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Abstract: With the continuous improvement of global technological levels and the increasing de-
mand for high-performance alloy materials in national economic construction, the traditional single
principal component alloy is increasingly unable to meet people’s increasing service needs. High-
entropy alloys play an important role in aerospace, mechanical manufacturing, biomedicine, energy
development and other engineering fields because of their unique physical, chemical and mechanical
properties. Based on the concept of high-entropy alloys, the high-entropy effect, lattice distortion
effect, sluggish diffusion effect and cocktail effect of high-entropy alloys are represented in this
paper. The common preparation methods of high-entropy alloys are summarized according to the
classification of melting-casting method, mechanical alloying method and coating method. The
strength and toughness, wear resistance, corrosion resistance, high temperature resistance, fatigue
resistance, radiation resistance and magnetic properties of the high-entropy alloys are discussed. The
application prospect of high-entropy alloys is summarized, and the future research and development
direction of high-entropy alloys are prospected on this basis.

Keywords: high-entropy alloys; preparation methods; wear resistance; corrosion resistance; application
prospect

1. Introduction

As one of the three pillars of modern civilization, materials play an irreplaceable role
in the process of continuous development of society. In the course of the advancement and
evolution of human history from the Stone Age to the Bronze Age and then to the Iron Age,
every major social change was accompanied by the emergence of new materials. The first
technological revolution is based on the development of materials such as steel and copper.
The second technological revolution is based on the development of alloy steel, aluminum
alloy and various non-metallic materials. The third technological revolution has realized
large-scale industrialization and civil production of synthetic materials and semiconductor
materials. Materials are the basis of modern technology and the core of all scientific and
technological progress. The development of materials has not only changed the way of hu-
man life, but has also promoted the progress of productivity and the innovation of science
and technology. Composite materials, amorphous materials and high-entropy alloys are the
three hotspots in the field of materials in the past 20 years. In a socio-economically devel-
oped environment with the theme of informatization, intelligent accelerated development,
energy saving and emission reduction, improving the comprehensive performance of alloys
is the overall goal of new material research and development. As a new type of alloy with
high hardness, high heat resistance, strong corrosion resistance, high wear resistance and
fatigue resistance, high-entropy alloys are different from any existing traditional alloy. As a
new alloy system, high-entropy alloys have important research value and broad application
prospects. Therefore, the design, preparation and application of high-entropy alloys have
become an important direction for the development of new materials [1,2].
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2. Concept of High-Entropy Alloys
2.1. Proposal of High-Entropy Alloys

As early as the end of the 18th century, Franz Karl Achard carried out experimental
research on multicomponent alloys of five to seven elements. The innovative work was not
discovered and reported until 1963 by Professor Cyril Stanley Smith, which is the earliest
recorded study on high-entropy alloys. In 1993, Professor Cantor of Cambridge University
first expounded the concept of multiprincipal alloys [3]. In the subsequent research work,
Cantor [4] also pointed out that the traditional alloy design concept caused the lack of
research on the alloy phase diagram. Under the traditional alloy design concept, the
research on the endpoint or edge region of the phase diagram has been greatly developed,
while the large area in the middle of the phase diagram is poorly understood, especially
the phase diagram analysis of the alloy in the presence of equal moles of several or more
elements. As shown in Figure 1, there is a large degree of blank area in the phase diagram
of binary and ternary alloys. Therefore, it is necessary to expand and supplement the alloy
phase diagram. It is generally believed that there are two ways to achieve this goal. One
is to increase the alloy element content on the basis of traditional alloy design, and the
other is to use an equal atom substitution method, that is, to replace individual atoms in
the component with other elements. Through the above two methods, a multicomponent
alloy system with closer composition can be obtained.
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Around 1995, scholars represented by Professor Yeh have also carried out a lot of basic
research on multiprincipal alloy [6,7]. In 2004, Professor Yeh proposed the concept of the
“high-entropy alloy” for the first time, which was expressed as: an alloy composed of five
or more elements mixed in a near-equal molar ratio, with each element content (atomic
ratio) greater than 5% and less than 35% [7]. On this basis, the research of multiprincipal
alloys has been raised to a new height. In 2016, Lim from Singapore mentioned in an
article published in Nature journal that the advent of the “high-entropy alloy” has created
unprecedented broad prospects for the innovative development of materials metallurgy
science, and provided new ideas and opportunities for the research and development of
special property materials that can be used under extreme conditions and the upgrading
and replacement of traditional materials [1].

