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Abstract: WC-10Co-4Cr coating is highly valued for its corrosion resistance and wear resistance
when applied using the high-velocity oxy-fuel (HVOF) spraying method. However, conventional
grinding (CG) of this coating presents challenges, including substantial grinding forces and elevated
surface temperatures. To address these concerns, our study proposed the utilization of ultrasonic
vibration-assisted grinding (UVAG) as a means to enhance the machining properties of HVOF-
sprayed WC-10Co-4Cr coatings. Comparative experiments were conducted to analyze the impacts of
various factors on the grinding forces and surface roughness in UVAG and CG processes. Additionally,
the topography of the ground surfaces was examined to gain insights into the material removal
mechanism in UVAG. The experimental outcomes reveal significant reductions in tangential and
normal grinding forces, amounting to 15.47% and 22.23%, respectively, in UVAG when compared with
CG. Furthermore, UVAG led to a roughly 29.14% decrease in ground surface roughness compared
with CG. Microscopic analysis of the ground surfaces using scanning electron microscopy (SEM)
indicated that ductile removal was the predominant material removal mode in UVAG. Overall, UVAG
was found to be effective in diminishing grinding forces, improving ground surface roughness, and
enhancing surface integrity when contrasted with CG. These findings introduce a novel approach for
processing WC-10Co-4Cr coatings.

Keywords: ultrasonic vibration-assisted grinding; WC-10Co-4Cr coating; grinding force; surface
roughness; material removal mode; ground surface topography

1. Introduction

Studies show that WC-10Co-4Cr coating exhibits outstanding mechanical characteris-
tics and can be used as a highly durable coating layer [1,2]. Accordingly, this composition
has widespread applications across various industries, encompassing aerospace, automo-
tive, and oil exploration industries. Typically, the high-velocity oxy-fuel (HVOF) method
is extensively employed for the fabrication of WC-10Co-4Cr coatings [3–5]. Nonetheless,
the HVOF spraying process encounters some limitations, leading to the surface roughness
Ra typically falling within the range of 3 to 6 µm. To meet the stringent demands for
component usage, precision machining is a feasible technique used to reach the desired
dimensional accuracy and surface quality [6]. Currently, the conventional grinding process
faces numerous challenges when applied to this hard-to-machine material. These chal-
lenges encompass substantial grinding forces, high grinding temperatures, accelerated
wear of grinding wheels, and diminished processing efficiency [7]. Consequently, it is
crucial to develop innovative machining techniques to effectively reduce the grinding
forces, minimize the thermal effects, and improve the surface finish. This includes methods
such as ultrasound-assisted grinding, which integrates ultrasound vibrations into either the
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workpiece or grinding wheel [8]; high-shear and low-pressure grinding, which employs
a novel CBN liquid-body-armor-like grinding wheel with particle clustering characteris-
tics [9]; and laser-induced ablation-assisted grinding, wherein lasers are employed to ablate
the workpiece before grinding [10].

The ultrasonic vibration-assisted grinding (UVAG) requires the introduction of ultra-
sonic vibrations to either the workpiece or the grinding wheel while conducting the CG
process. Based on experiments, UVAG affects the interplay between the abrasive particles
and the workpiece. This interference in the trajectory of these particles amplifies the density
of operational abrasive particles, hence diminishing the surface roughness and enhancing
the surface quality [11]. Recently, UVAG has attracted numerous researchers in diverse
engineering fields worldwide.

The grinding force is an influential factor in assessing grinding performance that
directly influences various aspects of the grinding process, such as the temperature and
efficiency of the process, and the quality of the resulting ground surface. Researchers have
conducted both experimental and theoretical investigations, revealing the significant impact
of ultrasonic vibration in reducing grinding forces. For instance, Yang et al. [12] conducted
a study on ZrO2 ceramic materials utilizing the UVAG process, revealing that Fn and Ft
decreased by approximately 34.32% and 37.64%, respectively, in comparison with CG. They
attributed this reduction to intermittent machining induced by ultrasonic vibration.

