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Abstract: Bone replacement is one of the major medical procedures in the oral surgery field due
to the progressive ageing population and to illness or trauma in younger age groups. The use of
implants without biological activity and effective osseointegration increases the chances of implant
failure. This work aims to improve the interaction between implants and bone by using Bioglass 45S5
(BG)/hydroxyapatite (HAp) mixtures, including copper-, zinc-, and cerium-doped BG, as well as
co-doping by the mentioned metals, as coatings produced by the CoBlastTM technique. All coatings
present a uniform coverage of the Ti-6Al-4V substrate. Furthermore, in vitro testing using human
osteosarcoma Saos-2 cells indicated that BG/HAp coatings have no cytotoxic effect, and the used of
doping agents did not alter cell adhesion, proliferation, or alkaline phosphatase (ALP) expression
when compared to undoped coating. These results demonstrate that BG/HAp by CoBlastTM can be a
solution to improve implants’ osseointegration.

Keywords: CoBlastTM; hydroxyapatite; Bioglass 45S5; copper; zinc; cerium; implant coating

1. Introduction

The field of medical implants has witnessed remarkable advancements in recent years,
revolutionizing patient care by restoring functionality and improving quality of life. How-
ever, the successful integration of these implants within the complex biological system of
the human body remains a challenge. Significant research efforts have been invested in
implant surface modification to enhance biocompatibility, promote osseointegration, and
mitigate potential complications such as biofilm-related infection [1–3]. In fact, implant sur-
faces, topography, and chemical composition have the greatest influence on the interaction
between the biomaterial and bone tissue and, therefore, stability [4–8]. It is well-established
that surface roughness, in particular, exhibits capacity in determining a biological response
as roughness improves the processes and proliferation of osteoblasts and reduces the activ-
ity of osteoclasts, thus promoting the mineralization process [9–11]. In addition, implant
roughness contributes to the process of the differentiation of mesenchymal cells towards the
osteoblastic phenotype [10,12]. Several surface treatments/coatings have been studied and
tested, such as particle blasting, laser processing, and plasma spray [13–16]. Although the
coating processing methods are diverse, the CoBlastTM technique from ENBIO, Ireland, has
been proven to be highly successful in the biomedical field [17–19]. This technique allows
the metal’s natural oxide layer removal by abrasion while also depositing the coating at
room temperature. This method avoids the problems associated with other deposition
techniques, especially problems related to a lack of mechanical stability and adhesion
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to the substrate [1,17,20]. The CoblastTM process shows very promising characteristics
and potential, allowing the achievement of a coating with significantly better mechanical
properties, not only in terms of the coating/substrate adhesion, but also of the intra-coating
cohesion, at a considerably lower cost.

It has been reported that the use of bioactive glass as a coating material can stimulate
the good functioning of the implant due to its ability to enhance tissue integration and
promote regeneration [21–24]. Based on the inorganic composition of natural bone, Hench
et al. developed Bioglass®, which is capable of replacing damaged bone tissue without
being rejected by the human body [23,25,26]. This reaction mechanism arises from the
bioactive glass’ ionic exchange capability within the surrounding physiological environ-
ment, enabling the migration of Ca2+ and PO4