2.2. Definition of High-Entropy Alloys

High-entropy alloys are alloys with high-entropy values. The initial definition of
high-entropy alloys is based on the mixed entropy of the alloy. In physics, entropy is a
physical quantity that characterizes the degree of confusion of the system. In general,
the greater the number of microscopic states corresponding to a macroscopic system, the
greater the entropy of the system is.

According to the principle of Boltzmann statistical thermodynamics, the entropy of a
system can be expressed by the following equation:

S = klnW (1)

In the formula, S represents the entropy of the system, k is the Boltzmann constant,
k = 1.38 × 1013 J·K−1, and W is the thermodynamic probability, which represents the total
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number of microscopic states in the system. Since entropy is the macroscopic property of
the system and the thermodynamic probability has microscopic characteristics, this formula
organically combines the macroscopic and microscopic quantities of the system and lays
the foundation of statistical thermodynamics.

According to the hypothesis of Boltzmann on the relationship between entropy change
and chaos degree, the mixing entropy of n principal alloy systems can be expressed as

∆Smix =−R∑xilnxi, (2)

where ∆Smix is the mixing entropy, R is the molar gas constant, 8.314 J/(K·mol), and xi is
the molar ratio of the i principal element in the alloy system. When the principal element
atoms in the alloy system are equal molar ratio, the maximum mixing entropy is expressed
as follows:

∆Smix =Rlnn (3)

Table 1 shows the mixing entropy of an equal molar ratio alloy system with the
number of principal elements n. There is an exponential relationship between the number
of principal elements and the entropy of the alloy system. With the raising of the number
of principal elements in the alloy system, the mixing entropy increases continuously. The
mixing entropy of the alloy system is 0.69 R when the two principal elements are mixed in
equal molar ratio. When five kinds of principal elements are mixed to form an alloy with
equal molar ratio, the mixing entropy of the alloy system is 1.61 R.

Table 1. Mixing entropy ∆Smix for the alloys with n principal elements in equal molar ratio.

n ∆Smix n ∆Smix

1 0 11 2.4 R
2 0.69 R 12 2.48 R
3 1.1 R 13 2.56 R
4 1.39 R 14 2.64 R
5 1.61 R 15 2.71 R
6 1.79 R 16 2.77 R
7 1.95 R 17 2.83 R
8 2.08 R 18 2.89 R
9 2.2 R 19 2.94 R
10 2.3 R 20 3 R

Based on the deepening of the research on high-entropy alloys, Professor Yeh redefined
the mixing entropy range of high-entropy alloys [6,7]. When ∆Smix is less than R, it can
be defined as a low-entropy alloy, when ∆Smix is between 1 R and 1.5 R, it can be defined
as a medium-entropy alloy and for high-entropy alloys, the ∆Smix is greater than 1.5 R, as
shown in Figure 2.
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In recent years, with the gradual deepening of the research on high-entropy alloys, the
definition of high-entropy alloys has become more broad. The evaluation system also lists
more alloys with good comprehensive properties as high-entropy alloys [8–14].

3. Four Effects of High-Entropy Alloys

Yeh et al. [15] firstly proposed four core effects of high-entropy alloys in 2006, namely,
high-entropy effect in thermodynamics, lattice distortion effect in crystallography, sluggish
diffusion effect in kinetics and cocktail effect in performance. These effects are unique in
metal alloys. Most high-entropy alloys have many excellent properties which traditional
alloys do not have.

