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Abstract: In this study, we synthesized three low-sulfur and low-phosphorus ionic liquids (ILs).
These were N88816P8, P88816P8, and P88816DOSS. The viscosity and thermal stability of the three
ILs were analyzed. The tribological properties and lubrication mechanisms of the three ILs were
investigated as lubricants for a carbide ball–Inconel 690 nickel-based alloy friction pair and compared
at 50 ◦C and 150 ◦C. The wear spots of the carbide ball and nickel-based alloy disc samples were
characterized using SEM and EDS. The experimental results revealed that P88816P8 had excellent tri-
bological properties. The lubrication mechanism of P88816P8 as a lubricant for the carbide ball–Inconel
690 nickel-based alloy friction pair was investigated using XPS. The excellent friction reduction and
anti-wear properties of P88816P8 could be attributed to the tribo-chemistry between P88816P8 and
Inconel 690 as well as the formation of a tribo-film on the wear-spot surface. This high-performance
IL, suitable for carbide ball–Inconel 690 contact, will be applied to a cutting process of Inconel 690.

Keywords: ionic liquids; Inconel 690; friction reduction and anti-wear; lubrication mechanism;
tribo-film

1. Introduction

The nickel-based high-temperature alloy Inconel 690 is mainly used as a heat transfer
tube material for the steam generators of pressurized water reactor nuclear power plants
due to its excellent resistance to intergranular corrosion and intergranular stress corrosion
cracking. In our previous work, we observed that cutting fluid had a significant influence
on tool life as well as on the surface quality of machined holes during the drilling of holes
in nuclear evaporator tube plates [1,2]. Nickel-based high-temperature alloys are difficult
to machine due to their low thermal conductivity and high strength [3,4]. Nickel-based
high-temperature alloys have the disadvantages of high cutting forces, high temperatures
in the cutting area, severe machining hardening, and severe tool wear during the cutting
process [5], limiting their wider application. In the cutting process, the lubricant plays an
important role in reducing the friction between the tool and the workpiece [6,7]. Lubricants
can reduce tool wear, extend the life of the tool, improve the surface quality of the workpiece,
and improve the machinability of nickel-based high-temperature alloys [8].

As environmental awareness increases and regulations to protect the ecosystem be-
come more stringent, there is an urgent requirement to develop more environmentally
friendly lubricants [9–12]. New opportunities for research in the field of tribology have
arisen with the advent of ionic liquids (ILs). ILs are organic molten salts composed only
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of anions and cations; they are liquid at or near room temperature [13]. ILs have many
excellent properties, including good thermal and chemical stability, low volatility, non-
combustibility, and good electrical and thermal conductivity [14,15]. They have a strong
boundary adsorption film-forming ability at the friction sub-interface; therefore, they can be
used as a high-performance lubricant for cutting processes [16]. These advantages indicate
that ILs have the potential to be a promising new class of green lubricants. In recent years,
a significant amount of research has been undertaken and researchers in related fields have
used ILs as lubricants and lubricant additives [17–20].

Conventional ILs are prone to hydrolysis in humid environments because they contain
halogens. This generates hydrogen halides, which are highly corrosive to metal substrate
surfaces. The design, preparation, and development of low-sulfur, low-phosphorus, and
halogen-free ionic liquids is necessary to reduce corrosion and environmental pollution in
the field of tribology [21,22]. Li et al. [23] investigated the ILs P888pDABD and P888pDOSS
as lubricants for titanium alloys. They noted that ILs with high contents of sulfur and
phosphorus were highly corrosive to metals. Huang et al. [24] studied quaternary ammo-
nium salts and quaternary phosphonium salts in oil-soluble ILs. They observed that they
were less corrosive and had excellent tribological properties for steel/steel friction pairs.
Yu et al. [25] synthesized the ILs P88816DOSS, P888pDOSS, N88816Sp, and P888SSp to study
their tribological properties and lubrication mechanisms as lubricants for steel–magnesium
and steel–aluminum friction pairs. The results revealed that the ILs and the light metals
exhibited excellent tribological properties due to the complex tribo-chemistry reaction
between them. Fan et al. [26] synthesized and prepared quaternary ammonium ILs with a
DOSS anion and used them as lubricants and lubricating additives to investigate the effect
of the molecular structure of the ILs on their physicochemical properties and tribological
performance. As these ILs were halogen-free, they were non-corrosive and hydrolytically
stable to metal substrates; thus, their tribological properties were superior to those of
conventional lubricants (e.g., polyalphaolefins). Yu et al. [27] designed and prepared a
series of oil-soluble phosphorus-based ILs and used them as candidates for lubrication
additives. The research results revealed that their series of ILs had no corrosive effect on
either iron or aluminum alloys and demonstrated significant friction reduction and anti-
wear properties. Yu et al. [28] designed two oil-soluble ILs—NP-16 and NP-16-2-16, with
symmetrical differences in their molecular structure—to perform a series of research works
on their anti-corrosion and tribological properties as friction-reducing and anti-wear agents.
The corrosion test results revealed that NP-16-2-16 exhibited superior corrosion resistance
due to the improved symmetry of its molecular structure. NP-16-2-16 also had a higher
maximum snag-free load value (PB) than NP-16 and had an excellent load-bearing capacity.

