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Abstract: Thermal barrier coatings have been used to protect superalloys under extremely harsh
conditions. The durability of TBCs with a NiCoCrAlY bond layer prepared via the air plasma spray
process and an ultrathin dense layer prepared via magnetron sputtering was investigated under
different corrosion conditions. This paper discusses the corrosion resistance improvement mechanism
of TBCs with a dense layer produced by magnetron sputtering under corrosion conditions with
environmental contaminants such as calcium–magnesium–aluminum–silicon oxide systems (CMAS)
at 1300 ◦C and NaCl-Na2SO4-V2O5 (NV) at 900 ◦C. The corrosion results show that CMAS will
react with the stabilizers of zirconium oxide, which will change the rate of the phase transition, as
determined via X-ray diffraction tests. A thermal ablation test verified that TBCs with a dense layer
have a better corrosion resistance and better thermal insulation properties. All results show that
preparing TBCs with a dense layer via the magnetron sputtering method will be an efficient method
to improve TBCs’ properties at high temperatures in the future.

Keywords: thermal barrier coatings; corrosion; oxygen permeation; air plasma spray; thermal insulation

1. Introduction

Thermal barrier coatings (TBCs) were developed as a kind of thermal protection
technology for some ceramic materials, with a high temperature stability, a low thermal
conductivity, a high thermal expansion coefficient and corrosion resistance, and were
designed to bind with metal substrates to form a coating to prolong the working time
of metal substrates [1–7]. TBCs are mainly made from a ceramic top layer, a NiCoCrAlY
bond layer and a superalloy substrate [8]. The most popular ceramic top layer material
is yttria-stabilized zirconia (YSZ), which cannot work for a long time above 1200 ◦C as
it will fail due to a phase transformation and oxidation of the bonding layer [3,9]. When
oxygen infiltrates the metal bonding layer through the ceramic layer, the metal layer can
be oxidized to form a thermally grown oxide (TGO) layer [10,11]. Furthermore, NaVO3
and CaO + MgO + Al2O3 + SiO2 (CMAS) corrosion will also accelerate the failure of TBCs
during operation [12,13]. When CMAS reacts with stabilizers, it can produce a tetragonal
to monoclinic phase transformation, which may occur upon cooling, accompanied by a
3%–5% volume expansion and a loss of coating toughness [14]. The oxygen to oxidize the
TGO layer mainly comes from two places: one is the oxygen contained in TBCs during
the spray process, and the other is the oxygen from the environment, which will infiltrate
the top ceramic layer and enter the bonding layer at high temperatures. The large influx
of oxygen will accelerate the oxidation of the metal bonding layer and increase the rate of
formation of the TGO layer. Due to the difference in the thermal expansion coefficients of
the TGO layer and the ceramic layer, a concentrated thermal stress area will be generated
between the ceramic and metal bonding layers [15,16]. As the regional stress increases, the
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ceramic layer and the metal bonding layer will peel off, ultimately causing the thermal
barrier coating to fail.

To solve this problem, much research has been performed to prolong the working time
of TBCs. Li [17] found that the chemical reaction between wet CMAS melts and YSZ is more
vigorous on the YSZ (110) lattice surface than that on other interfaces from first principles
calculations. Hamide [18] found that the hot corrosion mechanism involves molten salts
reacting with the stabilizers of zirconia. Shen [19] studied the thermal shock life and failure
behaviors of La2Zr2O7/YSZ, La2Ce2O7/YSZ and Gd2Zr2O7/YSZ double-layer ceramic
TBCs, and found that Gd2Zr2O7/YSZ TBCs have the longest thermal shock life. Wang [20]
found that the high-entropy rare earth aluminate (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 was
stable at 1400 ◦C. Tounsi [21] employed an efficient and simple four-variable integral
high-order shear deformation theory to model the analytical solution of the boundary
condition. Katea [22] found that the obtained nano-particle TBCs might be of interest for
high-temperature and harsh-environment applications. Doleker [23] studied TGO layers,
finding that they are predominantly composed of an alumina layer at 1000 and 1100 ◦C;
however, an increase in mixed formations was observed in oxidation at 1200 ◦C. These
researchers mainly reduced the oxygen permeability of coatings by changing their chemical
composition, reducing their porosity and preparing gradient coatings, thereby extending
their service life.

To reduce the speed of oxygen reaching the metal bonding layer and solve the above
problems to improve the performance of TBCs, an efficient method has been proposed
as follows: We will prepare an ultra-thin zirconia layer on the surface of plasma-sprayed
thermal barrier coatings via magnetron sputtering. The ultra-thin zirconia layer can not
only prevent oxygen permeating the top ceramic, but can also reduce the direct contact
between both corrosive environmental contaminants and stabilizers of zirconia. Plasma-
sprayed coatings contain many small pores, and these pores may form continuous free
channels in the coatings. If the ultra-thin zirconia layer can seal these pores, the surface
thin layer will be a good barrier to oxygen and molten salts.