Similarly, Huang et al. [13] conducted comparative studies employing UVAG and CG
processes on hardened steel. They observed reductions of approximately 16.44% in normal
grinding forces and 17.44% in tangential grinding forces in UVAG. This reduction was
attributed to the dynamic contact and separation of abrasive particles during one vibration
cycle in UVAG, resulting in a stable cutting–separating state. Moreover, Zhang et al. [14]
reported that in the CG process, the trajectory of an abrasive particle is comparatively
shorter than that observed in UVAG. Additionally, the average chip thickness of an abrasive
particle in UVAG is smaller than in CG, leading to lower grinding forces. They also noted
that Fn, Ft, and Ra in UVAG were reduced by 20%, 18%, and 9%, respectively. Furthermore,
Wang et al. [15] found that elliptical vibrations in elliptical ultrasonic vibration-assisted
grinding (EUAG) of monocrystal sapphire reduced Ra by up to 25% compared with CG.
This reduction was attributed to the continuous interaction of abrasive particles during
EUAG, where they consistently cut the surface, thereby eliminating “uncut materials”
between adjacent abrasive particles due to the elliptical motion. The aforementioned
studies were primarily focused on factors that contribute to a decrease in grinding force by
examining the contact state between abrasive particles and workpieces.

Furthermore, it should be indicated that the frequency and amplitude of ultrasonic
vibration constitute two critical parameters with a substantial impact on the grinding force.
By adjusting these parameters, the grinding process can be fine-tuned, thereby decreasing
the grinding forces and enhancing the quality and efficiency of processing. For instance,
Dai et al. [16] investigated the ultrasonic face grinding of SiC ceramic, where they employed
minor vibration amplitudes. Their findings revealed that using a combination of a high-
speed wheel and minor vibration amplitudes, approaching 0.2 µm, resulted in a ground
surface roughness under 0.025 µm. Similarly, Yang et al. [17] conducted comparative
experiments on ZrO2 ceramic materials, noting that the amplitude increases as the grinding
force reduces. Notably, Ft and Fn in the UVAG process exhibited significant reductions when
compared with the CG process. Moreover, Juri et al. [18] explored ultrasonic machining in
the context of diamond machining of lithium silicate (Li2SiO3 (LS)) glass ceramics. They
observed that employing ultrasonic vibrations at amplitudes of 3 µm and 6 µm produces
the least depth of edge chipping damage in both pre-crystallized and crystallized LS
materials. This approach resulted in substantially less edge-chipping damage compared
with conventional machining techniques.

Extensive research has documented wide applications of UVAG technology in the
machining of hard-to-cut materials. Unfortunately, to the best of our knowledge, there
have been no studies that concentrated on the use of UVAG in WC-10Co-4Cr coating,
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while this process concerning WC-10Co-4Cr coating remains unexplored. The current
experimental investigation intended to analyze the influence of ultrasonic vibration and
grinding parameters on the grinding ability of a WC-10Co-4Cr coating when subjected to
UVAG. The present paper is structured as follows: Section 2 concentrates on the analysis
of the trajectory of individual abrasive particles during UVAG process. Subsequently,
Section 3 describes the experimental setup and introduces the case study. Section 4 focuses
on the result analysis. The primary findings and conclusions are summarized in Section 5.

2. Analysis of the Trajectory of a Single Abrasive Particle in UVAG
2.1. Trajectory of a Single Abrasive Particle

Figure 1 illustrates the schematic motion characteristics of an abrasive particle in
both CG and UVAG. As can be seen in Figure 1, ultrasonic vibration is applied to the
grinding wheel along the wheel axis. Additionally, Figure 1 illustrates that the trajectories
of individual particles in CG and UVAG exhibit noticeable distinctions. In CG, the motion
trajectory takes an arc form, while it follows a sinusoidal curve in UVAG [19,20]. To
establish a coordinate system, the point at which the abrasive particle commences its
penetration into the workpiece operates as the center of the coordinates. In UVAG, a single
abrasive particle exhibits three motion modes, namely, high-frequency vibration, rotational
movement along the wheel axis, and feed movement along the workpiece.
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Figure 1. Moving trajectory of a single abrasive particle under UVAG and CG.

Under the assumption that the abrasive particles are polyhedrons of uniform size and
are evenly distributed on the wheel surface at the same grinding depth, Figure 2 shows
that the abrasive particle initiates cutting into the workpiece at point A and exits at point
F. This cutting action leads to the removal of material within the red-shaded area [21]. To
describe the particle motion, the trajectory with respect to the motion time t of a particle
under UVAG is formulated as follows:

x(t) = ds(cos θ − 1)/2
y(t) = −(vwt + ds sin θ/2)
z(t) = A sin(2π f t + φ)

(1)

The rotation angle θ can be obtained using the following expression:

θ =
2vst
ds

(2)

The particle speed components during UVAG can be obtained as the derivative of
Equation (1) with respect to time t:

vx(t) = −vs sin(2vst/ds)
vy(t) = −[vw + vs cos(2vst/ds)]
vz(t) = 2Aπ f cos(2π f t + φ)

