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Abstract: The application of magnesium alloys in the 3C industry requires the coexistence of excellent
corrosion resistance and good electrical conductivity. In this work, a conductive and corrosion-
resistant phosphate conversion coating (PCC) on AZ91D magnesium alloy was investigated. The
effects of strong oxidant (KMnO4), additive (Na2MoO4), surface-active agent (OP-10) and their
content in phosphating bath on PCCs were studied, and the mechanism of action of strong oxidant
was analyzed. The results showed that the optimum content for KmnO4, Na2MoO4 and OP-10 in
phosphating bath was 3.0 g/L, 1.5 g/L and 1.0 g/L. The PCC formed at the phosphating bath at the
optimum condition was completely covered, the coating on α phases had a bilayer structure and the
β phases were protruded. The electrical contact resistance (ECR) of the PCC was as low as 4.91 Ω,
the Ecorr positively shifted about 27 mV, and the icorr reduced significantly. The presence of KMnO4

inhibited the formation of phosphate crystals and made the β phases protrude from the surface to
form conductive spots, which improved the conductivity of PCCs.

Keywords: phosphate conversion coating; magnesium alloy; strong oxidant; corrosion resistance;
electrical conductivity

1. Introduction

Magnesium alloys are the lightest engineering materials [1], which have promising applica-
tions in aerospace, military defense, biomedicine, transportation and the 3C industry [2–10] due
to their excellent properties such as low density, high mechanical strength, high thermal conduc-
tivity and good electromagnetic compatibility [11]. Unfortunately, the poor corrosion resistance
of magnesium alloys is still the biggest challenge of expanding their application range [12].
Surface treatment technology is an effective means to improve the corrosion resistance of mag-
nesium alloys. Thus, the surface treatment technologies for magnesium alloys including anodic
oxidation, micro-arc oxidation, organic coating, electroplating, chemical plating and chemical
conversion treatment have experienced rapid development in the past decades [13–17]. As
the applications of magnesium alloys in the 3C industry gradually expanded, in order to meet
the requirements such as electromagnetic compatibility and electrostatic release, it is necessary
to develop a surface treatment technology which can provide a coating with both excellent
corrosion resistance and good electrical conductivity.

Chemical conversion treatment has gained widespread interest due to its low cost and
simplicity of operation [18]. However, the chemical conversion coatings of magnesium
alloys are usually composed of oxides and insoluble salts, which leads to the lack of
conductivity of the coating itself [19]. Considering that the electrical contact resistance
(ECR) is determined by the electrical conductivity of the material [20], and the charge
transfer resistance (Rt) related to corrosion resistance is the resistance of metal atoms to
lose electrons and become cations during the electrochemical reaction [21], the two are
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irrelevant. Therefore, it is feasible to prepare conversion coatings with high corrosion
resistance and low electrical contact resistance.

A few studies on the chemical conversion coatings with high corrosion resistance and
low electrical contact resistance have been reported. Jian et al. [22] developed a permanganate
conversion coating with a thickness of only 230 nm on AZ31 magnesium alloy; this coating
has sufficient conductivity to ensure the magnetic shielding performance of AZ31 due to
its low thickness. Duan et al. [23] proposed a design idea of a chemical conversion coating
with high corrosion resistance and low ECR on AZ91D magnesium alloy, which was to
make β-Mg17Al12 phase protrude from the surface as a conductive spot by using the micro-
galvanic effect between different phases and adding VO3

− as a strong oxidant to conversion
solution to inhibit the deposition of coating on it. Zhou et al. [24] studied the phosphate
conversion coatings (PCCs) with low electrical contact resistance on sand-cast and die-cast
AZ91D magnesium alloy, and found that the PCCs of die-cast exhibit lower ECR and better
corrosion resistance, which is attributed to the intensified micro-galvanic effect between
different phases through the grain refinement of the die-cast alloy.

The main function of the phosphate conversion coatings is to improve the corrosion resis-
tance of magnesium alloy. However, the current studies on conductive and corrosion-resistant
PCCs mainly focus on how to improve their conductivity, and ignore the corrosion resistance.
Therefore, the aim of this study is to prepare PCCs with low ECR and high corrosion resistance
on AZ91D magnesium alloy. The pretreatment before phosphating was screened. The effects of
strong oxidant (KMnO4), additive (Na2MoO4), surface-active agent (OP-10) and their content in
phosphating bath on PCCs were studied, and the mechanism of action of strong oxidant was
analyzed by electrochemical measurement and scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Sample Preparation

