.5 of the model reaches 75.6%, which is an improvement of 0.9% compared to the
original model. The number of parameters for the network and the amount of computation
do not change, which shows that the WIoU loss function effectively solves the imbalance
between high-quality and low-quality data in the steel surface defects dataset.

4.3.2. The Performance of RFN

As can be seen from Table 5, after replacing the original C2f module with the proposed
CFN module in W-YOLOv8s, the mAP0.5 is increased from 75.6% to 76.6%. The number
of parameters and FLOps are decreased by 15% and 18%, respectively. This dramatically
proves that the CFN module proposed in this paper has a strong compression effect on the
number of parameters and FLOPs of the model. At the same time, it can also improve the
detection accuracy of the model.

4.3.3. The Performance of CFN

As can be seen in Table 5, after replacing the C2f in the neck with our proposed RFN
module in WF-YOLOv8s, the mAP0.5 improves by 1.5% to 78.1%, which indicates that the
RFN structure can effectively enhance the detection accuracy of the network.
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4.3.4. The Performance of EMA Attention

From Table 5, it can be seen that WFRE-YOLOv8s, compared to WFR-YOLOv8s,
incorporates the EMA attention module in the network’s backbone to enhance the network’s
ability to extract features of defects in low-pixel images to improve the model’s detection
accuracy without increasing the network’s computational burden too much. The mAP0.5
increased by 1.3% to reach 79.4%, and the number of parameters and computation of the
model only increased by 0.9% and 1.2%.

4.4. Comprehensive Performance of the Proposed Model

The results of detecting defects in NEU-DET using YOLOv8s and WFRE-YOLOv8s are
illustrated in Figure 9. The results include predicted boxes, defect classes, and confidence
scores. The results of detecting each type of defect using YOLOv8s and YOLOv7 are shown
in Table 6.

Table 6. Comparison of detection results of improved algorithms.

Model mAP (0.5) Crazing Inclusion Patches Pitted Surface Rolled-in Scale Scratches

YOLOv8s (baseline) 74.7% 43.6% 82.2% 94.0% 78.1% 66.8% 83.3%
WFRE-YOLOv8s (ours) 79.4% 60.0% 81.4% 93.8% 82.5% 73.8% 84.8%

From Figure 9, it is evident that our WFRE-YOLOv8s can detect crazing, patches,
and rolled-scale defect targets more accurately than YOLOv8s, which missed one defect
target. The target missed by YOLOv8s is well-detected, and our detection accuracy is
also improved based on YOLOv8s. On the two defective targets of inclusion and pitted
surface, the detection accuracy of WFRE-YOLOv8s is improved compared to YOLOv8s,
and the accuracy of the same target is improved by 30% and 20%. On the defective target
of scratches, the original YOLOv8s had the problem of misidentification in the detection
result. However, WFRE-YOLOv8s solved this problem by accurately identifying the defects
of the two scratches on this image. Figure 9 and Table 6 show that the WFRE-YOLOv8s
proposed in this paper is more advanced and accurate compared to the YOLOv8s, which
have better results.

4.5. Discussion
4.5.1. Findings

In our study, we found that the design of the backbone network is crucial, and the
backbone network of WFRE-YOLOv8s can be reconfigured by CFN and EMA to be much
more efficient than the detection of YOLOv8. The design of the neck cannot only focus on the
design of the feature pyramid structure but also on the feature fusion effect of the model.

From Tables 2–5, and Figure 9, we can find that WFRE-YOLOv8s is not only better
than the original model in terms of detection metrics, but also in terms of actual detection
results. The newly added EMA attention better focuses on the features that would be
missed by the original model, improving the model's overall detection results.