The existing research indicates that halogen-free ionic liquids have an active role
in reducing corrosion and improving tribological properties. Although researchers have
conducted a large number of studies on halogen-free ionic liquids, the focus has mainly
been on the friction and lubrication of steel, copper, and aluminum. Research on halogen-
free ionic liquids applicable to the friction and lubrication of nickel-based alloys is relatively
limited. Therefore, we studied the friction and lubrication characteristics of halogen-free
ionic liquids on nickel-based alloys to enable the application of halogen-free ionic liquids
in the cutting process of nickel-based alloys.

We synthesized three halogen-free ILs—N88816P8, P88816P8, and P88816DOSS—and
systematically studied their physicochemical properties. The three ionic liquids were used
as lubricants for a cemented carbide/nickel-based alloy friction pair. The tribological
properties of three halogen-free ionic liquids on the nickel-based alloys were systematically
investigated using a micromanipulation friction and wear tester. After the tribological
tests, the surface morphology of the wear spots was characterized to analyze the wear
mechanism. The elemental valence state of the surface of the wear spots as well as the
lubrication films were characterized to analyze the lubrication mechanism.
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2. Experimental Procedure
2.1. Synthesis of ILs

The raw materials required for the synthesis of the ionic liquids were tri-n-octylamine
(purity ≥ 98%), docusate sodium salt (purity ≥ 95%), and tri-n-octylphosphine
(purity ≥ 97%). These were purchased from the J&K Scientific Co. and 5/F, Tower A,
Junfeng Huating, No. 69 Beichen West Road, Chaoyang District (Beijing, China). The
reagents required for the experiments (acetonitrile, anhydrous ethanol, n-hexane, and
dichloromethane) were analytically pure. The synthesis and preparation of the three ionic
liquids were completed according to the methods reported in the literature [29,30]. Their
molecular structures are presented in Figure 1.
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2.2. Physicochemical Properties

To investigate the viscosity–temperature properties of N88816P8, P88816P8, and P88816DOSS,
the viscosity of the ILs was measured at 40 ◦C and 100 ◦C using an SVM 3000 Stabinger
viscometer (Anton Paar, Graz, Austria). The viscosity test was repeated three times and the
average value was obtained. After measuring the viscosity of the ILs, the corresponding
viscosity was used to calculate the viscosity index (VI) of each specimen according to the
international standard ASTM D7042-2012 [2]. The thermal decomposition temperatures
of the ILs were analyzed using an STA 449F3 TGA-DSC simultaneous thermal analyzer
(Netzsch, Bavaria, Germany). The test method comprised a thermogravimetric (TG) analy-
sis using an alumina crucible under a nitrogen atmosphere. During the TG analysis, the
detection temperature was increased from a room temperature of 25 ◦C to approximately
600 ◦C at a rate of 10 ◦C/min. The thermal stability performance of the ILs was evaluated
by calculating the percentage of weight lost with the increase in temperature. The thermo-
gravimetric test was repeated twice, and the average value was obtained to improve the
reliability of the test.