An AZ91D magnesium alloy was used as the substrate material; the content is shown
in Table 1. After cutting into a dimension of 30 × 30 × 5 mm and mechanical polishing
with up to 2000 grit SiC paper, plate samples were treated in different pretreatments as
shown in Table 2 [25–27]. A phosphating bath containing 35 g/L Ca(NO3)2·4H2O, 20 g/L
NaH2PO4·2H2O, 1~5 g/L KMnO4, 0.5~2.5 g/L Na2MoO4·2H2O, 0.5~2.5 g/L OP-10 was
used to treat the samples after pretreatments, and the process conditions were as follows:
phosphating temperature 55 ◦C, reaction time 10 min, pH 3.0 (regulated with phosphoric
acid). After being taken out of the bath, the samples were thoroughly washed using running
deionized water, and then dried with cold air for subsequent tests.

Table 1. Elemental composition and content of AZ91D magnesium alloy (wt.%).

Element Al Zn Mn Si Cu Ni Fe Mg

Content 9.1 0.84 0.23 0.01 0.02 0.0021 0.005 Margin

Table 2. Formula and operating condition of pretreatment [25–27].

Sample Number Formula and Operating Condition

No. 1

Na3PO4·12H2O 10 g/L
NaOH 50 g/L
70 ◦C, 10 min

3 wt.% H2SO4
25 ◦C, 10 s

No. 2 3 wt.% HNO3
25 ◦C, 10 s

No. 3 5 wt.% HCl
25 ◦C, 10 s

No. 4 30 wt.% H3PO4
25 ◦C, 30 s

No. 5
H3PO4 20 g/L

Na3PO4·12H2O 12 g/L
25 ◦C, 30 s

No. 6 Sonication cleanout in acetone for 5 min
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2.2. Surface Characterization

The appearances and surface morphologies of the phosphate coatings were observed
using a digital camera (Sony ZV-1F, Shenzhen, China) and a scanning electron microscope
(SEM, TESCAN MIRA3, Brno, Czech Republic), and the chemical compositions were
identified using an energy dispersive spectroscopy (EDS, Oxford Instruments X-Max,
Oxford, UK).

2.3. Electrical Contact Resistance (ECR) Measurement

The ECR measurement was analyzed with an ohmmeter, two probes were placed
vertically on the sample with a distance of 1 cm, and a load of 120 g was applied. The
arithmetic average of the measured results in three different areas of the sample was taken
as the final test result.

2.4. Corrosion Tests

The time of CuSO4 pitting corrosion test of the coating was carried out dropping a
drop of 3 wt.% CuSO4 solution on a 1 cm2 area of the sample and recording the time when
the droplet changed from blue to black. The arithmetic average of the test results in three
different areas of the sample was taken as the final test result.

The potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy
(EIS) curves were measured using an electrochemical workstation (CH Instruments Ins
CHI660E) in 3.5 wt.% NaCl solution at room temperature. A three-electrode cell was used,
with the sample as the working electrode (with 1.0 cm2 exposed area), a platinum electrode
as the counter electrode, and a saturated calomel electrode (SCE, +0.242 V vs. SHE) as
the reference electrode. Before the test, the sample was immersed in the test solution for
about 30 min to stabilize the open circuit potential (OCP). The scanning rate of PDP tests
was 5 mV/s, and the scanning range was OCP ± 0.5 V. The EIS tests were conducted at
OCP values, and the scanning frequency range was from 10 mHz to 100 kHz. The data for
the PDP and EIS curves were analyzed using tafel extrapolation and ZSimpWin software
(ZSimpWin 3.60, http://www.echemsw.com/), respectively.

The immersion test was performed in 3.5 wt.% NaCl solution at room temperature.
The appearances of samples were imaged every 12 h.

Each test was repeated at least three times to ensure reproducibility.

3. Results and Discussion
3.1. Effect of Pretreatment

Due to the strong chemical activity of magnesium alloys [28], the pretreatment before
phosphating has a great influence on the phosphate coatings prepared later. Figure 1 shows
the appearance of the samples after pretreatment and phosphating, the results of CuSO4
pitting corrosion test and ECR measurement are shown in Figure 2. It is seen that the PCC
with good corrosion resistance tend to have poor electrical conductivity. The coatings on
sample No. 1, 2 and 3 are incomplete and heterogenous, with low ECR and poor corrosion
resistance. The coatings on sample No. 4, 5 and 6 are compact and integral and have good
corrosion resistance, but the electrical conductivity of No. 4 and 5 is poor. Therefore, process
No. 6, which has both excellent corrosion resistance and good electrical conductivity, is
selected as the pretreatment for the phosphate conversion coatings preparation.

