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Abstract: The study examines the microstructure and high-temperature properties of Cr3C2-25NiCr
nanoceramic coatings on 316H high-temperature-resistant stainless steel that were prepared by high-
velocity air–fuel spraying (HVAF) technology. The micromorphology, phase composition, fracture
toughness, high-temperature hardness, high-temperature friction, and wear properties of the coating
were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-temperature
Vickers hardness tester, high-temperature friction and wear tester, and surface profiler. The results
show that the Cr3C2-25NiCr coating prepared by HVAF presents a typical thermal spraying coating
structure, with a dense structure and a porosity of only 0.34%. The coating consists of a Cr3C2 hard
phase, a NiCr bonding phase, and a small amount of Cr7C3 phase; The average microhardness of
the coating at room temperature is 998.8 HV0.3, which is about five times higher than that of 316H
substrate. The Weibull distribution of the coating is unimodal, showing stable mechanical properties.
The average microhardness values of the coating at 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C are 840 HV0.3,
811 HV0.3, 729 HV0.3, and 696 HV0.3 respectively. The average friction coefficient of the Cr3C2-25NiCr
coating initially decreases and then increases with temperature. During high-temperature friction
and wear, a dark gray oxide film forms on the coating surface. The formation speed of the oxide film
accelerates with increasing temperature, shortening the running-in period of the coating. The oxide
film acts as a lubricant, reducing the friction coefficient of the coating. The Cr3C2-25NiCr coating
exhibits exceptional high-temperature friction and wear resistance, primarily through oxidative wear.
The Cr3C2-25NiCr coating exhibits outstanding high-temperature friction and wear resistance, with
oxidative wear being the primary wear mechanism at elevated temperatures.

Keywords: HVAF; Cr3C2-25NiCr coating; micromorphology; mechanical properties; high-temperature
friction and wear properties

1. Introduction

316H stainless steel is frequently employed as a high-temperature-resistant material for
valve stem components in high-temperature, high-pressure steam conditions, with a maxi-
mum operating temperature reaching 816 ◦C. Nevertheless, at elevated temperatures, the
hardness of 316H stainless steel is relatively low, rendering it susceptible to erosion caused
by gas or particulate-laden gas-solid two-phase media. Consequently, there is a need to
elevate the surface hardness of 316H stainless steel through surface-hardening techniques.

Cr3C2-25NiCr currently stands as one of the most extensively employed nanoceramic
composite materials, among which the NiCr alloy component of this composite boasts
commendable resistance to heat-induced corrosion and exceptional capabilities in coun-
tering high-temperature oxidation. The elevated hardness attributed to Cr3C2 further
enhances its exceptional resistance to high-temperature friction and wear [1]. Consequently,
the Cr3C2-25NiCr coating exhibits commendable performance in withstanding elevated
temperatures, displaying resilience against high-temperature erosion, oxidation, and wear
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at 900 ◦C. This prowess has propelled its successful integration across industries encom-
passing petroleum refining, thermal power generation, aerospace, metallurgical machinery,
and other fields [2,3]. Notably, thermal spray technology emerges as a pivotal technique in
the fabrication of Cr3C2-25NiCr coatings [4].

The utilization of high-velocity oxygen fuel spraying (HVOF) technology is prevalent
in the preparation of Cr3C2-25NiCr coatings. However, the HVOF technology uses oxygen
as the combustion-assisting gas, and the metal-powder particles are in a rich oxygen
atmosphere during the spraying process, which is prone to thermal decomposition of
powder oxidation or carbides [5]. High-velocity air–fuel spraying (HVAF) technology is a
new technology developed in recent years. HVAF uses compressed air instead of expensive
oxygen as the combustion-assisting gas and adopts a gas-cooling method. HVAF has
a higher spraying flame velocity and lower flame temperature than HVOF technology,
which helps to form metal coatings with high density, low oxide content, and high bonding
strength [6].