2.3. Tribological Properties

A friction reduction and anti-wear property test was performed using an SRV-V
friction machine (Optimol, Stuttgart, Germany) with a ball–disc mode of contact. The
upper specimen comprised a 10 mm diameter carbide ball (YG6x) with a composition of
94.0% tungsten carbide (WC) and 6.0% cobalt (Co) and a hardness of 92.5 HRA. The lower
specimen was an Inconel 690 nickel-based alloy disc 24 mm in diameter and 7.9 mm thick.
Inconel 690 nickel-based alloy discs have a hardness of 470–480 HV. Prior to the experiment,
the surface of the Inconel 690 nickel-based alloy disc was sanded with 800#, 1200#, 1500#,
and 2000# SiC sandpaper in turn. The ground surface roughness (Ra) was measured as
0.1µm. The upper-specimen carbide ball (YG6x) moved reciprocally on the surface of the
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lower-specimen Inconel 690 nickel-based alloy disc. The friction curve was automatically
recorded by a computer throughout the procedure. The tribological test parameters were
frequency = 50 Hz, amplitude = 1 mm, and load = 200 N. Each experiment was repeated at
least twice.

2.4. Characterization

Following the test, the sample was ultrasonically cleaned with anhydrous ethanol
and dried using nitrogen gas. All tests were performed at an ambient relative humidity
of 50–54%. A 3D profiler (BRUKER-NPFLEX, Bruker, MA, USA) was used to measure
and analyze the wear volume of the lower-specimen steel disc. A microscopic analysis of
the wear-spot surface of the upper-specimen ball as well as the lower-specimen Inconel
690 nickel-based alloy disc was performed using a scanning electron microscope (SEM) (FEI
Quanta FEG 250, FEI, OR, USA). An elemental analysis of the ground-spot surface of the
upper-specimen ball was performed using an X-ray energy spectrometer (EDS) attached
to the SEM. XPS was used to analyze and characterize the elemental distribution and
valence of the wear spots of the lower-specimen nickel alloy disc as well as to speculate the
lubrication mechanism of ILs as lubricants.

3. Results and Discussion
3.1. Viscosity Temperature Performance

Table 1 presents the kinematic viscosity and VI of the N88816P8, P88816P8, and P88816DOSS
ILs. From the viscosity test results, we observed that the effect of the cationic differences
and anionic differences in the ILs on their viscosity had a certain pattern. P88816P8 had
the smallest viscosity at 40 ◦C; N88816P8 had a slightly larger viscosity than P88816P8. The
introduction of N improved the kinematic viscosity of the ILs to an extent. The difference in
anions in the ILs had a significant effect on the kinematic viscosity. The kinematic viscosities
of P88816DOSS at 40 ◦C and 100 ◦C were greater than those of N88816P8 and P88816P8.
Structurally, P88816DOSS had a more symmetric molecular structure. This indicated that
improving the symmetry of the molecular structure of the ionic liquids was a key factor
in improving their kinematic viscosity. Among the three ILs, P88816P8 had the largest VI
(169). This implied that P88816P8 was the least affected by temperature. It presented the
best viscosity–temperature performance, increasing its suitability as a lubricant.

Table 1. Kinematic viscosity and VI of ILs at 40 ◦C and 100 ◦C [2].

IL
Kinematic Viscosity (mm2/s) VI

40 ◦C 100 ◦C

N88816P8 214.2 27.3 163
P88816P8 211.5 27.8 169

P88816DOSS 349.9 38.8 161

3.2. Thermal Stability

The thermal weight loss curves of N88816P8, P88816P8, and P88816DOSS in the range
from room temperature to 600 ◦C are shown in Figure 2. Their corresponding thermal
decomposition temperatures are shown in Table 2. From the results of thermal stability
analysis, we observed that P88816DOSS had the highest thermal decomposition temperature
of 329.15 ◦C at a 10% weight loss. This was followed by P88816P8 at 314.61 ◦C. N88816P8 had
the lowest thermal decomposition temperature of 209.53 ◦C at a 10% weight loss when
compared with the other two ILs. Due to the cation differences of the ILs, their effect on
thermal stability had a certain pattern. Compared with N88816P8, P88816P8 had superior
thermal stability. The introduction of P improved the thermal stability of the ILs. The
thermal stability performance of P88816DOSS was superior to the other two ILs.
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Figure 2. Thermal decomposition curves of ILs.

Table 2. Thermal decomposition temperatures of ILs.