3.1. High-Entropy Effect

According to the classical thermodynamic theory, the relationship between Gibbs
free energy G and enthalpy H, absolute temperature T and entropy S can be expressed
as follows:

G = H − TS (4)

For a certain alloy system, the Gibbs free energy of the system before and after mixing
changes as follows:

∆Gmix = ∆Hmix − T∆Smix (5)

Here, ∆Gmix is the variation of Gibbs free energy and ∆Hmix and ∆Smix represent the
mixing enthalpy and mixing entropy of the alloy system, respectively. The mixing entropy
and mixing enthalpy are competitive with each other. The Gibbs free energy will descend
with the decrease in mixing enthalpy and the increase in mixing entropy. High-entropy
alloys are more likely to form simple solid solutions due to their high mixing entropy. The
schematic diagram of the formation of solid solution promoted by high-entropy effect is
shown in Figure 3.
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The high-entropy effect of high-entropy alloys has been confirmed in many aspects [16–22].
The influence of high-entropy effect on the phase structure of high-entropy alloys is more
intuitive. It can be seen from Figure 4 that the phases in quinary, senary, and septenary alloys
remain rather simple. The major phases have simple structures such as BCC and FCC.
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3.2. Lattice Distortion Effect

The high-entropy alloys can easily form a disordered solid solution because of the
high-entropy effect, as shown in Figure 5. The atoms in the solid solution are randomly
distributed. Each atom may be surrounded by different atoms. Each principal element will
be different because of the structural characteristics. These differences will inevitably cause
a certain degree of deviation in the lattice atom. Then, the lattice distortion is generated.
This characteristic is called lattice distortion effect, which will have a remarkable impact on
the microstructure and properties of high-entropy alloys.
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component alloy; (b) BBC servere lattice distortion, five component alloy.

The lattice distortion can enlarge the X-ray scattering and reduce the diffraction peak
intensity. When the atoms with different properties randomly occupy the crystal lattice
position, the X-ray is scattered due to the serious distortion of each diffraction surface.
Professor Yeh [24] studied the decrease in X-ray diffraction peak intensity in alloy systems
in 2007. The results are shown in Figure 6. The intensity of the diffraction peak decreases
with the enlargement of the number of alloying elements in high-entropy alloys. The degree
of reduction is much larger than that of the thermal effect, which means that the internal
lattice distortion of the alloy has an important effect on the change of X-ray diffraction
peak intensity.
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Figure 6. Schematic view of lattice distortion effect on Bragg diffraction: (a) a perfect lattice with the
same atoms;(b) distorted lattices of solid solutions composed of different atoms; (c) temperature and
distortion effects on the XRD intensity [24].

The serious lattice distortion will increase the scattering of electrons and phonons,
which will reduce the electrical conductivity and thermal conductivity of the alloy. Research
shows that the electrical conductivity and thermal conductivity of the alloy decrease with
the increase in aluminum content, and are lower than pure aluminum [25]. It can be seen
that the slope of the curve of the high-entropy alloys has a small positive value, while the
slope of the curve of pure aluminum has a large negative value from Figure 7.
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3.3. Sluggish Diffusion Effect

Diffusion is the phenomenon that occurs when atoms migrate away from their original
position, and the macroscopic flow of material is caused. In the process of phase transition,
the formation of a new phase usually requires the cooperative diffusion of many atoms.
In the liquid state, the principal elements of the high-entropy alloys are disordered due
to the high-entropy effect. In the cooling process, the diffusion of the high-entropy alloys
involves the diffusion and redistribution of the principal element atoms. The nucleation
and growth of the new phase are inhibited. It can be called the sluggish diffusion effect in
kinetics of the high-entropy alloys.

Yeh et al. [26] selected the alloy system with a single-phase face-centered cubic struc-
ture as the research object to analyze the diffusion coefficient. As shown in Figure 8, the
diffusion coefficients of the five elements in high-entropy alloys are significantly smaller
than those in traditional alloys.
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The sluggish diffusion effect not only promotes the formation of supersaturated
solid solution and the precipitation of nanophase, but also has a beneficial effect on the
comprehensive properties of high-entropy alloys [27–32]. These beneficial effects include
slowing down the phase transition rate, increasing the recrystallization temperature of the
alloy, inhibiting the nucleation and growth of crystal grains, improving creep properties,
etc. Therefore, the sluggish diffusion effect in kinetics is beneficial to control the properties
of high-entropy alloys.
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3.4. Cocktail Effect