3− ions to the surface, forming an initial
layer of amorphous calcium phosphate, which subsequently transforms into a crystalline
hydroxyapatite layer. Several studies have reported that the insertion of inorganic ions such
as copper, zinc, cerium, etc., into the glass network improves its biological response [27–29].
Trace elements play a crucial role in preserving overall health and preventing a variety
of diseases. These essential elements are required in small amounts, but their effects on
the body’s physiological processes are profound. They contribute to enzymatic reactions,
cellular functions, and structural integrity maintenance. Trace element deficiencies or
imbalances can result in a variety of health problems such as weakened immune system
function, impaired cognitive abilities, and bone diseases like osteoporosis [30,31]. One of
these elements is copper (Cu), which plays a crucial role in promoting angiogenesis and fa-
cilitating the regeneration of both hard and soft tissues. Furthermore, Cu exhibits potential
antibacterial properties due to its ability to generate reactive oxygen species (ROS), which
can induce oxidative stress and damage bacterial cellular components [32,33]. Cerium (Ce)
has garnered growing attention due to its ability to protect cells from damage caused by
reactive oxygen species (ROS) and to reverse oxidative stress following implantation in
bone, thereby promoting osteogenesis and expediting the bone healing process [34,35].
Zinc (Zn) has antimicrobial properties and significantly contributes to the proliferation of
osteoblast cells and the stimulation of mineralization and bone formation by preventing
the proliferation of bone-resorbing osteoclasts [36,37].

Although bioglass has achieved remarkable success, its high production cost has
remained a significant issue. It has been reported that composite combining bioglass
with calcium phosphate-based materials, such as hydroxyapatite (HAp) (Ca5(PO4)3(OH)),
demonstrates enhanced biological properties compared to their individual phases, as re-
ported in various studies [38,39]. Hydroxyapatite (synthetic or natural), which is the major
inorganic component of human bones and teeth, has been used widely in orthopedic and
dental applications, due to its excellent biocompatibility, and osteoconductive and osteoin-
ductive properties [40–42]. The synergistic combination of bioglass and hydroxyapatite in
coating applications induces rapid bone regeneration and functional integration, ultimately
leading to improved clinical outcomes [38,43].

In this work, we attempt to demonstrate the potential of Bioglass 45S5/hydroxyapatite
composite coatings using the CoBlastTM technique for application in both orthopedics and
dental implants. For this purpose, bioglass modified by the doping and the co-doping of
2% mol Zn, 2% mol Ce, and 0.5% mol Cu was synthesized and subsequently mixed with
the HAp. The selection of ion concentrations inserted in the bioglass is justified in our
previous work [44–47]. The cytocompatibility of the coatings produced was assessed with
the Saos-2 cell line. Moreover, cell adhesion and proliferation and alkaline phosphatase
(ALP) activity were evaluated.

2. Materials and Methods
2.1. Materials Synthesis

The bioglass samples, based on the 45S5 formulation proposed by L. Hench (46.1SiO2-
2.6P2O5-24.35Na2O-26.91CaO, mol%), were synthesized using the melt-quenching method.
In this study, 7 types of samples were developed by adding several concentrations of
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cerium, zinc, and copper oxides to the 45S5 base formulation [25]. All precursor reagents
used were purchased from Sigma Aldrich, USA. The concentrations of each compound are
described in Table 1.

Table 1. Molar percentages of each reagent in the different bioglass samples.

Reagents (mol%)

Sample SiO2 P2O5 Na2O CaO ZnO CeO2 CuO

BG 46.10 2.60 24.35 26.91 - - -

Doped
2Zn 45.18 2.55 23.86 26.37 2
2Ce 45.18 2.55 23.86 26.37 2

0.5Cu 45.87 2.59 24.25 26.78 0.5

Co-doped
2Zn2Ce 44.26 2.49 23.38 25.83 2 2 -

2Zn0.5Cu 44.95 2.54 23.74 26.24 2 0.5
2Ce 0.5Cu 44.95 2.54 23.74 26.24 2 0.5

Firstly, the high-purity SiO2, Na2CO3, CaCO3, and P2O5 starting materials that com-
pose 45S5 (BG) were mixed in a ball mill system with agate vessels and balls for 1 h at
300 rpm. The mixed powders were calcined for 8 h at 800 ◦C in alumina crucibles. The
oxides were added to calcinated BG and mixed at 300 rpm for 1 h. The several compositions
were melted in a Pt crucible at 1300 ◦C for 1 h. The bioglass was re-melted to promote the
homogeneity of the glass network. Quenching was carried out in a metal mold and the
glass was subsequently ground. The glass was first ground in an agate mortar and then in
a ball mill at 300 rpm for 1 h.