ILs
TG Temperature (◦C) Per Weight Loss

5% 10% 20% 50%

N88816P8 181.06 209.53 262.07 317.49
P88816P8 275.99 314.61 337.93 384.20

P88816DOSS 316.74 329.15 344.45 387.34

3.3. Tribological Properties
3.3.1. Tribological Properties at 50 ◦C

Figure 3a reveals the friction coefficient curves of the N88816P8, P88816P8, and P88816DOSS
ILs as YG6x–Inconel 690 friction sub-lubricants at 50 ◦C. The friction coefficients increased
and then decreased for all three ILs. N88816P8 had the highest friction coefficient and
P88816P8 had the lowest friction coefficient.
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Figure 3. Friction coefficient curves (a) and wear volumes (b) corresponding with the three ILs at
50 ◦C.

Figure 3b presents the average wear volumes of the wear spots of the specimen disc
with N88816P8, P88816P8, and P88816DOSS as YG6x–Inconel 690 friction sub-lubricants at
50 ◦C. Figure 4 reveals the 3D profile morphology of the wear spots of the specimen disc
with N88816P8, P88816P8, and P88816DOSS as YG6x–Inconel 690 friction sub-lubricants at
50 ◦C. As seen in Figures 3b and 4, the wear volume of P88816P8 was smaller than that of
both N88816P8 and P88816DOSS, indicating that P88816P8 had superior anti-wear performance
when compared with N88816P8 and P88816DOSS. These results revealed that P88816P8 had
superior friction reduction and anti-wear properties at 50 ◦C compared with N88816P8 and
P88816DOSS.
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Figure 5. Friction coefficient curves (a) and wear volumes (b) corresponding with the three ILs at 
150 °C. 

Figure 4. Topographic 3D images of lower sample spots lubricated by ILs at 50 ◦C: (a) N88816P8;
(b) P88816P8; (c) P88816DOSS.

3.3.2. Tribological Properties at 150 °C

Figure 5a presents the friction coefficients of N88816P8, P88816P8, and P88816DOSS as
YG6x–Inconel 690 friction sub-lubricants at 150 ◦C. The friction coefficients increased and
then decreased for all three ILs. P88816P8 had a lower coefficient of friction than N88816P8
and P88816DOSS, indicating that P88816P8 had superior friction-reducing properties.
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Figure 5. Friction coefficient curves (a) and wear volumes (b) corresponding with the three ILs at 
150 °C. 
Figure 5. Friction coefficient curves (a) and wear volumes (b) corresponding with the three ILs at
150 ◦C.

Figure 5b reveals the average wear volumes of the wear spots of the specimen disc
with N88816P8, P88816P8, and P88816DOSS as YG6x–Inconel 690 friction sub-lubricants at
150 ◦C. Figure 6 depicts the 3D contours of the wear spots of the specimen disc with
N88816P8, P88816P8, and P88816DOSS as YG6x–Inconel 690 friction sub-lubricants at 150 ◦C.
As seen in Figures 5b and 6, the wear volume loss of P88816P8 was less than that of the other
two ILs, indicating that P88816P8 had superior anti-wear performance.
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Figure 6. Topographic 3D images of lower sample spots lubricated by ILs at 150 ◦C: (a) N88816P8;
(b) P88816P8; (c) P88816DOSS.
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The primary reason for the excellent anti-friction and anti-wear performance of
P88816P8 was because the anionic phosphate ester in P88816P8 was adsorbed on the friction
surface. Under the action of friction heat, physical adsorption and friction chemical reac-
tions occur [20]. A lubricating film is generated on the friction surface to prevent direct
contact between cemented carbide and nickel-based alloys [15,31,32]. The lubricating film
plays a role in reducing friction, promoting anti-wear.