The cocktail effect was firstly proposed by Professor Ranganthan [33], as shown
in Figure 9. It shows that the microstructure and properties of high-entropy alloys are
determined by the various elements added, and the performance can be greatly changed
by adjusting the principal component composition. Reference 7 shows that the strength of
the AlxCoCrFeNiCu alloy increases with the increase in Al content, as shown in Figure 10.
The phase structure of the alloy changed from FCC structure to FCC + BCC structure, and
then to BCC structure. In addition, some experiments have shown that the addition of an
aluminum element can reduce the density of high-entropy alloys [34]. If some refractory
elements are added, the high-temperature properties can be enhanced [35]. In the alloy
system, the effect of Cu contributes to the formation of an L12((Ni, Cu)3Al) phase [36]. It
may be possible to obtain an unforeseeable high performance using the cocktail effect.
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4. Preparation Method of High-Entropy Alloys

The preparation method, production process and the selection of process parameters
of high-entropy alloys have great influence on the alloy properties. Moreover, different
preparation methods will lead to large differences in processing costs. Therefore, it is
important to reasonably select the preparation method of high-entropy alloys and op-
timize the process parameters in the preparation process. After decades of production
practice, it has developed from the initial vacuum arc melting-casting method [37–40] to
today’s mechanical alloying method [41,42], surface coating method [43–45] and other
preparation methods.
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4.1. Melting-Casting Method
4.1.1. Vacuum Arc Melting

The earliest preparation method of high-entropy alloys is vacuum arc melting, as
shown in Figure 11. The arc discharge is used to heat and melt the metal, and then
the liquid metal is cooled and solidified in this method. The high-entropy alloys firstly
proposed by Yeh et al. were prepared using this method [7]. Because this method can melt
metal elements with high melting points, most of the current research is also based on this
method to prepare alloy ingots. However, the cooling rate of the alloy is fast during the
preparation process using this method, and there will be obvious shrinkage on the metal
surface during the solidification process, which is usually only suitable for the preliminary
detection and analysis of the alloy.
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4.1.2. Resistance Furnace Melting

Yeh et al. [6] tried to melt high-entropy alloys under atmospheric conditions. They
used a resistance furnace to melt and cast CuCoNiCrCrAlFeTiV series alloys. The results
show that, although the microstructure of the alloy is relatively uniform and the degree of
segregation is relatively small, this method is not suitable for the melting of high-entropy
alloys which are easily oxidized and have high melting points.

4.1.3. Vacuum Induction Melting

Vacuum induction melting is the process of melting metal under vacuum conditions
using electromagnetic induction [46]. This method can realize the preparation of large-
size ingots of high-entropy alloys, which provides enough raw materials for the further
study of alloy deformation, microstructure and properties and promotes the research and
application process of high-entropy alloys.

4.1.4. Vacuum Electron Beam Melting

Vacuum electron beam melting is a preparation method of high-entropy alloys. In this
method, the high-energy electron beam is focused on metal raw materials in a high vacuum
environment. The metal is melted and then solidified. Fujieda et al. [47] firstly applied
vacuum electron beam melting technology to the preparation of high-entropy alloys in
2015. Compared with the samples melted by electric arc furnace, although the strength of
the samples melted by electron beam decreased slightly, the plasticity increased by nearly
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20%, and the strength limit still reached 1400 MPa. However, this method also has some
limitations. There is serious anisotropic behavior exhibited in the solidification structure,
and it is not suitable for the melting of volatile elements.

4.2. Mechanical Alloying Method

Mechanical alloying is the grinding of mixed powder in a high-energy ball mill
and the atoms in the powder particles are diffused through repeated cold welding and
fracture to achieve the alloying process. The schematic diagram of the mechanical alloying
method is shown in Figure 12. Mechanical alloying is an effective method to synthesize
fine crystalline powders in a non-equilibrium state. In 2008, Indian scholar Varalakshmi
prepared AlCrCuFeTiZn high-entropy alloys using the mechanical alloying method for the
first time [48], and the alloys showed high thermodynamic stability and good mechanical
properties. Traditional manufacturing processes struggle to achieve the alloying of some
special substances and the synthesis of new substances. However, the mechanical alloying
technology is not limited by the physical properties of the mixing enthalpy, melting point
and so on, so this difficulty can be overcome. It should be noted that the mechanical
alloying method will produce some pollutants during the milling process. In addition, due
to the powder state of the product prepared by mechanical alloying, the molding process of
the sample needs to be completed under large pressure, the equipment condition is limited
and the stamping cost is high. Therefore, the mechanical alloying method is more suitable
for large-scale industrial production.
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4.3. Coating Method

The coating method is an alloy preparation method that coats a coating material with
excellent comprehensive performance onto the surface of an engineering component or
mold to improve its service performance. High-entropy alloys are especially suitable for
coating materials. At present, the common preparation methods of high-entropy alloy
coatings are as follows.