Mathiyalagan et al. [7] utilized the HVAF technique to fabricate Ni-P coatings con-
taining c-BN on the surface of 350LA, resulting in a hardness enhancement of 47% and a
reduction of the wear rate by two orders of magnitude. The wear resistance was signifi-
cantly improved. The dimensions of the combustion chamber also exert an influence on
the wear resistance of the coating. The research findings indicate that a relatively larger
combustion chamber can notably diminish the quantity of nondeformed particles within
the coating, thereby leading to lower porosity and relatively higher hardness within the
coating, thus achieving the objective of enhancing the coating’s wear resistance [8]. Al-
roy [9] investigated the influence of process parameters on the corrosion performance
of HVAF-prepared Cr3C2-25NiCr coatings. It was observed that by using fine-grained
powders and a medium-length nozzle during the coating preparation, the coating exhibited
reduced porosity and higher density, leading to a corrosion rate decrease of 40%–45%
compared to the substrate. Furthermore, the spray flame velocity and flame temperature of
HVAF were reported to be 700–1200 m/s and 1800 ◦C, respectively [10,11]. The semimolten
sprayed powders have a very short flight time in the air, which can effectively suppress
oxidation, decomposition, and decarburization of the powder so that the majority of hard
phases can be retained. Therefore, HVAF technology has received a lot of attention [12,13].

In electric power, metallurgy, and other industries, various ball valves are installed
on pipelines as switching control equipment for fluid media. The temperature of high-
temperature heat transfer oil, high-temperature flue gas, high-temperature steam, and
other media in the pipeline is often as high as about 600 ◦C, and its key parts are easily
damaged and fail, seriously affecting the normal operation of the ball valve. Therefore, the
surface strengthening of the critical components is very important. Usually, researchers
will spray a hardened layer on the ball core, valve seat, and other seals of the ball valve to
ensure the high-temperature oxidation resistance and wear resistance of the valve under
high-temperature conditions. However, at present, there is limited research on the high-
temperature performance of Cr3C2-25NiCr nanoceramic coatings prepared using HVAF
technology. Currently, there is limited research on the high-temperature performance of
Cr3C2-25NiCr nanoceramic coatings prepared using HVAF technology. In order to enhance
the high-temperature surface-wear resistance of AISI 316H stainless steel, based on HVAF
technology and optimized process parameters, Cr3C2-25NiCr nanoceramic coatings were
prepared on the surface of a 316H stainless steel substrate. Through a series of experiments,
the microstructural morphology, phase composition, high-temperature hardness, and high-
temperature friction-wear performance of the coating were investigated. Additionally, the
high-temperature friction-wear mechanism was explored, thereby establishing the feasi-
bility of applying the Cr3C2-25NiCr nanoceramic coating prepared by HVAF technology
under high-temperature operating conditions.
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2. Materials and Methods
2.1. Coating Preparation

The substrate material for the coating preparation is 316H stainless steel; its chemical
composition is shown in Table 1. The chemical composition of the substrate was determined
using ICAP 7000 inductively coupled plasma optical emission spectrometry (ICP-OES,
Thermo Fisher Scientific, Waltham, MA, USA) and a CS-988A carbon sulfur analyzer (CSA,
Wuxi Tianmu Instrument Technology Co., Ltd., Wuxi, China). The specimen size was
30 mm × 15 mm × 8 mm. To remove any impurities, such as oxide or oil residues that
may remain on the surface of the sample, the 316H substrate was repeatedly cleaned using
acetone and absolute ethanol and dried with compressed air. After cleaning, the substrate
was sandblasted to ensure optimal surface roughness, thereby enhancing the bond strength
between the coating and the substrate.

Table 1. Chemical composition of 316H stainless steel (wt.%).

C Mn Si S P Ni Cr Mo Fe

0.07 1.83 0.86 0.02 0.03 13.25 17.15 2.31 Bal.

The spraying powder used for the experiments is a Cr3C2-25NiCr powder produced by
Luoyang Jinglu Hard Alloy Tool Co., Ltd. (Luoyang, China). The powder is manufactured
using a method involving Ni and Cr encapsulation of Cr3C2, and its composition is detailed
in Table 2. Powder particle-size distribution is measured using a laser particle-size analyzer
(Microtrac S3500, Boca Raton, FL, USA).

Table 2. Chemical composition of Cr3C2-25NiCr powder (wt.%).

C Ni Fe Cr

10.66 20.35 0.41 Bal.

The coating preparation is conducted using the M2 HVAF (UNIQUECOAT, Oilville,
VA, USA) supersonic flame-spraying system. In this experiment, the application employs
optimized spray-process parameters for batch production (as presented in Table 3) targeting
the fabrication of Cr3C2-25NiCr nanoceramic coatings on 316H stainless steel.

Table 3. Process parameters of HVOF and HVAF.