For the composites synthesis, all the bioglass compositions were mixed with hydroxya-
patite (HAp) in the ball mill system at 200 rpm for 1 h, with the mass ratio shown in Table 2.
The commercial hydroxyapatite used in the composites was supplied by Bioceramed,
S.A., Portugal.

Table 2. Weight percentage of the bioglass and hydroxyapatite in the composite’s samples.

Composites Bioglass HAp

BG/HAp

60 40

2Zn/HAp
2Ce/HAp

0.5Cu/HAp
2Zn2Ce/HAp

2Zn0.5Cu/HAp
2Ce0.5Cu/HAp

2.2. Coatings Synthesis

CoBlastTM was the method used to coat the metal substrates due to its room tempera-
ture conditions, the one-step surface preparation, and deposition process. Furthermore,
this method is able to coat components with a variety of geometries [19,48].

Figure 1 shows the CoBlastTM equipment with a single nozzle configuration and Sulzer
Metco’s Single-10C powder feed system.

The substrates used in this study were Ti6Al4V grade 5 alloy (Jacquet, Ovar, Portugal)
and had dimensions of 10 mm × 10 mm × 1 mm. Before deposition, the substrates were
washed in 1 M HCl and then in acetone in an ultrasonic bath.

Since abrasion and powder deposition were carried out simultaneously, it was also
necessary to add the abrasive in a 50/50 ratio to the composites. The abrasive used was
Al2O3, also supplied by Bioceramed, S.A., Loures, Portugal.

Regarding the deposition conditions, the jet pressure was 4 bar, the distance between the
nozzle and the substrate was 19 mm, and the nozzle was positioned at 90◦ to the substrates.
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Figure 1. Schematic design of CoBlastTM equipment.

2.3. Morphological and Structural Characterizations

In this work, coating surface morphology was assessed by SEM (Scanning Electron
Microscopy) using a TESCAN model Vega 3 (TESCAN ORSAY HOLDING, Brno, Czech
Republic) microscope. The elemental analysis of the coating surface was also analyzed by
Energy Dispersive X-ray Spectroscopy (EDS) using a Bruker QUANTAX detector (model
XFlash MIN SVE) at 5 kx and 15 kV.

The powders used as coatings were analyzed by X-ray diffraction (XRD) at room
temperature with an Aeris-Panalytical diffractometer with CuKα radiation (λ = 1.54056 Å)
at 40 kV and 15 mA. The diffractograms were obtained in a 2θ range of 10◦ up to 70◦ and a
scan step of 0.002◦.

The coatings structure was analyzed by Grazing Incidence X-ray Diffraction (GIXRD)
with CuKα radiation—1.5406 Å. The data were collected by a Rigaku SmartLab diffrac-
tometer at 40 kV and 30 mA. The patterns were obtained in the range of 10◦ < 2θ < 70◦,
scan speed of 0.6◦ min−1, and with an incident angle of 5◦.

2.4. Cell Culture
2.4.1. Cytotoxicity Assay

A cytotoxicity assay was performed to compare cell viability of the different composite
coatings using the extract method. Samples were sterilized at 120 ◦C for 2 h. For extract
preparation, sterilized samples were immersed in McCoy 5A culture medium with an
ex-posed area of 1 cm2 for each ml of medium and then incubated at 37 ◦C for 48 h.

The human osteosarcoma Saos-2 cells were seeded at a concentration of 30 k cells/cm2

and incubated for 24h. Afterward, the medium was replaced by the extracts and 4 dilutions
(corresponding to equivalent concentrations of 0.5 cm2/mL, 0.25 cm2/mL, 0.125 cm2/mL,
and 0.063 cm2/mL), each with 6 replicates. For the resazurin test, two controls were
set. The negative control, where cells were cultured in standard medium, a non-cytotoxic
environment, and the positive control, where cells were cultured in a cytotoxic environment,
created through the addition of 10% DMSO, a cytotoxic agent, to McCoy culture medium.