4.3.1. Laser Cladding

Laser cladding is a preparation method that uses a laser beam to melt the high-entropy
alloy powder and the surface of the matrix material at the same time, and forms a surface
coating combined with the matrix during the subsequent solidification process, as shown
in Figure 13. The molten surface has small dilution, small deformation, fast solidification
speed, high stability, and reliable performance. Zhang et al. [49] prepared AlCoCrFexNi
high-entropy alloy coatings by laser cladding and analyzed the effect of the Fe element on
its properties. Chang et al. [50] used the laser cladding technique to prepare FeCrxCoNiB
high-entropy alloy coatings on AISI1045 steel matrix and studied its thermal stability and
oxidation resistance. Huang et al. [51] prepared an equimolar ratio of TiVCrAlSi coatings
using a laser cladding process and studied its wear resistance behavior. Jiang et al. [52]
prepared AlCoCrxFeNi coatings on a 45# steel matrix using laser cladding and studied its
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corrosion behavior. Liu et al. [53] fabricated AlCoCrFeNiTix coatings on AISI1045 steel
matrix by laser cladding and studied its microstructure and corrosion behavior.
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4.3.2. Magnetron Sputtering

Magnetron sputtering is one of the main preparation techniques for various soft and
hard films. The coating uses the sputtering effect to make high-energy particles bombard
the target. After the target atoms escape, they move along the established direction and
deposit on the target substrate to form a film. The schematic diagram of the magnetron
sputtering method is shown in Figure 14. Magnetron sputtering has been widely used in
the fields of metals, semiconductors, insulators and other materials due to its advantages
of low equipment cost, convenient operation, large area coating and large adhesion of the
film. Chen et al. [54] prepared high-entropy alloy nitride films by magnetron sputtering
with a hardness of more than 40 GPa. Chang et al. [55] found that the increasing of
nitrogen flow rate will promote the crystallization of the amorphous high-entropy film
of TiVCrAlZr and transform it into FCC solid solution. Lin et al. [56] found that boron
can improve the hardness of FeCoCrNiAlBx sputtering coating and change the wear
mechanism. Huang et al. [57,58] researched the effect of substrate bias and temperature on
the film structure. Chen et al. [59] prepared VAlTiCrMo coatings by magnetron sputtering
technology. Huo et al. [60] used nanocrystalline CoCrFeNi high-entropy alloy films formed
by magnetron sputtering.
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4.3.3. Thermal Spray Technology

Thermal spraying technology is a coating technology that uses a heat source to heat
the spraying material and uses high pressure gas to make the molten coating move at
a high speed, and finally deposits it on the surface of the substrate to form a film, as
shown in Figure 15. Thermal spray coating has little effect on the matrix, and the process
is simple to operate, easy to control, low cost, easy to scale for industrial production
and has great potential for industrial application. Huang et al. [61] firstly used thermal
spraying technology to prepare coatings and broadened the preparation method. Since then,
scholars have carried out research in this field. Ang et al. [62] used the plasma spraying
method to prepare AlCoCrFeNi and MnCoCrFeNi coatings. Wang et al. [63] found that
(CoCrFeNi)95Nb5 coating showed typical selective corrosion and good corrosion resistance
in the corrosion resistance test. Chen et al. [64] prepared Al0.6TiCrFeCoNi coating by flame
spraying method, and the test showed that the coating had good wear resistance.
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4.3.4. Electrochemical Deposition Method