The partially yttrium-oxide-stabilized zirconia powder and coating have been previ-
ously prepared. 9.5Y2O3-5.6Yb2O3-5.2Gd2O3 doped in ZrO2 (YYG) was thought to have
promising applications as a ceramic thermal barrier coating material in high-temperature
environments due to its low thermal conductivity and high-temperature phase stabil-
ity [24,25]. Its disadvantage is its poor thermal shock resistance. If the transmission rate
of oxygen can be reduced, thereby reducing the oxidation rate of the bonding layer, this
will greatly improve the service life and operation temperature of thermal barrier coatings
and accelerate the development of aviation engines. This study mainly focuses on the
effects of a thin layer of zirconia on the thermal properties of coatings, which hinders direct
contacts between corrosive substances and the coating, reduces the oxygen transmission
rate and improves the service life of high-temperature components in aviation engines and
gas turbines.

2. Experimental Procedures

Powder prepared by the solid reaction method was used to prepare coatings, and then
the thermal properties were tested.

2.1. Specimen Preparation

Powders were prepared by the solid reaction method. Firstly, oxides of Y2O3 (Aladdin,
>99.9%), Yb2O3 (Aladdin, >99.9%), Gd2O3 (Aladdin, >99.9%) and ZrO2 (Aladdin, >99.9%)
were weighed according to the mass ratio of 9.5Y2O3-5.6Yb2O3-5.2Gd2O3-79.7ZrO2. All
the oxides were mixed in absolute ethyl alcohol (Shandong Qilin Chemical Co., Ltd., Zibo,
China, >99%) via high-energy ball milling at a speed of 400 r/min for 8 h, and then the
mixture was dried in a drying box at 120 ◦C. Then, the mixture was placed in a high-
temperature furnace and kept at 1500 ◦C for 8 h. Finally, the powder was used to prepare
TBCs using an air plasma spray process, and the plasma spray parameters used are listed
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in Table 1. The corrosion testing process was consistent with the literature [26,27]. The YSZ
target (AECC Beijing Institute of Aeronautical Materials, Beijing, China, 99.99%) material
was used for magnetron sputtering, and the power was 200 W.

Table 1. Plasma spray parameters used for spraying ceramic layer powders and bond layer powders.

Plasma Spray Parameters Bond Layer Ceramic Layer

Argon flow (NLPM) 45 45
Hydrogen flow (NLPM) 4.5 4.5

Amps (A)/volts (V) 420/50 620/62
Carrier gas flow (SCFH) 5 3

Powder feed rate (g/min) 26 26
Cooling air pressure (bar) 2.6 2.6

Spray distance (cm) 12 10.5
Gun speed (mm/s) 500 600

2.2. Structure Characterization and Property Measurement

Densities of the bulk samples were measured by Archimedes’ method. XRD (PANalyt-
ical, Almelo, The Netherlands) using Cu Ka radiation (k = 1.54 Å) at 5 kV and 10 mA was
performed to determine the phase compositions of synthesized samples over the range of
10–90◦. General Structure Analysis System X’Pert High Score Plus 3.0 software was used
to analyze the XRD patterns. Morphologies and chemical compositions were analyzed
using a Cold Field Emission Scanning Electron Microscope (SEM, Hitachi SU8020, Tokyo,
Japan) equipped with an energy-dispersive spectroscopy (EDS) unit. The thermal shock
resistance was tested using a Muffle furnace. The samples were prepared on the surface
of a superalloy with dimensions of φ30 × 5 mm using the APS method. To examine the
durability of the TBCs, a thermal cycling test was conducted at 1150 ◦C in a chamber
furnace in an atmospheric environment, which consisted of 4 min of heating up to 1150 ◦C,
5 min resting at 1150 ◦C and air-cooling to room temperature via a deionized water-cooling
process. The properties of thermal insulation and the oxidation product on coatings were
measured using an air plasma spray system (APS-3000, Beijing, China) at 1500 ◦C, and the
test details can be found in our previous work [28]. The actual thermal insulation ability
was evaluated by the temperature difference between the substrate and ceramic.

3. Results and Discussion
3.1. XRD Analysis of Powders and Coatings

The YSZ and YYG XRD patterns of powders and coatings with and without an
ultrathin dense layer are shown in Figure 1. The ceramic powders of YSZ and YYG have
wide diffraction peaks, which might be attributed to the fine grains of the powders [29].
Some characteristic peaks of the tetragonal phase are present [30] at (101), (110), (112), etc.,
in the XRD patterns of the YYG powder. Figure 2 shows the X-ray diffraction patterns at
high angle scans in the range of 2θ from 72.5◦ to 75.5◦. It is obvious that the YYG coating
with an ultrathin dense layer has characteristic peaks of both the YYG coating and YSZ
coating at the same time, as shown in Figure 2(A,C). This proves that the dense layer is a
tetragonal phase.