The sample extracts and cell controls were incubated for 48 h and afterward the
extracts were replaced by a 50% McCoy and 50% resazurin solution that was incubated
for 3 h. Cell activity was evaluated by determining the medium absorbance at 570 nm and
600 nm in a microplate reader (Biotek ELx 800UV, Winooski, VT, USA).

2.4.2. Adhesion and Proliferation

The sample ability to support cell metabolism was assessed through cell adhesion and
proliferation studies. Samples were sterilized as previously described for the cytotoxicity assay.

The human osteosarcoma Saos-2 cells were seeded at a concentration of 20 k cells/cm2

over the coating’s surface and directly on the wells for the cell controls. Seeded cells were
incubated at 37 ◦C in a humidified 5% CO2 atmosphere for 24 h in McCoy’s medium.
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Afterwards, cell adhesion rate was assessed using a resazurin absorbance. The resazurin
assay was repeated at 3, 5, 7, and 9 days to follow cell proliferation behavior for all
tested samples.

2.4.3. Alkaline Phosphatase Activity

ALP is an enzyme expressed by cells during osteogenesis, so it can be used as a
differentiation marker. A colorimetric assay was used to evaluate ALP expression. This
reaction used 1 mg/ml of 4-nitrophenyl phosphate disodium salt (Sigma-Aldrich, St. Louis,
MO, USA) dissolved in tris-hydrochloric acid solution (pH 8.7). The first step in this essay
consists of filtering the medium that was in contact with the samples, to remove any cell
debris or dead cells. Then the absorbance at 405 nm was read to obtain the baseline. Next,
the ALP solution was added in a 1:1 ratio to the medium and incubated for 30 min. Finally,
the absorbance was measured at 405 nm.

The results were normalized to the populations determined on the previous day.

2.4.4. Immunofluorescence Study

For the immunofluorescence staining, the samples were fixed with paraformaldehyde
for 20 min, washed with PBS, permeabilized using 0.5% Triton X-100 in PBS for 15 min, and
washed again in PBS. Actin staining was carried out by incubating the cells in phalloidin
conjugate (Phalloidin CruzFluor™ 488, Santa Cruz Biotechnology, Dallas, TX, USA) diluted
in PBS in a 1:1000 ratio for 30 min in the dark and then the DNA was counterstained with
10 µg/mL DAPI for 5 min in the dark.

Actin and cell nuclei were observed using a Nikon Eclipse Ti-S fluorescence microscope
equipped with a Nikon D610 digital camera. Images were obtained with a 40x objective.

2.4.5. Statistical Analysis

All data related to in vitro evaluation were statistically analyzed using the software
OriginPro 2018 and presented using mean ± SD. Furthermore, the statistical analysis was
performed by one-way analysis of variance (One-way ANOVA) using Tukey’s multiple com-
parison test. If the results presented p < 0.05, samples were accepted as significantly different.

3. Results
3.1. Morphological and Structural Characterizations

SEM micrographs were taken to assess the surface morphology. Figure 2 shows the
surfaces of all the coatings obtained by CoBlastTM deposition.

All the samples have an identical morphology and show evidence of considerable
roughness. The roughness caused by the abrasive allows for the tribochemical bonding and
mechanical entrapment of the bioglass. The level of roughness promoted by this technique
is also extremely useful for integrating implants into the bone [1,49].

Figure 3 shows the elemental analysis in mapping mode by EDS of the BG/HAp
(a)–(f), 2Zn/HAp (g), 2Ce/HAp (h), and 0.5Cu/HAp (i) coatings. Figure 3a shows the
presence of the alumina associated with the abrasive. The common elements of Bioglass
45S5 and hydroxyapatite (Ca and P) are presented in Figure 3c,d. The Si and Na pre-
sented in Figure 3e,f can distinguish Bioglass 45S5 from hydroxyapatite. The surface maps
of the 2Zn/HAp, 2Ce/Hap, and 0.5Cu/HAp coatings were also produced, showing a
homogeneous distribution of the additional elements in the Bioglass 45S5 network.