Electrochemical deposition is deposited on the surface of the matrix to form a coat-
ing under the action of an electric field. The schematic diagram of the electrochemical
deposition method is shown in Figure 16. It is a low-cost coating preparation method, and
it is very suitable for the preparation of alloy materials with nanostructures. Moreover,
the phase composition, morphology and thickness of the coating can be easily controlled.
Yao et al. [65] firstly prepared high-entropy alloy films by electrochemical deposition tech-
nology and successfully prepared BiFeCoNiMn high-entropy alloy films. Soare et al. [66]
prepared two coatings on copper substrates by electrochemical deposition. Aliy et al. [67]
prepared AlFeCoNiCu high-entropy alloy graphene oxide coating on low carbon steel
substrate by electrochemical deposition, and explored the effect of graphene oxide on the
microstructure and corrosion properties of the coating.
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The comparison of the above preparation methods of high-entropy alloys is shown in
Table 2.

Table 2. Comparison of preparation methods of high-entropy alloys.

Preparation Methods Characteristics

Melting-casting method
The melting temperature is high, and it can be melted
many times. The melt is mixed evenly, and the low
melting point impurities are volatile.

Mechanical alloying method The particle size can be controlled and the mechanical
properties can be effectively controlled.

Laser cladding
It can rapidly solidify, inhibit the precipitation of
intermetallic compounds and promote the nucleation
of solid solution.

Magnetron sputtering The sputtering power can affect the grain size, change
the film composition and control the film thickness.

Thermal spray technology
The coating is dense and smooth, the mechanical
occlusion between the coating and the substrate is
good and the interface bonding is good.

Electrochemical deposition method
The structure of the deposited layer can be accurately
controlled, the equipment is simple, the energy
consumption is low and the operation is easy.

5. Properties of High-Entropy Alloys

The unique formation rule and microstructure characteristics of high-entropy alloys
determine that high-entropy alloys have better performance than other traditional al-
loys. These good comprehensive properties give high-entropy alloys great application
prospects in aerospace, machinery manufacturing, metallurgy, chemical industry and other
fields [68–70].

5.1. Strength and Toughness

The mechanical properties are the most studied for high-entropy alloys. This is because
the high mixing entropy makes them tend to form simple solid solution phases. The
strength and toughness of high-entropy alloys can be well matched, and their mechanical
properties are better than most traditional alloys [71].

A variety of strengthening mechanisms are stimulated by adjusting the microstructure
and machining to improve the properties of high-entropy alloys. Xiao et al. [72] prepared
a kind of high-entropy alloy, and the hardness of the alloy was as high as 13.76 GPa.
Yang et al. [73] synthesized Ni43.9Co22.4Fe8.8Al10.7Ti11.7B2.5 alloys by arc melting and ther-
momechanical processing. The strength and elongation at room temperature are as high as
1.6 GPa and 25%, respectively. Gludovatz et al. [74] studied CrMnFeCoNi alloys with a ten-
sile strength of more than 1 GPa and a fracture toughness value of more than 200 MPa·m1/2,
which is higher than most materials, as shown in Figure 17, when the temperature drops to
liquid nitrogen.

5.2. Wear Resistance

Tribological properties are very important in engineering, especially for moving work-
pieces such as bearings and gears. Due to the influence of the use environment, it is
necessary to meet the strength requirements and consider the service life, so the tribo-
logical performance requirements of materials are also crucial. Zeng et al. [75] prepared
AlFeCrNiMo coatings on 304 stainless steel. Because Al and Cr metals in the high-entropy
alloy coatings are prone to oxidation reactions which form Cr2O3 and Al2O3 layers, the
oxidation products produced play an important role in the formation of lubricity film and
have good wear resistance. Chuang et al. [76] prepared AlxCo1.5CrFeNi1.5Tiy alloys and
found that the wear resistance of this alloy is better than that of traditional wear-resistant
steel with similar hardness. The reason for the improved wear resistance is that the alloy
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has oxidation resistance and high temperature softening resistance. Figure 18 shows the
relationship between microhardness and friction resistance of several high-entropy alloys
and traditional alloys.
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5.3. Corrosion Resistance