(3)
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Similarly, the components of acceleration of the particle can be obtained from the
derivative of Equation (3), as follows:

ax(t) = (−2v2
s /ds) cos(2vst/ds)

ay(t) = (2v2
s /ds) sin(2vst/ds)

az(t) = −4Aπ2 f 2 sin(2π f t + φ)
(4)

When the vibration amplitude A is equal to zero (A = 0), Equations (1), (3), and (4)
effectively represent the motion trajectory, speed, and acceleration equations of a particle in
CG, respectively. As indicated by Equation (1), under the influence of ultrasonic vibration,
the particle undergoes displacement along the Z-axis. This leads to a broader trajectory for
an abrasive particle in UVAG, which enhances the material removal rate.

2.2. Interference of Abrasive Particle Trajectories in UVAG

Grinding is the cumulative result of numerous abrasive particles simultaneously
cutting the workpiece materials. Because of the axial ultrasonic vibration applied, the
interactions between the trajectories of abrasive particles become more intricate, with
the most significant influence arising from the interference between adjacent particles.
Typically, the amplitude of the ultrasonic vibration applied along the wheel axis falls within
the range of 5–25 µm, which is considerably smaller than the axial spacing between axial
particles on the grinding wheel [22]. As a result, the interaction between axial particles is
negligible. The present study focused on the interactions between two adjacent particles
situated on the circumference of the grinding wheel. Figures 3 and 4 depict the projection
interference trajectories between adjacent abrasive particles on the circumference of the
grinding wheel, illustrating their movement along the Z- and X-directions, respectively.
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The distance traveled by an abrasive particle during a complete vibration cycle, which
is often referred to as one wavelength, can be expressed as

λ =
vs + vw

f
(5)

The axial cutting arc length of particles can be calculated as follows:

L1 = L1−1 + L1−2 (6)

The interference length of the particle trajectory before and after it interacts with the
grinding wheel can obtained from the following expression:

L1−2 =

√
(L2 −

√
S2 − (h2max)

2)
2
+ (h2max)

2 (7)

The number of interference vibration cycles of two adjacent abrasive particle trajecto-
ries along the wheel axis can be calculated using the following expression:

n =
L1−2

λ
(8)

Since the trajectory of the particle interferes twice, the actual number of trajectory
interferences is

m = 2n (9)

The aforementioned analysis demonstrates that the number of interferences in the
trajectory of particles is dependent on various factors, including wheel parameters and
grinding conditions. These interferences transform the material removal process into
intermittent cutting. This intermittent cutting phenomenon reduces the grinding forces,
enhances the dissipation of grinding heat, and facilitates the formation of swarf. Conse-
quently, the interference in the trajectory of abrasive particles can be enhanced to improve
the overall quality of the grinding process.

3. Experimental Procedures
3.1. Specimens

In this research, 304 stainless steel specimens measuring 60 × 40 × 5 mm were utilized
as the substrate material. Prior to the thermal spraying process, the specimens underwent
a degreasing procedure using an alkaline water-based degreaser. Additionally, the surface
of the substrate was subjected to sandblasting using Al2O3 abrasive particles with an
average size of 0.25 mm. This sandblasting operation was conducted under an air pressure
of 0.4 MPa to enhance the adhesion between the coating layer and the surface of the
workpiece. This study used commercial WC-10Co-4Cr powders (TAFA 1350 VM, Praxair
Co., Ltd., Danbury, CT, USA) characterized by particle sizes falling within the range of
15–45 µm. For the spraying process, a high-pressure HP/HVOF spray gun from Praxair-
TAFA was employed, which utilizes the radial powder-feeding method. This method
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ensures better particle melting and an even distribution throughout the flame, resulting
in improved coating coverage, efficiency, and quality. The combustion process generates
particle velocities ranging from 1000 to 1185 m/s. To ensure precise control of the spraying
process, the spray gun was mounted on a six-axis robot. The fuel used was aviation
kerosene, oxygen served as the combustion-supporting gas, and nitrogen was employed
as the powder carrier gas. The flow rate of aviation kerosene was set at 22 L/h, while the
flow rate of oxygen was 50.94 m3/h. The parameters for spraying included a pressure of
0.65 MPa, a horizontal moving speed of the spray gun at 400 mm/s, and a spraying step of
4 mm. The spray distance was maintained at 380 mm, and after ten rounds of the spray
gun, a coating layer of 300 µm thick was obtained. For reference, a schematic depicting the
HVOF process and the coating preparation equipment is presented in Figure 5.
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In the constant temperature laboratory, the mechanical properties of WC-10Co-4Cr
coating were tested. The mechanical properties of the WC-10Co-4Cr coating at a constant
temperature of 25 ◦C are detailed in Table 1.