Figure 4 shows the diffractogram of the BG/Hap-coated sample using GIXRD. A
significant contribution of Ti from the substrate and also the presence of alumina used as
the abrasive is visible. Furthermore, it is possible to visualize the presence of hydroxyapatite.
Bioglass, being an amorphous material, is not detected in the BG/HAp-coated sample.
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3.2. Cell Culture
3.2.1. Cytotoxicity Assay

Cytotoxicity assays are one of the first steps in a biocompatibility assessment of a
biomaterial. In this assay, the extracts obtained from the different BG/HAp coatings
were placed in contact with human osteosarcoma Saos-2 cells. The cell populations were
measured using the resazurin assay. The goal of this assay is to confirm that the composite
coatings containing doped BG can be safely placed in contact with the organism without
any harmful effects. The results obtained are presented in Figure 5.
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The results evidence that all tested coatings produced by CoBlastTM have relative cell
viabilities above 80% in comparison with the negative control, which suggests that none of
the materials tested provoked cell death and, therefore, are safe to be used as coatings for
implants. The viability was as expected, since all BG powders used had already proved
to be viable at concentrations up to 12.5 mg/mL for the BG, 2Ce, and 0.5Cu samples, and
50 mg/mL for the 2Zn sample [44,45,47].

The results obtained are corroborated by the findings previously described by Dias
et al. where HA coatings by CoBlastTM were viable at concentrations equal or lower than
1 cm2/mL [48].

3.2.2. Adhesion and Proliferation

The adhesion and proliferation of Saos-2 cells were determined to better understand
the response of bone cells to the coated implants as well as foresee their ability to assist
osteointegration in vivo. The results are shown in Figure 6.

The cell adhesion assessment shows that all samples attained similar adhesion rates to
the BG/HAp coating, meaning that none of the doping agents hindered the cell’s ability to
connect with the coating’s surface. Furthermore, the 2Ce0.5Cu/HAp coating presented a
significant improvement in cell adhesion.

The proliferation analysis shows a progressive increase in cell population for all
samples tested. After 14 days, cells already reached the confluency stage, where there is no
more available space to further proliferate. At this stage, the only factor to determinate cell
populations is sample surface area. Since all coatings were produced by CoBlastTM and
powders used have the same dimensions, the resulting topographies of all coated samples
are similar, as was previously established in the SEM analysis, and therefore, all samples
have similar final proliferation results.
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Figure 6. Comparison of populations of human osteosarcoma Saos-2 cells cultured for 14 days on all
coatings. Absorbance values are normalized to the average absorbance of the BG/HAp sample on
day 1. The vertical lines (whiskers) represent the standard deviation of the mean. The results of the
statistical significance tests are represented with *, where p < 0.05.

O’Sullivan et al. [50] and Mesquita-Guimarães et al. [51] already demonstrated that cell
proliferation was enhanced with coatings implementation: fibroblasts cell proliferation was
studied over 7 days on Ti substrates, and Hap or BG coatings, showing a favorable response
toward coated samples especially in BG samples, when compared with Ti substrates.

Cell population analysis in the first week indicated that the presence of Cu in the
coatings tends to lead to worse results due to Cu’s cytotoxic behavior [45,52], which
can be seen in the 0.5Cu/HAp. However, with the implementation of co-doping this
effect can be mitigated with the introduction of ions with osteogenic or anti-inflammatory
properties [53–55]. In this test, 2Zn0.5Cu/HAp samples presented an increase in cell
population compared to the 0.5Cu/HAp coating.

