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Abstract: Measurements of weak magnetic fields demand a small distance between the sensor and the
to-be-measured object. Optically pumped magnetometers (OPMs) utilize laser light and the Zeeman
effect in alkali vapor cells to measure those fields. OPMs can be used in transmission or reflection
geometry. A minimization of the distance between active volume and magnetized source calls for
reflection geometry with integrated mirrors. Unfortunately, cesium reacts chemically with most
materials, especially high-performing materials, such as gold. Herein, we show the first functional
OPM cell using a gold mirror inside the cell. We fabricated the gold mirrors with and without a
passivation layer in order to evaluate the feasibility of expanding on the limited list of possible mirror
materials. A comparison of this implementation revealed that mirrors without a passivation layer
only reach a reflectivity of about 6% while mirrors with a passivation layer retain reflectivity values
of about 90% in the visible light to near-infrared spectrum. This result and the proof of elemental
cesium in the alkali vapor cell demonstrates the feasibility of passivated gold mirrors for applications
in alkali vapor cells for OPMs.

Keywords: alkali vapor cell; coatings; atomic layer deposition; mirrors; optically pumped magnetometer

1. Introduction

Optically pumped magnetometers apply the Zeeman effect to measure magnetic fields at
high resolution. To utilize the Zeeman effect, they are pumped with a laser beam of adequate
wavelength [1]. The heart piece of an OPM setup is the alkali vapor cell. This cell is usually
heated to increase the amount of evaporated alkali metal. Due to the high sensitivity and
absence of cryogenic cooling, OPMs are well suited for biological applications.

The alkali vapor cells are typically implemented using two different technologies:
the first fabrication method is glass blowing; the second, more flexible method utilizes
technology from the area of micro-electromechanical systems (MEMS). Such MEMS cells
allow for higher reproducibility and miniaturized system integration because of their basic
thin-film fabrication technology in comparison to glass-blown cells [2,3].

In order to measure weak magnetic field amplitudes with high spatial resolution,
the distance between the sensor and magnetized source should be minimized. Although
OPMs can be used in general in transmission or reflection setup, in both cases optical
components must be placed between the sensor and source. These components increase
the distance in between the MEMS cell and magnetized source in the case of transmission
due to the photodiode and in case of reflection due to the mirror. Therefore, an integration
of the mirror into the cell would significantly reduce the distance between the sensor and
magnetized source for the reflection geometry. Furthermore, to reduce the number of
optical transitions, the mirror should be implemented into the alkali vapor volume of the
MEMS cell (refer to Figure 1).
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nm) it is not resistant to alkali metals such as cesium or rubidium [11]. Unfortunately, gold 

reacts with cesium to form cesium auride, which leads to a strong change in the optical 

performance [12,13]. A suitable passivation might therefore be vital for the function of the 

mirror and needs to be developed. Simultaneously, the degree of color change of the gold 

mirror of the cell fabricated in such a way serves as an indicator for the quality of the 

passivation and the applicability of the mirror and cell. This implies that the color of mir-

rors with a passivation of low quality or without passivation will therefore exhibit a 

change in a larger area than the color of mirrors with a high-quality passivation. 
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many) glass windows, as described in [14]. Thus, glass wafers with a diameter of 4 inches 
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Figure 1. Schematic setup with an external mirror (top) and with an in-cell mirror (bottom).
The distance between the measurement object and alkali vapor cell can be reduced significantly using
the mirror inside the cell. PD: photodiode.

The in-cell mirrors can be realized in various ways, such as alkali-resistant metal-
lic [4–6] or dielectric mirrors, Bragg gratings [7,8], or non-alkali-resistant but passivated
mirrors [9]. While dielectric mirrors induce stress on the glass wafer on which it is de-
posited, alkali-resistant metals, such as aluminum, have a low reflection [10]. While gold
has a high reflection coefficient (larger than 90%) within the wavelength range of interest
(700–900 nm) it is not resistant to alkali metals such as cesium or rubidium [11]. Unfortu-
nately, gold reacts with cesium to form cesium auride, which leads to a strong change in the
optical performance [12,13]. A suitable passivation might therefore be vital for the function
of the mirror and needs to be developed. Simultaneously, the degree of color change of
the gold mirror of the cell fabricated in such a way serves as an indicator for the quality of
the passivation and the applicability of the mirror and cell. This implies that the color of
mirrors with a passivation of low quality or without passivation will therefore exhibit a
change in a larger area than the color of mirrors with a high-quality passivation.