Table 1. Coating characteristics at 25 ◦C.

Property Unit Value

Hardness (Vickers) HV0.3 1257.1
Density kg/m3 14,400

Longitudinal Young’s modulus Ef1 GPa 199
Transverse Young’s modulus Ef2 GPa 77
Longitudinal shear modulus Gf12 GPa 102

Transverse shear modulus Gf23 GPa 77
Poisson’s ratio v12 - 0.23
Poisson’s ratio v23 - 0.23

Fracture toughness KIC MPa·m1/2 4.5

3.2. Grinding Equipment and Conditions

Figure 6 illustrates the experimental setup for the grinding experiments. Grind-
ing tests were conducted using a vertical machining center (Johnford VMC-850, Taiwan,
China), which boasts a highest spindle speed of 8000 rpm and a table feed speed of up to
5000 mm/min. Prior to commencing the grinding tests, the dynamic balance of the spindle
was adjusted to meet the G0.4 dynamic balance standard. In these tests, an ultrasonic
vibration equipment setup was employed, consisting of an ultrasonic transducer, ultrasonic
generator, and ultrasonic tool holder. The ultrasonic generator converts ordinary electri-
cal signals into high-frequency AC electrical signals, which are subsequently received by
the ultrasonic transducer to generate vibration. This vibration is then transmitted to the
ultrasonic tool holder, ultimately achieving tool vibration. The utilized grinding wheel
had dimensions of 60 mm in diameter and 10 mm thick and featured abrasive particles
with a size of 200#. The material of the abrasive was cubic boron nitride. The particle con-
centration in the grinding wheel was 100%, which was cooled using a commercial coolant
(Csatrol Syntilo 2000, Berkshire, UK). To ensure that the test results remained unaffected by
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the condition of the grinding wheel, the wheel was dressed using a trimmer before each
grinding test. The trimmer was affixed to the fixture. To mitigate the influence of random
factors and enhance the precision of the experimental outcomes, the process was repeated
three times for each set of conditions and the average value was recorded.

Coatings 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

Table 1. Coating characteristics at 25 °C. 

Property Unit Value 
Hardness (Vickers) HV0.3 1257.1 

Density kg/m3 14,400 
Longitudinal Young’s modulus Ef1 GPa 199 
Transverse Young’s modulus Ef2 GPa 77 
Longitudinal shear modulus Gf12 GPa 102 
Transverse shear modulus Gf23 GPa 77 

Poisson’s ratio v12 - 0.23 
Poisson’s ratio v23 - 0.23 

Fracture toughness KIC MPa·m1/2 4.5 

3.2. Grinding Equipment and Conditions 
Figure 6 illustrates the experimental setup for the grinding experiments. Grinding 

tests were conducted using a vertical machining center (Johnford VMC-850, Taiwan, 
China), which boasts a highest spindle speed of 8000 rpm and a table feed speed of up to 
5000 mm/min. Prior to commencing the grinding tests, the dynamic balance of the spindle 
was adjusted to meet the G0.4 dynamic balance standard. In these tests, an ultrasonic vi-
bration equipment setup was employed, consisting of an ultrasonic transducer, ultrasonic 
generator, and ultrasonic tool holder. The ultrasonic generator converts ordinary electrical 
signals into high-frequency AC electrical signals, which are subsequently received by the 
ultrasonic transducer to generate vibration. This vibration is then transmitted to the ultra-
sonic tool holder, ultimately achieving tool vibration. The utilized grinding wheel had 
dimensions of 60 mm in diameter and 10 mm thick and featured abrasive particles with a 
size of 200#. The material of the abrasive was cubic boron nitride. The particle concentra-
tion in the grinding wheel was 100%, which was cooled using a commercial coolant (Csa-
trol Syntilo 2000, Berkshire, UK). To ensure that the test results remained unaffected by 
the condition of the grinding wheel, the wheel was dressed using a trimmer before each 
grinding test. The trimmer was affixed to the fixture. To mitigate the influence of random 
factors and enhance the precision of the experimental outcomes, the process was repeated 
three times for each set of conditions and the average value was recorded. 

 
Figure 6. Experimental setup for the UVAG experiment. Figure 6. Experimental setup for the UVAG experiment.