Air
pressure

(MPa)

Propane
pressure

(MPa)

Nitrogen
flow

(L/min)

Airflow
(m3/min)

Spraying
distance

(mm)

Powder
speed

(mm/s)

Powder
feeding
(g/min)

0.54 0.49 60 20 230 800 110

Coating cross-section specimens are prepared using a wire-cutting process. Following
thermal embedding, coarse grinding, fine grinding, and polishing, the surface roughness
of the coating is achieved at Ra < 0.2 µm.

2.2. Performance Characterization

The microstructure of Cr3C2-25NiCr powder and coatings was observed using the
Navo Nano SEM 450 field emission scanning electron microscope (SEM, FEI, Hillsboro, OR,
USA). Additionally, the chemical composition of the coating was analyzed by Quantax-200
EDS (Bruker, Billerica, MA, USA) spectrometry.

The coating cross-section microstructure is examined using the Axio Observer 3 m
(Carl Zeiss AG, Oberkochen, Germany) research-grade metallographic microscope. The
average porosity of 5 different fields is calculated using the Pro Imaging metallographic
intelligent analysis system.
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The phase composition of Cr3C2-25NiCr powder and the coatings is analyzed using
the Rigaku D/MAX 2500 PC X-ray diffractometer (XRD, Rigaku, Tokyo, Japan). The
samples are subjected to phase testing with a tube voltage of 30 kV, tube current of 20 mA,
scanning angle range of 20◦–90◦, and continuous scanning rate of 0.03 ◦/s.

Microhardness of the coatings was measured using the INNOVATEST FALCON 500
(Eindhoven, The Netherlands) Vickers hardness tester with a load of 300 g and a loading
time of 15 s. Additionally, 15 hardness values are obtained in the field-of-view area of the
coating cross-section, and the Weibull distribution method is employed to explore the hard-
ness distribution characteristics of the coating at room temperature. Equations (1) and (2)
were employed to characterize the hardness-distribution characteristics of the coating [14].

In the equation, where F(x) represents the hardness probability distribution function
of the coating, m stands for the modulus of the Weibull distribution function, reflecting the
degree of discreteness of numerical expressions. The parameter x represents the measured
hardness value, while x0 signifies the hardness value obtained after sorting the hardness
points in ascending order, accounting for 63.2% of the total hardness points.

ln{ln[ 1
1− F(x)

]} = m[ln(x) + ln(x0)] (1)

F(x) =
i− 0.5

n
(2)

In the equation, where n represents the total number of hardness indentations, and i
indicates the sequence number of hardness values arranged in ascending order.

The high-temperature microhardness of the coatings is evaluated using the HVZHT-30
high-temperature vickers hardness tester (ZONE-DE, Shandong, China), applying a load
of 500 g and a dwell time of 10 s. The holding time at each temperature is 10 min. Three
hardness values are recorded at each temperature, and real-time high-speed images of the
indentations are captured.

The UMT-3 multifunctional high-temperature friction and wear tester (CETR, San Jose,
CA, USA) is utilized to assess the friction-wear performance of the Cr3C2-25NiCr coating
in high-temperature air at temperatures of 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C, respectively.
The test is pin–disc contact, and for every single test, a test duration of 30 min and a new
Al2O3 (the Mohs hardness scale is 9) ball with a diameter of 9.5 mm were used, with a load
of 5 N and a disc rotation speed of 150 r/min.

The DektakXT (Bruker, Billerica, MA, USA) probe surface profiler measures the cross-
sectional profiles of the wear scars.

3. Results
3.1. Powder Morphology

The microstructure of the agglomerated Cr3C2-25NiCr spherical nanopowder for
supersonic spray prepared through the gas atomization (agglomerating sintering) process
is shown in Figure 1a. It is evident that the powder possesses a high degree of sphericity
and excellent dispersion, indicating a favorable flowability of the powder.
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Figure 1b shows the powder cross-sectional metallurgical structure. The metallurgical
structure within the cross-section reveals the Cr3C2 phase wetted by the NiCr alloy γ

phase [15]. The gray region corresponds to the Cr3C2 phase, while the silver-white region
represents the NiCr alloy γ phase. It can be observed that the Cr3C2 particles in the powder
were sintered, and the NiCr alloy bonding phase uniformly filled the interstices between
the hard particles, forming a stable skeleton-network structure.