2. Materials and Methods

Standard boron-doped silicon wafers (MicroChemicals, Ulm, Germany). with a di-
ameter of 4 inches and a thickness of 525 µm were etched using potassium hydroxide
(KOH) to fabricate cavities of 8 × 8 mm2 for the alkali atom cells. These cavities were
later encapsulated by two bond processes with Borofloat-wafers (Wafer universe, Elsoff,
Germany) glass windows, as described in [14]. Thus, glass wafers with a diameter of
4 inches and a thickness of 700 µm were lithographically processed to realize 4 × 4 mm2

squares for the gold mirrors. The 100 nm thick gold mirrors and an adherent layer of Ti
were deposited using thermal evaporation. The individual mirrors were realized within
the whole wafer area using a lift-off resist mask. After lift-off, the glass wafer was annealed
at 400 ◦C for 36 h in air. Subsequently, a 10 nm thick aluminum oxide passivation layer was
deposited via atomic layer deposition (ALD) [15,16]. This glass wafer with optical mirrors



Coatings 2023, 13, 1733 3 of 9

was afterwards anodically bonded to the silicon wafer at below 4·10−6 mbar at 350 ◦C. This
implementation was developed based on the process description from [14].

The mirrors also need to withstand the bonding processes required for the closure of
the cavities. In Figure 2, the parameters of the first anodic bond are shown (the second
anodic bond is not shown, but is implemented using the same parameters). The time scale
was normalized so that the time at 0 s precedes the start of the anodic bond by 5 s. To
reduce voids in the bond interface, the anodic bond was performed in high vacuum using
distance flags between the two bond specimens to evacuate the bond interface. The anodic
bond was performed in three subsequent steps. This led to bond current amplitudes well
below the maximum of the current source (50 mA at 600 V), allowing for an analysis of the
bond current’s behavior. The three peaks in the bond current (current in Figure 2) show
a fast amplitude rise followed by an exponential decay, as is expected for an unhindered
bond [17]. The temperature was chosen to ensure a fast anodic bond process.
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Figure 2. Time dependencies of the first anodic bonding process parameters.

After the first anodic bond, a cesium azide solution was pipetted into each cell cavity.
To hermetically seal the alkali vapor cells, a second unprocessed glass wafer was anodically
bonded from the opposite silicon wafer side using the same process parameters as employed
for the first anodic bond. After dicing the completed wafer package into separate alkali
vapor cells, microscopic images of their mirrors were taken. Then, the cesium azide within
the individual cells was decomposed using photolysis by means of a pulsed excimer laser
beam with a wavelength of 248 nm. An aperture was used to protect the passivated gold
mirrors from the excimer laser beam. Afterwards, those cells were annealed at 80 ◦C for at
least 24 h to increase the speed of the reaction of cesium and gold. Finally, the reflectivity of
the gold mirrors was measured, and microscopic images were taken.

For the anodic bonding process, we used an EVG®501 Wafer bonding system [18]. The
optical measurements were undertaken using a confocal spectrometer Olympus USPM [19].

3. Results

Two wafers, each with 16 mirror cells, were fabricated. After the decomposition and
annealing step, the cells without a passivation layer showed a significant change in color,
indicating a chemical reaction between gold and cesium. The cells with a passivation
layer showed minimal change in color compared with a cell without decomposed cesium



Coatings 2023, 13, 1733 4 of 9

azide (see Figure 3). The light grey areas in the bond interface (refer to the outer frames
in Figure 3) are the aforementioned voids. No particles could be observed at the center of
those voids, indicated by interference fringes, by using a light microscope. Therefore, their
main source is trapped gas. The dark substance near the optical mirror in the middle panel
of Figure 3 is a mixture of different secondary products of the photolysis as well as gases
reacting with the emerging cesium.
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Figure 3. Photographs of fabricated cells. Cell (a) is the refence cell without decomposition, serving as
a comparison for the other two. Cells (b,c) are shown after the steps of decomposition and annealing.
Cell (b) has a passivation layer, while cell (c) does not. See the main text for more details.

The measured reflectivity of uncoated gold mirrors (Figure 4, panel (a)) shows a drop
in reflectivity in the whole visible spectrum to values below 6%. Simultaneously, the
passivated gold mirror retains reflectivity values above 90%. The reflectivity values for the
wavelength of the cesium D1 line, which is important for the implementation of OPMs
in this work, is 3.7% for unpassivated gold mirrors and 91% for passivated gold mirrors
(refer to Figure 4). The measurements were taken from the back of the cells (i.e., through
the backside of the mirror’s glass wafer) in order to exclude any effect from cesium, cesium
azide, or other cesium compounds inside the cells.
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Figure 4. Measurement of reflectivity after the decomposition of cesium azide and the annealing of a
mirror without (a) and with (b) passivation.

To validate the quality of the gold mirror, microscopic images of uncoated and coated
gold mirrors before and after the anodic bonding, decomposition, and annealing at 80 ◦C
for 24 h were made (see Figure 5). The images were taken from the back of the cell. The
grey structures beside the mirrors are cesium azide. While the unpassivated gold mirror
reacts nearly completely with cesium to form cesium auride (Figure 5a,b), the coated mirror
only shows localized dark spots (Figure 5, panel (d)). This implies that the passivation
coating is damaged by the anodic bonding process. At the same time, these defects affect
only a small portion of the mirror. Thus, most of the mirror area, and therefore its function,
remains intact.