3.3.3. Effect of Load on the Tribological Properties

We investigated the extreme pressure performance of the IL lubricants in depth by
varying the load. The results are presented in Figure 7. The test load used was from
200 N to approximately 2000 N, increasing by 100 N/2 min. The friction coefficient of
N88816P8 tended to increase with an increase in load at 50 ◦C and the friction coefficient
was larger. The friction coefficients of both N88816P8 and P88816DOSS were lower and
relatively smoother. As seen in Figure 7b, the friction coefficient of N88816P8 was the largest
with an increase in load at 150 ◦C, revealing a trend of increasing and then decreasing.
The friction coefficients of P88816P8 and P88816DOSS were smaller and tended to increase,
but not significantly. N88816P8 had a higher friction coefficient, whereas both N88816P8
and P88816DOSS had lower friction coefficients and were relatively smooth. N88816P8 and
P88816DOSS had excellent extreme pressure properties and tended to form stronger tribo-
films with the metal substrate surfaces [23]. The specific composition and the specific type
of tribo-films formed require further investigation.
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Figure 7. Curves of friction coefficient vs. time during a load slope test from 200 N to 2000 N when
lubricated by different ionic liquids at (a) 50 ◦C and (b) 150 ◦C.

3.3.4. Effect of Temperature on the Tribological Properties

To evaluate the effect of temperature on the friction performance, we conducted a
variable temperature test with the ILs. The friction coefficients of N88816P8, P88816P8, and
P88816DOSS were tested at a rate of 25 ◦C with a rise every 4 min from 50 ◦C to approx-
imately 350 ◦C under a load of 200 N, as shown in Figure 8. The friction coefficient of
N88816P8 first decreased and then increased to the maximum value. The friction coeffi-
cients of P88816P8 and P88816DOSS increased and then decreased. P88816P8 had the lowest
friction coefficient.
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Figure 8. Curves of friction coefficient vs. time during a temperature slope test from 50 ◦C to 350 ◦C
when lubricated by different ionic liquids.

3.4. Characterization

Figure 9 presents the SEM images of the lower-specimen Inconel 690 nickel-based
alloy wear spots. The SEM images of N88816P8 obtained at 50 ◦C (Figure 9a) and 150 ◦C
(Figure 9d) clearly revealed that the wear was more severe at high temperatures and the
resulting wear spots were larger. At 50 ◦C, a clear furrow could be seen on the lower
specimen (Figure 9a1). Under high-temperature conditions, the furrow almost disappeared
and the resulting friction surface was smooth (Figure 9d1). Significant adhesive wear
could be observed in the wear spots at both low and high temperatures (Figure 9a1,d1).
The SEM images obtained for P88816P8 at 50 ◦C (Figure 9b) and 150 ◦C (Figure 9e) clearly
revealed that these wear spots were the smallest. The grinding spots obtained at a high
temperature (Figure 9e) were larger than those obtained at a low temperature. At 50 ◦C,
a clear furrow could be seen on the surface of the lower specimen (Figure 9b1). Under
high-temperature conditions, the surface quality of the lower specimen was significantly
enhanced (Figure 9e1). Whether at 50 ◦C or 150 ◦C, P88816P8 exhibited an excellent anti-
wear action. In contrast, the SEM images obtained for P88816DOSS at both 50 ◦C (Figure 9c)
and 150 ◦C (Figure 9f) clearly revealed a medium surface size of the wear spots and that
adhesive wear occurred on the wear spots.

Figure 10 presents the SEM images of the surface wear spots on the worn carbide ball
of the upper specimen. The SEM images of N88816P8 obtained at 50 ◦C (Figure 10a) and
150 ◦C (Figure 10d) clearly revealed that the wear spots were deeper. The wear under high-
temperature conditions was more severe and the wear spots were larger. At 50 ◦C, a clear
furrow could be seen in the wear spots of the upper-specimen ball (Figure 10a1). Under
high-temperature conditions, there were almost no furrows and the resulting friction sur-
face was smooth (Figure 10d1). The SEM images obtained for P88816P8 at 50 ◦C (Figure 10b)
and 150 ◦C (Figure 10e) clearly revealed that both wear spots were shallower. The adhesive
wear was more severe under high-temperature conditions, and the obtained wear spots
were larger (Figure 10e), with obvious ploughing and adhesive wear on the surface of the
wear spots. The SEM images obtained for P88816DOSS at both 50 ◦C (Figure 10c) and 150 ◦C
(Figure 10f) clearly revealed that the wear spots were deeper and of medium size, with
corrosion wear occurring on the spot at 50 ◦C (Figure 10c1) and deep pits on the spot at
150 ◦C.
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ILs at 50 °C and 150 °C. The wear spots of the upper-specimen carbide ball at 50 °C had 
obvious furrows and serious adhesive wear. The furrows were barely visible at 150 °C, 
and there were a few areas with pits caused by adhesive wear. As can be seen in Figure 
11a1, the presence of Ni, O, and P in the wear spots of the carbide ball at 150 °C indicated 
the involvement of these elements in the tribo-chemical reaction. P and O may be respon-
sible for the formation of brittle phases, which lead to adhesive wear and abrasive grain 
wear. 