Figure 2 illustrates the particle-size distribution of the powder, conforming to a stan-
dard Gaussian distribution. Among the parameters, dmean = 32 µm, d10 = 18 µm, and
d90 = 52 µm.
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Figure 2. Particle-size distribution of Cr3C2-25NiCr powder.

3.2. XRD Phase Composition

Figure 3 exhibits the X-ray diffraction (XRD) spectra of Cr3C2-25NiCr coatings pre-
pared by HVAF, as well as the initial powder. It is evident that the sprayed coating retains
the crystalline phases present in the raw powder. The Cr3C2-25NiCr powder and coating
are primarily composed of the Cr3C2 hard phase and NiCr bonding phase. Additionally, a
small amount of the Cr7C3 diffraction peak is observed in the coating. This can be attributed
to the partial decarburization of Cr3C2 during the high-temperature flame in the spraying
process [16]. Both Cr3C2 and Cr7C3 possess high hardness and high melting points, which
contribute to the wear resistance and high-temperature hardness of the coating [3].
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Notably, there is a substantial difference in the intensity of diffraction peaks between
the powder and the coating. The diffraction peaks of the coating exhibit a significant
broadening phenomenon, indicating the generation of an amorphous phase during the
transformation from powder to coating. This can be attributed to the rapid cooling of molten
or semimolten droplets upon reaching the substrate during the supersonic spray process.
This rapid cooling suppresses crystal growth, resulting in a disordered accumulation of
solidifications and an amorphous coating appearance [17]. Additionally, research suggests
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that the formation of the amorphous phase during HVAF spraying of Cr3C2-25NiCr coat-
ings is related to the severe plastic deformation occurring upon the high-velocity impact of
powder particles on the substrate [18]. Consequently, in the process of preparing ceramic
coatings through supersonic flame spraying, the coating consists of both crystalline and
amorphous phases, with the presence of the amorphous phase potentially enhancing wear
resistance to a certain extent [19].

3.3. Section Morphology

Figure 4 shows the SEM cross-sectional morphology of Cr3C2-25NiCr nanoceramic
coatings prepared by HVAF. From Figure 4a, it can be observed that the thickness of the
Cr3C2-25NiCr coating is approximately 260 µm, forming a mechanical connection with the
substrate through mechanical interlocking. The coating exhibits density without visible
cracks or significant defects. During HVAF spraying, with a flame temperature of 1800 °C,
the NiCr alloy, due to its lower melting point, rapidly melts and wets the surrounding
ultrafine Cr3C2 nanoparticles, leading to deformation and melting of the outer layers of the
Cr3C2 particles. These molten particles impact the substrate at high speed, flattening and
forming a typical thermal spray layer structure. Simultaneously, a small fraction of Cr3C2
undergoes decarburization, with carbon atoms diffusing into the molten NiCr phase to
form a solid solution [20,21]. The coating microstructure is characterized by a continuous
and well-melted NiCr bonded phase uniformly dispersed with carbide hard particles, such
as Cr7C3, among which the light gray phase corresponds to the NiCr bonded phase, while
the dark gray phase represents the hard particles.
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magnification.

Porosity is one of the significant parameters of coating performance, which will
significantly affect the microhardness, wear resistance, and corrosion resistance of the
coating. The pores of the coating are mainly distributed at the boundaries of hard particles,
which is primarily due to insufficient deformation of powder particles and incomplete
overlap during deposition. Another portion of the pores is caused by the solidification
shrinkage of the fully melted binder phase that cannot be compensated. Employing the
“gray level method”, the calculated porosity of the coating is 0.34%, indicating a high
hardness value [22].

Figure 5 displays the as-sprayed surface morphology of the Cr3C2-25NiCr coating. It
is apparent that the surface of the coating is primarily composed of a multitude of unmelted
powder particles along with a small fraction of the completely melted solidification area.
This is due to the fact that the HVAF spraying technique employs propane–air as fuel.
Compared to HVOF supersonic flame-spraying technology, which uses aviation kerosene
as fuel, the heat during the spraying process is low. As a result, some powder particles
find it challenging to attain their melting points, and molten or semimolten particles in
the flame flow are in a solid–liquid mixed state before impacting the substrate. In the case
of HVAF technology, the high powder-injection velocity leads to the flattening of most
unmelted or semimelted powder particles. These particles are then layered and bonded
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onto the substrate surface through the application of significant impact forces and plastic
deformation pressures [23].
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3.4. Microhardness and Weibull Distribution