The grinding experimental parameters are presented in Table 2.

Table 2. Grinding experimental parameters.

Spindle Speed vs
(m/s)

Depth of Cut ap
(µm)

Feed Rate vw
(mm/min)

Amplitude A
(µm)

Frequency f
(kHz)

10, 14, 18, 22 20 240 6 19.8
18 10, 20, 30, 40 240 6 19.8
18 20 120, 240, 360, 480 6 19.8
18 20 240 6, 8, 10, 12 19.8

3.3. Measurement and Analysis

During the experiment, the measurement of the grinding forces was carried out
using a three-phase piezoelectric dynamometer (Kistler 9257B, Winterthur, Switzerland) in
conjunction with a multi-channel charge amplifier (Kistler 5070, Winterthur, Switzerland).
The force measurement range for the X-, Y-, and Z-directions was configured to cover the
0~500 N range, with a sampling frequency of 10 kHz. The charge sensitivity in all three
directions was set at 4.0 pC/N. Before conducting the experiments, an impedance analyzer
(Sino Sonics PV520A-V, Wuxi, China) was employed to assess the reliability and stability
of the ultrasonic vibration system. The test results confirmed the system’s integrity, with
the following parameters obtained: fr = 19.8949 kHz, far = 19.9358 kHz, Rd = 14 Ω, and
Cf = 13 nF. These parameters aligned with those set for the experiment. The admittance
chart and logarithmic impedance curve displaying these results are illustrated in Figure 7.
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Prior to each test, the amplitude of ultrasonic vibration was measured using a laser
Doppler vibrometer. Subsequently, the power parameters of the ultrasonic generator were
adjusted to ensure that the ultrasonic vibration amplitude met the specific test requirements.
After completing the grinding experiments, the machined workpieces underwent cleaning
with 75% alcohol using an ultrasonic cleaning process. A surface-roughness-measuring
instrument (Mitutoyo SV-3100, Kangawa, Japan) was employed to measure the surface
roughness of the ground samples. In order to ensure the reliability of the roughness
measurement, the same surface was measured three times. The sampling length was
4 mm. The arithmetic mean of the three measurements was taken as the roughness value
of the surface, and three decimal places were retained. Additionally, the grinding surface
topography was examined using SEM (SNE-Alpha, Suwon, Republic of Korea).

4. Results and Discussions
4.1. Grinding Force Analysis

Grinding forces serve as a crucial indicator with significant implications for the grind-
ing temperature, grinding wheel performance, and the quality of the ground surface [23].
In this regard, Li and Liao highlighted the utility of the hmax of an individual particle in de-
termining cutting forces. This parameter can be obtained using the following expression [24]:

hmax =

(
3 cot α

C

) 1
2
(

vw

vs

) 1
2
(

ap

ds

) 1
4

(10)

When particles are evenly distributed, the parameter C is constant, and α represents
the half-cone angle of the abrasive particles.

The change curves depicting the variations in grinding force concerning grinding
speed, feed rate, and depth of cut under the CG and UVAG processes are presented in
Figure 8. It is observed that in Figure 8a, when vs rose from 10 to 22 m/s, Fn and Ft in
CG diminished from 83.40 to 51.08 N and 37.05 to 23.56 N, respectively. There existed a
similar trend in the UVAG process when compared with CG. Notably, when the grinding
speed reached 18 m/s, the application of ultrasonic vibration substantially reduced the
grinding force compared with CG. In this scenario, Fn and Ft were lower than those in the
CG process by 7.33 N (12.61%) and 2.89 N (11.12%), respectively. This reduction in grinding
force can be attributed to several factors: according to Equation (10), hmax decreases as
vs increases. Consequently, the material removal volume reduces, thereby decreasing
the cutting force [25]. Consequently, the final grinding force diminishes as the grinding
speed rises. Under the influence of ultrasonic vibration, abrasive particles experience small
displacements and accelerations on their surface. These cumulative displacements and
accelerations provide additional velocity to the abrasive particles, resulting in a smaller hmax
compared with CG. Therefore, the grinding force is reduced under UVAG in comparison
with CG.
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Figure 8b illustrates that both Fn and Ft in CG and UVAG exhibited a positive cor-
relation with vw. Notably, the maximum difference between Fn and Ft under CG and
UVAG occurred at the highest feed rate of 480 mm/min, measuring 10.35 N (14.18%) and
5.01 N (15.47%), respectively. This phenomenon was attributed to the behavior of abrasive
particles. In UVAG, particles maintain contact with and separate from the workpiece within
the vibration cycle, similar to a tool in a consistent cutting–separating state. Under these
conditions, an increase in vw leads to intermittent grinding interactions between particles
and the workpiece. This intermittent grinding effect results in a smaller grinding force
when compared with the CG process.