Figure 9. SEM micrographs of the worn surfaces of the lower specimen lubricated by different
ionic liquids: (a) N88816P8, 50 ◦C; (b) P88816P8, 50 ◦C; (c) P88816DOSS, 50 ◦C; (a1) N88816P8, 50 ◦C;
(b1) P88816P8, 50 ◦C; (c1) P88816DOSS, 50 ◦C; (d) N88816P8, 150 ◦C; (e) P88816P8, 150 ◦C; (f) P88816DOSS,
150 ◦C; (d1) N88816P8, 150 ◦C; (e1) P88816P8, 150 ◦C; (f1) P88816DOSS, 150 ◦C.

Figure 11 presents the EDS of the upper-specimen carbide ball lubricated by the three
ILs at 50 ◦C and 150 ◦C. The wear spots of the upper-specimen carbide ball at 50 ◦C had
obvious furrows and serious adhesive wear. The furrows were barely visible at 150 ◦C, and
there were a few areas with pits caused by adhesive wear. As can be seen in Figure 11a1,
the presence of Ni, O, and P in the wear spots of the carbide ball at 150 ◦C indicated the
involvement of these elements in the tribo-chemical reaction. P and O may be responsible
for the formation of brittle phases, which lead to adhesive wear and abrasive grain wear.
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bide ball at 150 °C. There were fewer Ni elements at the carbide-ball interface, indicating 
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Figure 10. SEM micrographs of the worn surfaces of the upper-specimen ball lubricated by different
ionic liquids: (a) N88816P8, 50 ◦C; (b) P88816P8, 50 ◦C; (c) P88816DOSS, 50 ◦C; (a1) N88816P8, 50 ◦C;
(b1) P88816P8, 50 ◦C; (c1) P88816DOSS, 50 ◦C; (d) N88816P8, 150 ◦C; (e) P88816P8, 150 ◦C; (f) P88816DOSS,
150 ◦C; (d1) N88816P8, 150 ◦C; (e1) P88816P8, 150 ◦C; (f1) P88816DOSS, 150 ◦C.

Figure 11b depicts the wear spots of the P88816P8-lubricated upper-specimen carbide
ball at 50 ◦C. Adhesive wear occurred, as further evidenced by the increased content of
nickel elements in the EDS. Several elements of the Inconel 690 disc were transferred to
the upper-specimen carbide-ball interface. Figure 11b1 depicts the P88816P8-lubricated
upper-specimen carbide ball at 150 ◦C. As seen in Figure 11b1, the Ni content on the surface
of the ball was low, indicating that the surface of the friction sub-surface did not experience
severe adhesive wear and the surface quality was good. Figure 11c depicts the wear spot of
the P88816P8-lubricated upper-specimen carbide ball at 50 ◦C. More severe adhesive wear
occurred and certain elements of the Inconel 690 disc were transferred to the carbide ball of
the upper specimen. Figure 11c1 depicts the P88816P8-lubricated upper-specimen carbide
ball at 150 ◦C. There were fewer Ni elements at the carbide-ball interface, indicating that
the adhesive wear that occurred at the friction sub-interface was lighter. However, the wear
marks were deeper.
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Figure 11. EDS of the worn surfaces of the upper-specimen ball lubricated by different ionic liquids: 
(a) N88816P8, 50 °C; (a1) N88816P8, 150 °C; (b) P88816P8, 50 °C; (b1) P88816P8, 150 °C; (c) P88816DOSS, 50 °C; 
(c1) P88816DOSS, 150 °C. 

3.5. XPS 
To obtain a deeper understanding of the lubrication mechanism of N88816P8, P88816P8, 

and P88816DOSS on the surface of the nickel-based high-temperature alloy Inconel 690, the 
chemical composition of the wear-spot surfaces lubricated by ILs at 50 °C and 150 °C was 
analyzed using XPS. 