Figure 6 depicts the microhardness distribution across the cross-section of the Cr3C2-
25NiCr nanoceramic coating. The average microhardness of the F316H substrate is ap-
proximately 210 HV0.3, and the microhardness of the substrate near the coating interface
tends to increase slightly, reaching around 400 HV0.3. This increase can be attributed to
the “shot peening effect” induced by the powerful impact of the powder particles on the
substrate during a high-speed deposition process. Therefore, the effect of work hardening
is produced [24]. The result shows that the closer to the coating interface, the higher the
microhardness of the substrate. And at the coating-substrate interface, the microhardness
reached 750 HV0.3. As can be seen from Figure 6, with the increase in coating thickness, the
hardness value of the coating increases slightly and then decreases. It spans from 921 HV0.3
to 1090 HV0.3, and the average microhardness is about 998 HV0.3, which is about five times
higher than that of the F316H substrate
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The Weibull distribution parameters and the Weibull distribution curve of microhard-
ness of the Cr3C2-25NiCr coating at room temperature are shown in Table 4 and Figure 7,
respectively. The distribution of Weibull hardness points of the coating aligns well with the
linear fit and demonstrates a unimodal distribution characteristic [25]. The microhardness
values of the coating exhibit a narrow distribution range and small hardness extreme values,
signifying high uniformity and stable mechanical performance.
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Table 4. Weibull distribution parameters of microhardness of Cr3C2-25NiCr coating.

Hardness(x)
(HV0.3) ln(x) m n Average hardness (HV0.3)

921~1090 6.83~6.99 24.45 15 998
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Figure 9 illustrates the real-time microhardness indentation morphology of the Cr3C2-
25NiCr coating at elevated temperatures of 450 °C, 550 °C, 650 °C, and 750 °C. Notably, 
the indentation morphologies and sizes appear relatively consistent across the tempera-
tures, and no cracks are observed around the diagonals of the indentations. This observa-
tion indicates that the Cr3C2-25NiCr coating maintains a high level of high-temperature 
hardness and fracture toughness. 
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3.5. High-Temperature Hardness

As indicated in Figure 8, the average microhardness of the Cr3C2-25NiCr coating at
room temperature, 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C are 998 HV0.3, 840 HV0.3, 811 HV0.3,
729 HV0.3, and 696 HV0.3, respectively. With the increase in temperature, the hardness of
the coating decreases. This phenomenon can be attributed to the reduction in both the
grain and the grain boundary strength of the material as temperature rises, leading to
a high-temperature softening of the coating [26]. Remarkably, even with a temperature
increase from 450 ◦C to 750 ◦C, the high-temperature hardness of the Cr3C2-25NiCr coating
only experiences a decrease of approximately 140 HV0.3, and it still has a high high-
temperature hardness.
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Figure 9 illustrates the real-time microhardness indentation morphology of the Cr3C2-
25NiCr coating at elevated temperatures of 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C. Notably, the
indentation morphologies and sizes appear relatively consistent across the temperatures,
and no cracks are observed around the diagonals of the indentations. This observation in-
dicates that the Cr3C2-25NiCr coating maintains a high level of high-temperature hardness
and fracture toughness.
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(b) 550 ◦C; (c) 650 ◦C; (d) 750 ◦C.

With the increase in temperature, the contrast between the light gray Cr3C2 particles
and the surrounding dark gray NiCr bonding phase becomes more distinct, rendering the
morphology more discernible under optical microscopy. This phenomenon is attributed to
the oxidation of Cr elements on the surface of the coating at high temperatures, resulting in
the formation of an oxide film that significantly enhances the contrast between the hard
phase and the bonding phase.

3.6. High-Temperature Friction and Wear
3.6.1. Coefficient of Friction

Figure 10 illustrates the friction coefficient curves and the average coefficient of friction
for the Cr3C2-25NiCr coating at temperatures of 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C. During
the friction test, the friction coefficient of the coating experiences an initial rise followed
by a decrease during the running-in period, after which it enters a stable period of small
fluctuations. As the temperature increases, the running-in period gradually shortens. At
450 ◦C, 550 ◦C, and 650 ◦C, the running-in periods for the coating are 1056 s, 1010 s, and
987 s, respectively. At 750 ◦C, the running-in period is only 242 s and swiftly enters a
stabilization period. With a rising temperature, the running-in period tends to shorten, and
the friction and wear process rapidly enters a stable state.