As shown in Figure 8c, Fn and Ft in both CG and UVAG rose with ap. Notably, the
maximum difference between Fn and Ft under CG and UVAG occurred at an ap of 10 µm,
measuring 10.26 N (22.23%) and 2.35 N (11.47%), respectively. The test outcomes demon-
strate that the impact of ultrasonic vibration in reducing the grinding force weakens with
increasing cutting depth. This phenomenon primarily arises because, although ultrasonic
vibration enhances the self-sharpening effect of abrasive particles [26], it accelerates wheel
wear when applied at a large depth of cut. This effect ultimately results in a similar level of
grinding force between UVAG and CG at larger cut depths.

Figure 8d indicates that within the UVAG process, Fn and Ft exhibited a gradual
decrease as the ultrasonic amplitude increased. For instance, when the conditions were
vs = 18 m/s, vw = 240 mm/min, ap = 20 µm, and f = 19.8 kHz, an increase in amplitude
from 6 µm to 12 µm led to reductions of 18.22 N (35.88%) in Fn and 10.84 N (46.95%) in
Ft. This behavior primarily originates from the high-frequency vibration that abrasive
particles experience due to ultrasonic vibration. This high-frequency vibration results in a
sinusoidal motion track during the cutting process, as illustrated in Figure 1. The contact
area between the abrasive particle and the workpiece surface increases with the increase in
ultrasonic vibration amplitude, as shown in Figure 2. Consequently, the grinding force per
unit area decreases, leading to a reduction in the grinding normal force Fn. The decrease
in Ft primarily originates from the anti-friction effect of ultrasonic vibration. In UVAG,
abrasive particles continuously make contact with and separate from the workpiece during
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the vibration cycle. As the amplitude increases, the actual contact area between particles
and the workpiece diminishes, effectively reducing the friction force and diminishing the
tangential force.

The performed analyses revealed that the utilization of ultrasonic vibration was an
effective scheme for reducing the grinding force during the processing of the HVOF-sprayed
WC-10Co-4Cr coating. The obtained results for both CG and UVAG demonstrate that both
Fn and Ft exhibited positive a correlation with vw and ap. Conversely, Fn and Ft exhibited
a negative correlation with the vs and A. It is noteworthy that regardless of whether the
grinding process was CG or UVAG, Fn consistently surpassed Ft when the same grinding
parameters and vibration parameters were applied.

4.2. Analysis of the Ground Surface Topography

The topography of a ground surface is a crucial parameter in determining the prop-
erties of workpieces [27,28]. A well-crafted grinding surface topography can enhance
the overall surface quality of the workpiece, leading to improvements in wear resistance
and corrosion resistance. The topography of a ground surface is subject to the influence
of various grinding processes and conditions. During the grinding process, material re-
moval can occur through different modes, primarily involving brittle fracture and ductile
removal [29,30]. These distinct material removal modes result in variations in surface
topography. To gain a deeper understanding of the surface generation principles for the
HVOF thermally sprayed WC-10Co-4Cr coating under UVAG, the surface topography of
the coating was examined under different grinding speeds, as illustrated in Figure 9. It
should be indicated that both the UVAG and CG employed identical grinding parameters,
specifically vw = 240 mm/min, ap = 20 µm, A = 6 µm, and f = 19.8 kHz. This comparative
analysis provides insights into how grinding speed impacts the surface topography for
this coating.

Figure 9a,c,e,g indicate that surface defects from the CG processes were evident. These
defects include pitting, scratches, fractures, smeared areas, and redeposited materials.
These surface defects result from the squeezing action between the abrasive particles and
the coating. The formation of long chips and large broken abrasive particles during CG
leads to the creation of grinding scratches, fractures, and the redeposition of material on the
surface. In contrast, Figure 9b,d,f,h indicate the surfaces after UVAG processes exhibited
none of these surface defects. Moreover, there were no noticeable signs of side flow or
plowing grooves on the UVAG surfaces. Several factors contribute to the improved surface
quality achieved with UVAG. Ultrasonic vibration generates high-intensity mechanical
vibration and induces acoustic cavitation [31,32]. The high-intensity mechanical vibration
promotes the micro-crushing of abrasive particles, while the ultrasonic-induced negative
pressure leads to rapid expansion and sudden bursting of micro-bubbles in the liquid
through acoustic cavitation. This results in a substantial impact force, further enhancing the
micro-crushing of abrasive particles. Consequently, the sharpness and dynamic stability of
the abrasive particles are maintained, leading to a smoother surface finish. The application
of ultrasonic vibration significantly reduces Ft and Fn in UVAG compared with CG. This re-
duction in grinding force results in decreased extrusion pressure and scraping force exerted
by the particles on the coating surface. Consequently, the elastic and plastic deformation
of the coating surface materials is minimized, leading to reduced overall deformation
and damage on the coating surface. This ultimately contributes to the improved grinding
quality in UVAG.