According to the experimental results, in our opinion, as much as possible, it is
important to design a unique structure to focus on those features that are easily overlooked.
It is also necessary to try to keep the detection network as efficient as possible, rather
than trying to increase the accuracy of the network by designing more parameter-heavy
structures, only to result in increased redundancy in the network. In steel production,
crazing and rolled-in scale are two types of defects that are easily overlooked, so these
two types of features are needed in the design of the network for the design of a targeted
feature extraction structure. In terms of datasets, the current size of datasets is still far from
enough; we need to increase the expansion of datasets, enrich the samples of various types
of defects, and improve the quality of datasets.
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4.5.2. Limitations and Future Works

Compared to existing methods, WFRE-YOLOv8s is a highly competitive steel defect
detector that has performed well on NEU-DET. However, the limitations of WFRE-YOLOv8s
are still apparent in Figure 9 and Table 6, as evidenced by the results of detecting defects.
According to the results of detecting the crazing and rolled-in scale, we can find that its
accuracy is still not as good as the other categories. This suggests that WFRE-YOLOv8s is not
yet adequate in identifying these two defects and has substantial scope for improvement. It
appears that the lower resolution of the dataset images and the indistinctive characteristics of
these two defects may be responsible for the issue at hand. Regarding data preprocessing, it
may be beneficial to employ certain image preprocessing techniques and increase the number
of datasets to enhance the model's ability to detect crazing and other categories of defects.

Additionally, Table 3 reveals that while the computational effort and FLOPs of WFRE-
YOLOv8s are lower compared to most YOLO models, the WFRE-YOLOv8s model still
requires compression due to its use in industrial production. It is clear from Table 3 that
WFRE-YOLOv8s currently has a significant number of parameters. Despite being effi-
cient on devices with higher arithmetic capabilities, it poses a challenge when running on
edge terminal devices. Given that industrial production necessitates a large number of
steel defect detection sensors, increasing the deployment of high-performance computing
equipment would lead to higher expenses. Thus, it is necessary to compress the number
of parameters in WFRE-YOLOv8s to enhance algorithmic efficiency and lower the pro-
duction costs of businesses. WFRE-YOLOv8s could benefit from being optimized further
through the implementation of a lightweight convolutional backbone network, pruning,
and distillation.

5. Conclusions

In response to the steel used in the production process, manual quality inspection
is inefficient, the traditional machine learning quality inspection method generalization
and robustness is poor, and so on. In this paper, we propose a novel one-stage detector
named WFRE-YOLOv8s for steel surface defect detection, which is based on YOLOv8s
with improvements in the backbone, neck, loss function, and integration of the current
better EMA attention module. To solve the problem of imbalance between high-quality
and low-quality data in the steel dataset, we introduce the WIoU loss function to replace
the CIoU loss function. In order to reduce the amount of computation and the number
of parameters in the model and keep the accuracy from being degraded, we adopt the
CFN module as the main component of the backbone of WFRE-YOLOv8s. In the neck, we
adopt the RFN module to reduce the computational overhead while fusing different scale
features well, resulting in improved detection accuracy and real-time detection speed of
the network. In addition, we also incorporate the EMA attention module in the backbone
part of the play network, which can enhance the extraction of adequate feature information
and thus enhance the detection accuracy of the network and solve the problem of some
defects being missed and wrongly detected in the solution process. In order to validate our
proposed WFRE-YOLOv8s, we conducted a series of experiments on NEU-DET and not
only ablation experiments but also a comparison with other SOTA target detection models.
The ablation experiments proved the effectiveness of our proposed improved module,
and the comparison experiments with other SOTA models proved the effectiveness of our
proposed model. In comparison with other methods, WFRE-YOLOv8s achieved better
performance than other models, with higher scores than others in mAP0.5 and mAP0.95.

For WFRE-YOLOv8s, with crazing and rolled-in scale, there is still the problem that
detection accuracy is lower than other categories. Additionally, there is still room for
compression in terms of the number of model parameters and FLOPs. Moving forward,
we will focus on enhancing the ability of the model to detect defects in all categories and
designing a more lightweight model.
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