Notably, at 450 ◦C, the Cr3C2-25NiCr coating exhibits the highest coefficient of friction,
with an average value of 0.52± 0.02. At 550 ◦C, the lowest coefficient of friction is observed,
with an average value of 0.44± 0.01. However, at 750 ◦C, the coefficient of friction increases
to 0.48 ± 0.01. Moreover, at this temperature, the friction coefficient was the most stable,
fluctuating only within a small range. And with the increase in sliding time, it shows an
upward trend.
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Figure 10. Friction coefficient curve and average friction coefficient of Cr3C2-25NiCr coatings at
different temperatures: (a) friction coefficient curve; (b) mean friction coefficient.

The friction force of the material at high temperatures is mainly the plastic deformation
of the surface and the role of the contact point between the friction pair and the surface
of the material. With the increase of the test temperature, the plastic deformation force
diminishes while the effect of contact points on the surface grows. At high temperatures,
adhesive bonding occurs between the friction pair and the material at contact points on the
surface. During sliding, the bonded points are sheared, and material transfer takes place at
the interface. This alternating process of bonding and shearing causes minor oscillations
in the friction curve [27,28]. After entering the stabilization period, the coefficient of
friction stabilizes, indicating that the coating has not undergone wear failure. Consequently,
the Cr3C2-25NiCr coating can play a certain protective role on the 316H substrate at a
temperature of 450 ◦C–750 ◦C.

Figure 11 illustrates the corresponding cross-sectional profile curves and wear rates of
the Cr3C2-25NiCr coating at temperatures of 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C. It can be
seen from the figure that, at 450 ◦C, the Cr3C2-25NiCr coating has the smallest abrasion area
and the lowest wear rate, showing the best wear resistance. With an increasing temperature,
the wear rate of the Cr3C2-25NiCr coating gradually rises, and the corresponding abrasion
area gradually increases.
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At 450 ◦C, although the coating exhibits the highest friction coefficient (0.527), its hard-
ness is also the highest (840 HV0.3), resulting in a wear rate of (2.16 ± 0.03) × 10−5 mm3/(N·m).
At 550 ◦C and 650 ◦C, the wear rates are (2.52 ± 0.01) × 10−5 mm3/(N·m) and
(2.68 ± 0.01)×10−5 mm3/(N·m), respectively, and the wear rates are very close, which is
related to the minimal variation in its coefficient of friction, suggesting stable mechanical
performance of the coating at these temperatures.

However, at 750 ◦C, the wear rate increases to (2.97 ± 0.02) × 10−5 mm3/(N·m). This
increase is attributed to the higher tendency of softening in the NiCr bonding phase of
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the coating at this temperature [29], which reduces the cohesive strength of the coating.
As a result, Cr3C2 (EDS result is shown in Figure 12h) undergoes secondary precipitation,
leading to the detachment of hard particles [30]. The coating’s shear resistance diminishes,
resulting in the highest wear rate observed at this temperature.
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3.6.2. Wear Mechanism

Figure 12 shows the wear-surface morphology of the Cr3C2-25NiCr coating at different
temperatures. The surface exhibits distinctive furrows and extensive areas covered by flaky
dark gray oxide film [31]. EDS analysis reveals that these oxide films primarily consist
of the elements C, Cr, O, and Ni, of which the oxygen content is 25 wt.%–28 wt.%. This
indicates that during high-temperature and oxidative friction and wear, a smooth oxide film
(mainly Cr2O3 and CrO3) is first formed on the surface of the Cr3C2-25NiCr coating [32].

These oxide-based friction films act as a nonplastic medium, existing between the coat-
ing surface and aluminum oxide balls, effectively preventing direct contact and reducing
the friction coefficient. Additionally, the oxide-based friction films act as lubricants, further
lowering the friction coefficient of the coating [33]. As a result, as shown in Figure 11, the
coefficient of friction of the coating decreases when the temperature is 450 ◦C. With the
increasing temperature, the running-in period of the coating shortens gradually. This is
due to the accelerated formation rate of the oxide films containing metal Cr on the surface
of the coating, and the oxide film plays a lubricating role between the friction pairs, leading
to a rapid transition to the stable wear period.