http://www.echemsw.com/
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Figure 1. Appearance of samples treated with pretreatment and phosphating (a–e: samples after 
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No. 6 after phosphating). 
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3.2. Effect of Strong Oxidant

In the present study, KMnO4 is applied as the component of strong oxidant in the
studied phosphating bath. Figure 3 presents the surface morphologies of samples treated in
phosphating bath with KMnO4, and the chemical compositions are shown in Table 3. It is
seen from Figure 3b that the coating has a “riverbed” appearance, and numerous irregular
bright spots can be seen on the surface. These bright spots are obviously raised, and clear
grinding scratches can be seen on the surface, indicating that the coatings on them are
very thin, or even that no coatings exist, as shown in Figure 3b. Combined with Table 3,
the percentage of Al atoms in bright spots is much higher than that in the surrounding
areas, and no Ca and P are detected, indicating that these areas are β-Mg17Al12 phase, it
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is speculated that there is an extremely thin coating composed of Mg, Al and O on the
surface, and the surrounding region is α-Mg phase, the main components of the upper
coating are phosphates of Ca and Mg and oxides of Mg, Al and Mn. According to previous
investigations [29], the action mechanism of KMnO4 is speculated as follows:

MnO4
− + 4H+ + 3e−→MnO2 + 2H2O (1)

Mg + H2O − 2e−→MgO + 2H+ (2)

2Al + 3H2O − 6e−→Al2O3 + 6H+ (3)
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Table 3. Chemical composition of PCC with KMnO4 by EDS equipped in SEM.

Atom (%) Mg Al Ca Mn Mo P O

α phase 11.6 4.0 6.1 2.6 0.5 14.5 60.6

β phase 51.38 39.24 — 0.35 — — 9.03

Figure 4 presents the surface morphologies of the coating formed at the phosphating
bath free of KMnO4, and the chemical compositions are shown in Table 4. It can be seen
from Figure 4a,b that mass flake crystallization generated, and a few protruding β-Mg17Al12
phases are also visible, but these β phases are blocked by crystals. Combined with the
chemical compositions shown in Table 4 and previous investigations [29], these crystals are
presumed to be CaHPO4·2H2O formed by the deposition of Ca2+ due to the rapid rise in
pH of solution surrounding the micro cathode β phase caused by the micro-galvanic effect.
The following reactions of deposition of Ca2+ may occur in the studied phosphating bath:

H2PO4
2−→HPO4

2− + H+ (4)

Ca2+ + HPO4
2−→CaHPO4↓ (5)

Coatings 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

speculated that there is an extremely thin coating composed of Mg, Al and O on the sur-

face, and the surrounding region is α-Mg phase, the main components of the upper coat-

ing are phosphates of Ca and Mg and oxides of Mg, Al and Mn. According to previous 

investigations [29], the action mechanism of KMnO4 is speculated as follows: 

MnO4− + 4H+ + 3e−→MnO2 + 2H2O (1) 

Mg + H2O − 2e−→MgO + 2H+ (2) 

2Al + 3H2O − 6e−→Al2O3 + 6H+ (3) 

 

  

Figure 3. Surface morphologies of PCC with KMnO4 (a: ×500; b: ×2000). 

Table 3. Chemical composition of PCC with KMnO4 by EDS equipped in SEM. 

Atom (%) Mg Al Ca Mn Mo P O 

α phase 11.6 4.0 6.1 2.6 0.5 14.5 60.6 

β phase 51.38 39.24 — 0.35 — — 9.03 

Figure 4 presents the surface morphologies of the coating formed at the phosphating 

bath free of KMnO4, and the chemical compositions are shown in Table 4. It can be seen 

from Figure 4a,b that mass flake crystallization generated, and a few protruding β-

Mg17Al12 phases are also visible, but these β phases are blocked by crystals. Combined 

with the chemical compositions shown in Table 4 and previous investigations [29], these 

crystals are presumed to be CaHPO4·2H2O formed by the deposition of Ca2+ due to the 

rapid rise in pH of solution surrounding the micro cathode β phase caused by the micro-

galvanic effect. The following reactions of deposition of Ca2+ may occur in the studied 

phosphating bath: 

H2PO42−→HPO42− + H+ (4) 

Ca2+ + HPO42−→CaHPO4↓ (5) 

 

  

Figure 4. Surface morphologies of PCC without KMnO4 (a: ×500; b: ×2000).



Coatings 2023, 13, 1706 6 of 15

Table 4. Chemical composition of coating and crystallization of PCC without KMnO4 by EDS
equipped in SEM.