Figure 9a,c,e,g provide valuable insights into the effects of vs on the surface quality
and material removal mode under the CG process: When the grinding speed was low
(vs = 10 m/s), the coated surface exhibited more instances of pitting, fractures, scratches, and
redeposited material. This suggests that brittle fracture was the primary mode of material
removal under these conditions. Conversely, as vs rose to 22 m/s, the presence of pitting,
fractures, and irregular area deformations on the coated surface was significantly reduced.
At higher speeds, there was an increase in the plowing action of particles, indicating a
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trend toward plastic deformation of the coating material. This change suggests that hmax
decreased with increasing vs. Moreover, the material removal mode of the coating gradually
shifted from brittle fracture to ductile removal.
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In contrast with the CG process, the predominant morphological feature of the grind-
ing surface in the UVAG process was the presence of plowing grooves, as can be seen
in Figure 9b,d,f,h. Importantly, this feature remained prominent even when the cutting
speed was set at a relatively low value of 10 m/s. However, as vs gradually increased,
significant changes occurred in the width and depth of these plowing grooves. Specifically,
as vs reached 22 m/s, the grinding surface underwent a remarkable transformation. At this
higher speed, the grinding surface no longer exhibited distinct plowing grooves, and the
traces of these grooves became nearly imperceptible. This clear transition indicates that
under UVAG, the grinding surface primarily resulted from the ductile removal mode, even
when vs was set at a lower value.
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4.3. Analysis of the Surface Roughness Ra

Studies show that Ra is a critical factor in determining the performance of mechanical
components. It substantially impacts the overall service life and reliability of mechanical
products. Figure 10 presents a 2D surface roughness profile measured prior to coating
grinding. The measurement results indicate that the initial average roughness (Ra) was
4.2 µm, and the peak-to-peak distance of the profile was 28.2 µm. These values suggest
that the surface of the coating before grinding was relatively rough. Therefore, it became
necessary to reduce the Ra through grinding processes to enhance the surface finish. This
improvement was essential to meet the requirements of components that rely on the Ra of
the coating.
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Figure 11 provides an overview of the Ra of the ground coating surface under various
machining parameters and amplitudes for both CG and UVAG. It was observed that when
vw = 240 mm/min, ap = 20 µm, A = 6 µm, and f = 19.8 kHz, as vs rose from 10 to 22 m/s,
the surface roughness Ra for both CG and UVAG decreased. Specifically, under CG, Ra
decreased from 0.835 µm to 0.544 µm, while under UVAG, it reduced from 0.662 µm
to 0.423 µm. At vs = 22 m/s, UVAG exhibited a significantly larger reduction in surface
roughness compared with CG, with a decrease of 0.121 µm, representing a 22.24% reduction.
This trend aligns with the variations in grinding force and is consistent with Equation (10),
where hmax decreases as the grinding speed increases. The reduction in hmax is crucial
in decreasing the depth and width of the grinding grooves formed during the abrasive
particle cutting on the coating surface. Additionally, the acceleration effect of ultrasonic
vibration on abrasive particles further decreases hmax under UVAG compared with CG,
resulting in smaller grinding grooves and subsequently lower surface roughness values.
This observation is consistent with electron microscope examinations.