Overall, all samples evidenced a favorable cell response with high human osteosar-
coma Saos-2 cells, and doping agents did not jeopardize proliferation and can also improve
cells responses compared to uncoated metallic implants.

3.2.3. Alkaline Phosphatase Activity

ALP is an enzyme that reflects osteoblastic activity at different stages of osteoblast
differentiation. During bone regeneration there is an upregulation of ALP expression,
which acts as a local concentration regulator of inorganic ions, as well as a catalyst of
apatite crystals growth [56,57]. These properties lead to biomineralization and bone matrix
production [58]. The relative ALP expressed by the human osteosarcoma Saos-2 cells
cultured on the seven different coating throughout the 15 days of culture time is displayed
in Figure 7.

All cells grown on coatings revealed an increase in relative ALP expression throughout
time. However, there are no statistically significant differences between samples, not
even when comparing doped sample with the BG/HAp coating. This behavior was not
anticipated since Zn- [59,60] and Cu-doped [61,62] BG are supposed to increase ALP
expression. The lack of statistically significant differences between samples may be due to
the need to increase doping concentrations since the amount of material present in each
coating is low (2 mg/cm2), which may lead to the release of minimal amounts of doping
ions with very little impact on ALP expression.
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Figure 7. Relative ALP activity of human osteosarcoma Saos-2 cells on the different coatings on days
4, 8, 11, and 15. The data are normalized to the populations determined on the previous day. There
are no statistically significant differences when comparing samples on each day.

3.2.4. Immunofluorescence Study

Immunofluorescence analysis is one of the most commonly used methods to study the
shape, structure, size, and cell distribution on sample surfaces. For this purpose, human
osteosarcoma Saos-2 cells were stained with phalloidin and DAPI to label the cytoskeleton
and nuclear morphology, respectively. The cell cultures’ immunofluorescence results are
shown in Figure 8.
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Figure 8. Immunofluorescence images after 15 days of culture of human osteosarcoma Saos-2 cells for
different sample surfaces: BG/HAp (a), 2Zn/HAp (b), 2Ce/HAp (c), 0.5Cu/HAp (d), 2Zn2Ce/HAp
(e), 2Zn0.5Cu/HAp (f), and 2Ce0.5Cu/HAp (g) by CoBlastTM deposition. The cytoskeleton is stained
with phalloidin (green) and the nucleus is stained with DAPI (blue).

All coated samples present a high cell confluency, observable by the number of nuclei
(blue dots). This fact was already expected, as it is in accordance with cell populations
calculated by resazurin readings. Regarding cell morphology, the confluency stage and
coating topography alters cell cytoskeleton morphology, due to spatial constraints. These
spatial constraints, such as the space available for each cell, sharp edges, sharp angles, and
fine textural patterns, leads to the cytoskeleton occupying a smaller area with rounded
geometry that is only slightly larger than the nucleus size, instead of the polygonal or
polarized fibroblastic morphology typical of Saos-2 cell line morphology [50,63].
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Samples (c), (e), and (g) in Figure 8 present cells that occupy a smaller area than on
other samples. These three samples have in common the presence of cerium-doped, or
co-doped, bioglass. The smaller area shows that cells on these samples have a higher
difficulty interacting with the surface. The cause for this is unknown and does not seem to
negatively affect cell adhesion, proliferation, nor ALP production.

4. Conclusions

Several BG/Hap- and BG-doped and co-doped/HAp coatings were successfully
produced by CoBlastTM. All coatings presented a similar surface morphology. The in vitro
response showed no cytotoxic effects, excellent proliferation, and ALP expression. Cell
proliferation and immunofluorescence assays demonstrated that none of the doping agents
had a negative effect on cell populations and, within 14 days, all samples reached confluency.
The effect of cerium doping of cell size and morphology should be further investigated.
Overall, the results reveal that BG/HAp composite coatings produced by the CoblastTM

technique can improve the interaction between implants and bone for orthopedic and
dental applications.
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