To further prove the phase constitution of coatings of YSZ and YYG, Figure 3 shows
diagrams of the Raman shift of the coatings, respectively. The Raman signal from cubic
zirconia is weaker than that from tetragonal zirconia; however, the sensitivity of the
monoclinic phase in Raman spectroscopy is much higher than that in XRD [31,32]. The
irreducible representation for optical and acoustical zone center phonons can be determined
by a group theory analysis [33]. It can be observed that the Raman spectra of YSZ and YYG
coatings contain the same peaks, which proves that they have the same phase structure. The
YYG coating has broader Raman bands than those of the YSZ coating, especially around
615 cm−1.
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3.2. Thermal Ablation Analysis

The thermal ablation experiment conditions are most similar to the real working
conditions. Figure 4 shows typical surface photographs of the YYG coating with an
ultrathin dense layer before ablation (a), after the first ablation (b) and after the second
ablation (c) at 1500 ◦C for 1000 s. After the first thermal ablation, the coating surface
color changed from white to gray, but the coating did not fail. It is possible that the bond
strength between the dense layer and the top layer is not sufficient to withstand the normal
working environment at 1500 ◦C. During the cooling process in the second thermal ablation
experiment, the top layer of ceramic was partially removed, but the superalloy did not
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fail. The coating protected the superalloy substrate well. The YYG coating without a
dense layer failed after the first thermal ablation. Thus, the dense layer can prolong the
working time of TBCs. Figure 5 shows the temperature distribution of the YYG coating
during the thermal ablation process. The surface temperature of the top ceramics is around
1500 ◦C, and the back temperature of the superalloy is around 970 ◦C. The total thickness
of the ceramic layer is around 1 mm, and the heat insulation is around 530 ◦C/mm. The
heating rate and cooling rate of the ceramic coating surface are higher than those of the
back of the superalloy. This is mainly because the specific heat capacity of the superalloy
(712 J/(kg·◦C)) is much higher than that of the ceramic coating (490 J/(kg·◦C)) [34,35]. This
mismatch in specific heat capacity may be one of the factors which leads to the failure of
TBCs [36]. The superalloy and the ceramics are under the same conditions; thus, there will
be a big difference in heating and cooling rates.
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Figure 4. Typical surface photographs of the YYG coating with an ultrathin dense layer before
ablation (a), after the first ablation (b) and after the second ablation (c) at 1500 ◦C for 1000 s.

Figure 6 shows the X-ray diffraction patterns of coatings after being kept at 1600 ◦C for
2 h and 8 h in a furnace. It is obvious that the relative peak strength of the ceramics decreases
with an increase in the holding time at 1600 ◦C because the surface will be smoother and the
coating will be denser after high-temperature treatment. This will decrease the scattering
surface area. In addition, the heat transfer ability will be better at high temperatures. The
relatively higher thermal conductivity will increase the failure rate of TBCs.
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3.3. Corrosion Analysis

The working conditions of TBCs are extreme, and the salts and oxides in the air and fuel
will react with the stabilizers of zirconium oxide. They will experience huge temperature
differences in a short time. Different reactions will occur at different temperatures. Chemical
reactions can increase the failure speed of TBCs. When the environmental temperature is
around 900 ◦C, molten salts (V2O5, Na2SO4 and NaCl) in the air can influence the lifetime of
TBCs [37]. Molten salts were spun on the surface of the top ceramics and then maintained
at 900 ◦C for 4 h. The corresponding elemental mapping results for the YYG coating with
an ultrathin dense layer after hot corrosion tests in V2O5-Na2SO4-NaCl molten salts at
900 ◦C for 4 h are shown in Figure 7. According to the elemental map of the intermixed
zone, shown in Figure 7, Na, V, O and S elements were not uniformly distributed over
the whole surface; S and O elements were distributed around V, which likely generates
NaVO3. The EDS spectrum of the YYG coating with an ultrathin dense layer (as shown in
Figure 8) proved that there were no coating elements (such as Y, Yb, Gd) on the surface.
The chemical compositions of the surface micrographs of the YYG coating with an ultrathin
dense layer after corrosion (as shown in Table 2) show that the surface components are
Na2SO4 and NaVO3 [38]. This indicates that the surface of the ceramic layer of the thermal
barrier coatings is completely covered in corrosive salts. No rare earth vanadate was found,
indicating an enhanced corrosion resistance. The ultrathin dense layer can prevent molten
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salts from reacting with the coatings, which is an efficient method to prolong the working
time of TBCs.
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Figure 8. EDS spectrum of the YYG coating surface with an ultrathin dense layer after corrosion in a
V2O5 + Na2SO4 + NaCl molten salt at 900 ◦C for 4 h.