Furthermore, it can be seen in Figure 12b,d that numerous fine debris particles are
observed on the coating surface, which play a role in load distribution and also offer a
protective effect; it will also have a protective effect and reduce the wear of the coating.

The friction and wear mechanism of the Cr3C2-25NiCr coating at high temperatures
are shown in Figure 13. During high-temperature friction and wear, the formation and
breakage of oxide films are in a dynamic equilibrium. In the process, the surface of the
preferentially formed sheet of oxide film produces microcracks (as seen in Figure 12 f,h),
and gradually loosens and detaches. Then, new fine debris is formed, and the newly
exposed alloy area continues to be oxidized after the oxide film is peeled. The peeled debris
recombines with the newly formed oxide film, creating a dynamic process of alternating
oxidation and detachment. Therefore, at high temperatures, the primary wear mechanism
of the Cr3C2-25NiCr coating is oxidative wear.
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In the high-magnification SEM images of Figure 12f,h, it can be observed that, at
temperatures of 650 ◦C and 750 ◦C, some carbide hard particles undergo thermal and shear
stresses, gradually developing microcracks under the fatigue action of cyclic load, which
eventually causes the hard phase to peel off from the NiCr bonded phase and form pits.
Additionally, it can be observed that, during prolonged high-temperature friction and wear
processes, a secondary precipitation of the carbides occurs in the NiCr bonding phase [33],
potentially leading to the formation of brittle regions and the shedding of carbide hard
phases [30].

As the temperature increases from 450 ◦C to 750 ◦C, the oxide layer becomes thicker,
giving rise to more debris and an oxide-based friction film. Along the edges of the oxide
film in Figure 12d,f, there are a large number of fine oxide debris, which will be used as



Coatings 2023, 13, 1741 13 of 15

abrasive particles to form a three-body abrasive wear, resulting in a relatively high wear
rate of the coating at 750 ◦C.

4. Conclusions

1. A Cr3C2-25NiCr nanoceramic coating was prepared using an air-assisted supersonic
flame-spraying technique (HVAF) with a coating thickness of 260 µm. The coating
exhibited a dense surface with low porosity (0.34%). The microstructure of the coating
displayed a typical thermal spray-layer structure, consisting of a Cr3C2 hard phase,
NiCr bonding phase, and a small amount of Cr7C3;

2. The average microhardness of the Cr3C2-25NiCr coating at room temperature was
998 HV0.3, which is approximately five times higher than that of the 316H substrate.
The Weibull distribution of hardness values for the coating showed a single peak
feature, and small hardness extreme values, indicating stable mechanical performance;

3. The average microhardness values of the Cr3C2-25NiCr coating at 450 ◦C, 550 ◦C,
650 ◦C, and 750 ◦C were 840 HV0.3, 811 HV0.3, 729 HV0.3, and 696 HV0.3, respectively.
With increasing temperature, the coating exhibited a decreasing trend in microhard-
ness due to high-temperature softening. However, it still maintained relatively high
hardness at elevated temperatures;

4. At 450 ◦C, the Cr3C2-25NiCr coating exhibits the best high-temperature friction
and wear properties. The wear rates of the coating at 450 ◦C, 550 ◦C, 650 ◦C, and
750 ◦C were (2.16 ± 0.03) × 10−5 mm3/(N·m), (2.52 ± 0.01) × 10−5 mm3/(N·m),
(2.68 ± 0.01) × 10−5 mm3/(N·m), and (2.97 ± 0.02) × 10−5 mm3/(N·m), respectively.
With increasing temperature, the average friction coefficient of the Cr3C2-25NiCr
coating shows a trend of initially decreasing and then increasing, corresponding to
the gradual enlargement of the wear scar area;

5. During high-temperature friction and wear, a large area of sheet-like dark gray oxide
film formed on the coating surface. As the temperature increased, the rate of oxide
film formation accelerated, and the run-in period of the coating gradually shortened.
This oxide film acted as a lubricant between the friction pairs, effectively reducing the
friction coefficient of the coating at high temperatures;

6. The wear mechanism of the Cr3C2-25NiCr coating at high temperatures is mainly
oxidative wear. At temperatures of 650 ◦C and 750 ◦C, certain carbide hard particles
develop microcracks and undergo secondary precipitation, leading to the formation
of a brittle zone. This zone, in conjunction with oxide debris, contributes to the
occurrence of three-body abrasive wear.
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