Figures 12 and 13 present the spectra of C1s, O1s, Ni2p, N1s, S2p, and P2p of the 
specimen grinding spots at 50 °C and 150 °C, respectively. The shape and binding energy 
of each element were basically similar [33,34]. Consequently, when ILs were used as lub-
ricants, the tribo-chemical reaction process was approximately the same [35]. The peak of 
the binding energy appeared at 284.8 eV, corresponding with C-C [36]. The absorption 
peak of P2p appeared near 133.2 eV. Combined with the absorption peaks of O1s at 856.2 
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Figure 11. EDS of the worn surfaces of the upper-specimen ball lubricated by different ionic liquids:
(a) N88816P8, 50 ◦C; (a1) N88816P8, 150 ◦C; (b) P88816P8, 50 ◦C; (b1) P88816P8, 150 ◦C; (c) P88816DOSS,
50 ◦C; (c1) P88816DOSS, 150 ◦C.

3.5. XPS

To obtain a deeper understanding of the lubrication mechanism of N88816P8, P88816P8,
and P88816DOSS on the surface of the nickel-based high-temperature alloy Inconel 690, the
chemical composition of the wear-spot surfaces lubricated by ILs at 50 ◦C and 150 ◦C was
analyzed using XPS.

Figures 12 and 13 present the spectra of C1s, O1s, Ni2p, N1s, S2p, and P2p of the
specimen grinding spots at 50 ◦C and 150 ◦C, respectively. The shape and binding energy
of each element were basically similar [33,34]. Consequently, when ILs were used as
lubricants, the tribo-chemical reaction process was approximately the same [35]. The peak
of the binding energy appeared at 284.8 eV, corresponding with C-C [36]. The absorption
peak of P2p appeared near 133.2 eV. Combined with the absorption peaks of O1s at 856.2 eV
and Ni2p near 861.3 eV, we inferred that NiPO4 was generated at the wear interface [37–39].
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The combined absorption peaks of Ni2p, O1s, and S2p near 169.9 eV indicated the formation
of NiSO4 at the wear interface [25,40].
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The above results revealed that P88816P8 had superior anti-wear performance. The
primary reason was due to the active element of P in P88816P8 and Ni, Cr, and Fe in the
Inconel 690 nickel-based alloy disc of the lower specimen. Under the action of frictional
heat, physical adsorption and tribo-chemical reactions occurred, resulting in inorganic
compounds with high toughness (such as nickel phosphate) which, in turn, formed a
tribo-film on the friction surface to prevent direct contact between the tungsten carbide
and Inconel 690. This lubricating protective film played a role in reducing the friction
coefficient. At high temperatures, the ILs were more likely to have tribo-chemical reactions
with the friction pair. P88816P8 generated a thicker tribo-film; thus, it was more suitable for
the lubrication of nickel-based high-temperature alloys.
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4. Conclusions

We synthesized three low-sulfur and low-phosphorus ILs. These were N88816P8,
P88816P8, and P88816DOSS. The viscosity and thermal stability of the three ILs were analyzed.
The results revealed that the kinematic viscosity of the ionic liquid P88816DOSS was greater
than that of N88816P8 and P88816P8. P88816P8 had the largest viscosity index, as well as
excellent viscosity–temperature properties and thermal stability.

The tribological properties of the three ILs as lubricants for a carbide ball–Inconel
690 nickel-based alloy friction pair were investigated at 50 ◦C and 150 ◦C. The experimental
results revealed that the coefficient of friction and wear volume of P88816P8 were smaller
than those of P88816DOSS and N88816P8. P88816P8 had excellent tribological properties.

The lubrication mechanism of P88816P8 was investigated using XPS. The excellent
friction reduction and anti-wear properties of P88816P8 could be attributed to the tribo-
chemical reaction between the active element P in P88816P8 and Ni, Cr, and Fe in the Inconel
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690 nickel-based alloy, along with the formation of a tribo-film of inorganic compounds
with high toughness (e.g., nickel phosphate) on the wear-spot surface. This lubricating
film prevented direct contact between the carbide and the nickel-based alloy. This high-
performance IL, suitable for carbide ball–Inconel 690 contact, will be applied to a cutting
process of Inconel 690.
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