The most likely explanation for the formation of holes in the coating is the thermally
induced mechanical stress within the thin film system caused by the huge differences of the
thermal expansion coefficients between the glass substrate (3.3·10−6 K−1), the gold layer
(14.2·10−6 K−1), and the alumina layer (6.5–8.9·10−6 K−1) [10,20,21].

To evaluate the cell concerning the basic function and buffer-gas-dependent applica-
tion of the cell, a transmission spectrum was measured. The setup for this measurement is
schematically depicted in Figure 6 (on the right side). The transmission spectrum shows the
absorption peaks of elemental cesium of the alkali vapor cell with a passivated mirror as
well as a reference cell with four distinct absorption peaks. The existence of the absorption
peaks proves the presence of elemental cesium. This is a requirement for the performance
of an alkali vapor cell for OPM setups and for proving the feasibility of this cell for OPMs.
Furthermore, the measured spectra are fitted with four peaks, each displaying a Voigt
profile. By comparing the nitrogen-induced shift of those peaks of the mirror cell compared
to the reference cell, the buffer-gas pressure can be calculated. Thus, the value of the buffer-
gas pressure was derived (see Figure 6). For the shown measurement (Figure 6, left), the
buffer-gas pressure is about 372 mbar. As a consequence, the buffer-gas pressure leads to a
merge of cesium absorption peaks, allowing for the pumping of several optical transitions
at once, which is necessary for measurement principles such as the light-shift-dispersed
Mz mode [22].
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Figure 5. Microscopic images of mirrors before (left column) and after (right column) decomposition
of cesium azide and annealing with (bottom row) and without (top row) passivation. Panel (a) depicts
a gold mirror before photolysis, where no chemical reaction between cesium and gold can have
occurred. The gold mirror in panel (a) does not have a passivation and is indistinguishable from the
mirror in panel (c) which has a passivation and where the step of photolysis is yet to be done. In panel
(b) an unpassivated mirror after photolysis and annealing at 80 ◦C is shown, wide areas of the gold
have reacted with the cesium. In panel (d) a passivated gold mirror after photolysis and annealing
can be seen. This mirror is mostly intact, but several small areas of chemical reaction between cesium
and gold are visible.
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Figure 6. Left: Transmission spectrum of the passivated mirror cell for the evaluation of the buffer-gas
pressure. Blue: measurement of the mirror cell; turquoise: measurement of a reference cell without
mirror; red: calculated fit of the mirror cell; purple: calculated fit of the reference cell. The shift in the
spectrum is calculated to determine the buffer-gas pressure. Right: Schematic setup of the reference
measurement for the calculation of the buffer-gas pressure. PD: photodiode.

4. Discussion

Functional MEMS alkali vapor cells with gold mirrors inside the optical window have
been fabricated for the first time. They enable miniaturized sensor heads for new OPMs.
To evaluate the effect of an aluminum oxide coating on the performance of the gold mirror
in a cesium atmosphere, the parameters of coated and uncoated cells were compared. The
implementation of a passivation coating led to visible effects even in photographs. The
uncoated gold mirror changed its color, indicating a negative effect on the reflectivity.
Optical measurements showed that the uncoated mirrors reflected less than 6% of the
irradiated light, while the coated mirrors retained a reflectivity of above 90% in the visible
to near infrared spectrum. At 895 nm, the D1 line of cesium, the reflectivity of the passivated
mirror retained a value of 91%, while the unpassivated mirror only reflected 5% of incoming
light with a wavelength of 895 nm. The measured cesium spectrum demonstrated that
these cells are well suited as miniaturized alkali vapor cells for the intended OPMs. It
shows the peaks, which are characteristic for remaining elemental cesium in the cell. Thus,
the passivation increases the lifetime of the gold mirror drastically even within ambient
cesium vapor.

Even though all experiments were done with cesium as the alkali metal, it stands to
reason that this passivation layer is applicable for other alkali metals like e.g., rubidium
as well. Al2O3 deposited via ALD is used in both [15,16] to reduce the rate of reaction
between alkali metal and the surrounding glass. Therefore, the passivation effect on gold
mirrors can be expected to be the same.

5. Conclusions and Outlook

The passivation process was established successfully to protect gold mirrors in a cesium
atmosphere for implementation purposes. Even though a reflection geometry for OPMs can
be realized with the presented cells, a further improvement of the passivation is necessary.

To further reduce even localized defects, an iterative annealing and coating process is
proposed. This process could consist of the annealing of gold (step 1), the deposition of
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alumina (step 2), an annealing step of the covered gold (step 3), and an optical inspection
to verify the absence of defects in the passivation coating (step 4). In the event that step 4
was not successful, steps 2–4 can be repeated until the passivation coating is free of defects.
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