Most of the principal elements of the high-entropy alloys have corrosion resistance,
such as metal Ni, Cr, Mo, Al, Cu and so on. Some of these elements form passivation
films by themselves, or interact with each other to form a dense composite passivation
film, so as to improve the corrosion resistance of the alloy in acid, alkali, salt and other
corrosive environments. In addition, the crystal structure is relatively simple, can easily
form single-phase solid solution or amorphous phase and can obtain excellent corrosion
resistance comparable to 304 stainless steel or amorphous alloys. The Hf0.5Nb0.5Ta0.5Ti1.5Zr
alloy designed by Hou et al. [77] has excellent corrosion resistance. Xiao et al. [78] found
that the addition of Cr can improve the corrosion resistance of alloys, and Cr can easily
form Cr2O3 to prevent high-entropy alloys from being corroded at room temperature.
Zhang et al. [79] studied the electrochemical corrosion properties of FeCoNiCrCu high-
entropy alloy coatings containing small amounts of Si, Mn and Mo. The results show that
the coatings have excellent electrochemical corrosion resistance.
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5.4. High Temperature Rresistance

One of the important properties of high-entropy alloys different from other traditional
alloys is high temperature resistance. Table 3 shows the comparison between the high-
entropy alloys and the conventional alloys in the as-cast and annealed states [7]. After
annealing at 1000 ◦C for 12 h, the high-entropy alloys still maintain a high hardness, and
some high-entropy alloys will even increase in hardness. However, the hardness values of
many traditional alloys decreased significantly after annealing.

Table 3. Comparison between the high-entropy alloys and the conventional alloys in two states [7].

Alloys Hardness, HV
As-Cast

Hardness, HV
Annealed

CuTiVFeNiZr 590 600
AlTiVFeNiZr 800 790
MoTiVFeNiZr 740 760

CuTiVFeNiZrCo 630 620
AlTiVFeNiZrCo 790 800
MoTiVFeNiZrCo 790 790

CuTiVFeNiZrCoCr 680 680
AlTiVFeNiZrCoCr 780 890
MoTiVFeNiZrCoCr 850 850
316 Stainless Steel 189 155

17-4 PH Stainless Steel 410 362
Hastelloy C 236 280

Stellite 6 413 494
Ti-6Al-4V 412 341

Grewal et al. [80] compared the oxidation resistance of Al0.1CoCrFeNi alloys with
commonly used steel alloys and coatings at 1173 K, and found that the formation of Cr2O3
protective film by Cr and slow diffusion effect meant that the Al0.1CoCrFeNi alloy has
better high temperature oxidation resistance. Lu et al. [81] found that with the increase
in aluminum content, the alloys showed an extremely slow oxidation rate and good high
temperature oxidation resistance. Senkov et al. [82] studied the oxidation behavior of
NbCrMo0.5Ta0.5TiZr alloys exposed to air at 1273 K for 100 h. The results showed that the
alloys have better oxidation resistance than other alloys such as the Nb alloy.

5.5. Fatigue Resistance

Hemphill et al. [83] studied the fatigue properties of Al0.5CoCrCuFeNi high-entropy
alloys, and the results are shown in Figure 19. It can be seen that the high-entropy alloys
have excellent fatigue resistance compared with other traditional alloys. Moreover, under
high stress state, the Al0.5CoCrCuFeNi high-entropy alloys have a longer cycle fatigue
life between 540 MPa and 945 MPa, and the ratio of fatigue life to fracture strength is
between 0.402 and 0.703. This phenomenon can be comparable to the fatigue properties of
traditional alloys such as steel materials and Ti alloys.

5.6. Radiation Resistance

With the continuous development of nuclear technology, both the power generation
equipment of nuclear power plants and the equipment for processing nuclear waste in
power plants need materials that can serve safely in a high radiation environment for a long
time. Therefore, improving the radiation resistance of materials plays an important role
in the development of nuclear technology. Studies have shown that high-entropy alloys
still have certain stability under radiation. Taking NiCoFeCrMn as the research object,
Su et al. [84] changed the chemical heterogeneities by adding nitrogen and carbon atoms.
The results showed that are duction in void swelling by at least one order of magnitude.
Deluigi et al. [85] used molecular dynamics to conclude that the reason for the radiation
resistance of high-entropy alloys may be caused by the evolution of defects for a long
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time. Li et al. [86] studied the chemical ordering effect on the radiation resistance, and
obtained a radiation repair model. Orhan et al. [87] studied the electronic properties of
random solid solutions, and found that adding lighter elements can improve the radiation
resistance of high-entropy alloys. These studies have opened up a promising way for high
radiation-resistant alloys.
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5.7. Magnetic Properties