Figure 11b reveals that when the grinding speed was set to vs = 18 m/s, and with
fixed parameters such as ap = 20 µm, A = 6 µm, and f = 19.8 kHz, the surface roughness
Ra of the ground coating surface increased as vw rose from 120 to 480 mm/min. Under
CG, Ra rose from 0.496 µm to 1.012 µm, while under UVAG, it increased from 0.401 µm to
0.723 µm. At a feed rate of 480 mm/min, UVAG exhibited a substantial drop in surface
roughness compared with CG, with a decrease of 0.289 µm, representing a 28.56% reduction.
In Figure 11c, when vs, vw, A, and f were held constant, the surface roughness Ra was
examined as ap rose from 10 to 40 µm. Under CG, Ra increased from 0.477 µm to 1.004 µm,
while under UVAG, it increased from 0.338 µm to 0.877 µm. At ap = 10 µm, UVAG exhibited
a significant reduction in Ra compared with CG, with a decrease of 0.139 µm, representing
a 29.14% reduction. These trends in the surface roughness can be explained by considering
hmax as per Equation (10). An increase in hmax, which occurs with higher feed rates and
deeper cuts, can lead to more of the brittle removal stage of the material, resulting in higher
surface roughness. However, UVAG consistently produces smaller surface roughness
values than CG under the same grinding parameters. This originates from the longer
trajectory of a single abrasive particle in UVAG, as shown in Figure 1, which results in
a smaller average chip thickness of the single abrasive particle in UVAG compared with
CG. This leads to a smaller proportion of brittle fracture areas, ultimately reducing the
surface roughness.
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Figure 11d shows that when vs = 18 m/s, vw = 240 mm/min, ap = 20 µm, and
f = 19.8 kHz, the surface roughness Ra was examined as the amplitude (A) increased
from 6 to 12 µm. Under UVAG, as the amplitude increased, Ra decreased from 0.507 µm
to 0.304 µm. The 2D surface roughness profiles of the grinding specimens in UVAG are
shown in Figure 12, indicating that as the amplitude A increased from 6 µm to 12 µm,
the profile height difference decreased from 4.1 µm to 1.9 µm. This decrease in profile
height difference was attributed to the “ironing” effect of abrasive particles that occurs after
applying ultrasonic vibration. In UVAG, as can be seen in Figures 3 and 4, the trajectories
of abrasive particles overlap and interfere with each other. Due to the uneven distribution
of these particles on the grinding wheel, the same region experiences multiple rolling inter-
actions with different abrasive particles. This repeated rolling creates the “ironing” effect,
effectively reducing the height difference of the surface profile after applying ultrasonic
vibration [33]. Furthermore, as the parameter A rises, the overlap area of the abrasive
particles’ trajectories gradually expands, increasing the impact area of the “ironing” effect.
According to Equation (4), the acceleration of abrasive particles amplifies with the increase
in amplitude A, and thus, the particles obtain greater impact energy. This strengthens the
“ironing” effect, leading to a further reduction in the surface profile height and, conse-
quently, minimizing the surface roughness. This improvement in surface quality is a result
of the “ironing” effect brought about by the increased amplitude in the UVAG process.
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5. Conclusions

This study focused on comparative experiments to investigate the grindability of an
HVOF thermally sprayed WC-10Co-4Cr coating under both CG and UVAG processes.
The research examined the effects of various grinding and ultrasonic vibration factors
on the grinding forces, ground surface topography, and surface roughness. The main
achievements of this study were as follows:

1. UVAG resulted in lower grinding forces compared with CG, with reductions of
4.81%–22.23% for the normal force and 2.68%–15.47% for the tangential force. Addition-
ally, the surface roughness under UVAG was found to be approximately 12.65%–29.14%
lower than that under CG.
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2. The grinding forces and surface roughness in the UVAG process exhibited a nega-
tive correlation with grinding speed and amplitude, while they showed a positive
correlation with the worktable feed rate and depth of cut.

3. SEM observations in the UVAG process demonstrated that within the selected upper
and lower limits of machining parameters studied in this research, the material
removal mechanism for the HVOF thermally sprayed WC-10Co-4Cr coating exhibited
a ductile domain mode.

4. The present research introduces a novel approach for processing WC-10Co-4Cr coatings.
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Nomenclature

A Ultrasonic vibration amplitude µm
ap The cut depth µm
b Grinding wheel width mm
C Number of abrasive particles per unit area particles/mm2

Cf Free capacitance nF
ds Grinding wheel diameter mm
Fn Normal grinding force N
Ft Tangential grinding force N
f Ultrasonic vibration frequency kHz
far Anti-resonant frequency kHz
fr Resonant frequency kHz
hmax Maximum undeformed cutting chip thickness µm
L1 Projection length of current abrasive particles µm
L2 Projection length of subsequent abrasive particles µm
Ra Surface roughness µm
Rd Dynamic resistance Ω
vs Grinding speed m/s
vw Feed rate of the workpiece mm/min
θ Rotation angle deg
ϕ Initial phase angle of the ultrasonic vibration deg
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