Table 2. Chemical compositions of the surface micrographs of the YYG coating surface with an
ultrathin dense layer after corrosion in a V2O5 + Na2SO4 + NaCl molten salt at 900 ◦C for 4 h.

Elements O Na S V

Mass ratio wt% 46.45 29.01 11.44 13.11
Atomic percentage 60.75 26.4 7.46 5.38

In the absence of any protection, the molten salt reacts with the stabilizers of zirconium
oxide, resulting in the segregation failure of the coating [18,25,39]. According to previous
low-temperature molten salt corrosion results, when a dense oxide film is prepared on the
surface of the coating via the plasma spraying method, direct contact between the molten
salt and the coating can be prevented, and the molten salt corrosion rate of the coating at
about 900 ◦C can be slowed down. Thus, we studied whether the dense oxide film can slow
down the CMAS corrosion of the coating at 1400 ◦C. Figure 9 shows the surface element
distribution of the coatings after the CMAS attack at 1400 ◦C for 8 h determined by an EDS
mapping test. The EDS result suggests (as shown in Figures 9 and 10) that CMAS has not
reacted with the coating stabilizers. From Figure 9 and Table 3, it is obvious that CMAS
has reacted with ZrO2 at 1400 ◦C [40], and only Ca, Mg, Al, Si, O and Zr were found on
the surface, but elements such as Y, Yb, Gd were not detected, indicating that CMAS may
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replace stabilizers and affect the service life of the coating. Figure 10 indicates that the
surface of the ceramic layer of the thermal barrier coatings has been completely covered
by CMAS. Oxide (CaO, MgO, Al2O3, SiO2)-stabilized zirconia may form, indicating an
enhanced corrosion resistance. Thus, CMAS will increase the failure rate of TBCs when the
working temperature is higher than 1400 ◦C.
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Figure 10. EDS spectrum of the YYG coating with an ultrathin dense layer surface after corrosion by
CMAS at 1400 ◦C.

Table 3. Chemical compositions of the surface micrographs of the YYG coating surface with an
ultrathin dense layer after corrosion by CMAS at 1400 ◦C.

Elements O Mg Al Si Ca Zr

Mass ratio wt% 34.02 0.94 1.88 5.73 6.73 50.7
Atomic percentage 67.24 1.22 2.2 6.45 5.31 17.58

3.4. Thermal Shock Analysis

To closely imitate the real conditions, in the thermal cycling test, the coating was first
cooled in air at least 6 times, and then cooled in deionized water at room temperature until
failure. The thermal cycling test results of the YYG coatings with different thicknesses are
shown in Table 4. It shows that the thermal cycles increase with a decrease in thickness; the
finale failure photos are shown in Figure 11. It is clear that the top of the ceramic coating
with a thickness of 900 µm is completely removed from the superalloy after two air cooling
cycles, but the others are only removed partly. The test results show that the coating with
an ultrathin dense layer can work normally when the thickness is no less than 300 µm,
which is similar to the findings in [41].
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Table 4. Thermal shock properties of the YYG coating with an ultrathin dense layer.

50 µm 100 µm 300 µm 600 µm 900 µm

Air cooling cycles 6 6 6 6 2
Water cooling cycles 6 5 3 1 -
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Figure 11. Thermal shock pictures of different-thickness YYG coatings at 1150 ◦C for 5 min: 50 µm
(a), 100 µm (b), 300 µm (c), 600 µm (d), 900 µm (e). The subscript 1 represents before ablation, and
the subscript 2 represents after ablation failure.

4. Conclusions

A YYG ceramic powder has been synthesized via the solid-state reaction method.
Ceramic coatings with an ultrathin dense layer have been prepared via the air plasma
spraying and magnetron sputtering methods. The insulation capacity of the thermal barrier
coatings is nearly 530 ◦C/mm, which indicates that they can resist low-temperature molten
salt (V2O5 + Na2SO4 + NaCl) corrosion and high-temperature CMAS corrosion and that
they have a prolonged working time. The thermal shock resistance test shows that the
coating with a sputtered ultrathin dense layer thickness of 300 µm performs twice as well as
the coating without an ultrathin dense layer, demonstrating an improved thermal stability.
The dense layer can slow down the oxidation rate of the metal bonding layer, extend the
service life of the coating and greatly improve the workability of thermal barrier coatings.
This can improve the service life of high-temperature components in aviation engines and
gas turbines with different ceramic materials.

Author Contributions: Methodology, L.A., M.Y. and Y.Z.; Software, L.A., X.W. and Y.Z.; Validation,
Y.L.; Investigation, L.A., M.Y. and Y.L.; Resources, Y.Z.; Data curation, X.W. and Y.L.; Writing—original
draft, L.A. and X.W. All authors have read and agreed to the published version of the manuscript.
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