In addition to excellent mechanical properties, the high-entropy alloys also have good
physical properties. As the main ferromagnetic elements, Fe, Co and Ni can give high-
entropy alloys excellent magnetic properties through reasonable composition design [88].
Gao et al. [89] researched a new CoFeAlMn high-entropy alloy with satisfied magnetic
properties. Studies have shown that a few high-entropy alloys can exhibit hard magnetic
properties. Feng et al. [90] studied the hard magnetic properties of high-entropy alloys.
The Nd20Pr20La20Fe20Co10Al10high-entropy alloy is designed. Duan et al. [91] developed a
novel (Fe2.25Co1.25Cr)94Al6high-entropy alloy. The soft magnetic properties are superior to
other reported alloys. These findings provide a new way for the development of magnetic
properties of high-entropy alloys to widen their applications.

In addition to the above performance, Wang et al. [92] studied the (Ni40Fe30Co20Al10)90
Ti10high-entropy alloy. The high-entropy alloy powder after grinding showed superior pho-
tocatalytic performance. Wu et al. [93] proposed the high-entropy alloy (FeCoNiCuZn)WO4
which can grow on polyacrylonitrile nanofiber templates. The high-entropy photocatalyst
fiber membrane was reported. Wail et al. [94] studied a strategy for synthesizing stable
high-entropy alloy nanoparticles.

A nanocomposite material is given in [94]. Compared with the high-entropy alloys
prepared in [89,91], the magnetic properties are much smaller than the latter two, but the
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coercivity is significantly increased. It is often used in the biomedical field. In general,
compared with high-entropy alloy materials, nanomaterials usually have larger specific
surface area, smaller size, high surface activity and strong controllability. However, the
production cost is generally higher, and their stability is relatively poor due to the high
surface activity.

6. Summary and Outlook

As a new type of material, high-entropy alloys have developed rapidly in the field of
metal materials in recent years and have important academic value and broad application
prospects. High-entropy alloys can be designed according to different performance require-
ments because of their excellent properties. High-entropy alloys have good mechanical,
thermal and magnetic properties, which give them broad application prospects in mold
manufacturing, catalytic materials, aerospace, surface engineering, anti-radiation materials
and other fields.

At present, the research of high-entropy alloys is still in a preliminary exploration
stage, and there are many problems to be solved. There is still a lack of a new and more
scientific theoretical guidance system for the research of high-entropy alloys. Whether
it is to use the existing alloy research methods such as phase diagram to analyze and
speculate on the relationship between its composition, structure and properties, or to
select and repeatedly test the alloy composition through the cocktail effect, it has a certain
blindness. How to further improve the efficiency of high-entropy alloys research with
modeling and simulation technology scientifically and reasonably is one of the key contents
to be studied next. The properties of high-entropy alloys are still limited under special
circumstances. At present, there are relatively few studies on the properties under extreme
conditions and some special properties, and in-depth research will broaden the application
prospects of high-entropy alloys. Although a series of high-entropy alloys can be obtained
through various preparation methods, there are limitations in various methods, such as
uneven particle size distribution, low accuracy of component content control and low yield
under extreme synthesis conditions. It is necessary to further improve or develop new
preparation techniques and optimize the synthesis strategy. The application of material
characterization technology is the key to discover, confirm and analyze the composition,
structure and properties of high-entropy alloys. Therefore, how to effectively realize the
coupling between characterization information and material properties, and use advanced
characterization techniques to establish and analyze the structure-activity relationship
between high-entropy structure and its properties is also one of the key contents to be
studied next. There are still a lot of functional properties of high-entropy alloy nanoparticles
to be developed, and the related performance mechanism needs to be analyzed. The
application of artificial intelligence and big data technology in the preparation process and
industrial production of high-entropy alloys and the further development of automatic,
intelligent and integrated high-entropy alloy preparation technology can further promote
the industrialization of high-entropy alloys.
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