Atom (%) Mg Al Ca Mo P O

PCC 2.41 0.38 12.66 0.1 16.72 67.81

Crystal 0.42 — 21.77 — 12.86 64.95

Table 5 shows the ECR of two coatings measured by the two-point method. The
ECR decreases from unmeasurable to 5.74 Ω with the addition of KMnO4. Observe the
phenomenon of parkerising, the number of bubbles generated by the reaction in the
phosphating bath containing KMnO4 is significantly reduced compared with that without
KMnO4. Combined with the surface morphologies above, it is seen that the introduction of
KMnO4 can effectively slow down the hydrogen evolution reaction in the reaction, inhibit
the formation of CaHPO4·2H2O crystals and form an extremely thin oxide coating on the
β phase, which finally protrude from the surface to become “conductive spots”, and the
conductivity of the phosphate conversion coating is improved.

Table 5. The ECR of phosphate conversion coating with and without KMnO4.

Composition of Phosphating Bath ECR (Ω)

Without KMnO4 —

With KMnO4 5.74

The results of the electrochemical tests for the PCCs formed at phosphating bath with
different content of KMnO4 are shown in Figure 5. The main fitting results of the PDP and
EIS curves are summarized in Tables 6 and 7, respectively, and the equivalent electrical
circuit (EEC) model used to fit the EIS curves is shown in Figure 6. Rs is the resistance of
solution, R1, CPE1 and R2, CPE2 represent the resistance and capacitance of coating and
double electric layer, respectively.
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Table 6. Electrochemical parameters derived from the PDP curves of the PCCs obtained at different
contents of KMnO4.

Content of KMnO4 (g/L) Ecorr (V) icorr (A/cm2)

0.0 −1.646 5.27 × 10−5

1.0 −1.669 3.61 × 10−5

2.0 −1.611 2.04 × 10−5

3.0 −1.638 9.62 × 10−6

4.0 −1.682 1.39 × 10−5

5.0 −1.635 2.86 × 10−5

Table 7. Fitting results of EIS curves of the PCCs obtained at different contents of KMnO4.

Content of KMnO4 (g/L) 0.0 1.0 2.0 3.0 4.0 5.0

Rs (Ω·cm2) 30.95 8.779 15.96 8.011 8.965 10.64

CPE1/(µS·s−n·cm−2) 2.697 × 10−5 1.484 × 10−5 1.215 × 10−5 1.362 × 10−5 1.375 × 10−5 1.458 × 10−5

n1 0.8091 0.7914 0.8403 0.7817 0.7867 0.7759

R1 (Ω·cm2) 2486 3744 4478 5956 5798 4335

CPE2 (µS·s−n·cm−2) 9.589 × 10−4 5.534 × 10−4 3.411 × 10−4 2.598 × 10−4 6.991 × 10−4 3.071 × 10−4

n2 0.9244 0.8021 0.8947 0.8736 0.7641 0.8768

R2 (Ω·cm2) 780 675 1404 1357 568 1378

R1 + R2 (Ω·cm2) 3266 4419 5882 7313 6357 5713

The results show that adding KMnO4 into the phosphating bath can improve the
corrosion resistance of the PCCs. It can be seen from Figure 5a and Table 6 that with the
content of KMnO4 increasing, the corrosion current (icorr) of the coating decreases first
and then increases, and the PCC exhibit the minimum icorr of 9.62 × 10−6 A/cm2 when
the content of KMnO4 is 3.0 g/L. As for the EIS curves in Figure 5b, the Nyquist curves
all have similar characteristics and consist of two capacitive loops. The high-frequency
capacitive loop is related to the process of charge transfer from magnesium alloy matrix to
solution double layer during corrosion, while the low-frequency capacitive loop represents the
process of Mg2+ diffusion to the sample surface. The order of dimension of the high-frequency
capacitive loop is as follows: 3.0 g/L > 4.0 g/L > 2.0 g/L > 5.0 g/L > 1.0 g/L > 0.0 g/L.
Combined with the data in Table 7, the coating resistance R1 reaches the maximum of
5956 Ω·cm2 at the content of KMnO4 is 3.0 g/L. Therefore, the optimal content of KMnO4
in the studied phosphating bath to form PCCs with the best corrosion resistance is 3.0 g/L.

In addition to corrosion resistance, low ECR is also the focus of conductive and
corrosion-resistant phosphate conversion coatings. Therefore, CuSO4 pitting corrosion test
and contact resistance are used as the evaluation basis for corrosion resistance and electrical
conductivity, respectively, to comprehensively screen the appropriate content of KMnO4.

Figure 7 presents the results of the CuSO4 pitting corrosion test and ECR measurement
of PCCs with different KMnO4 contents. It is seen that the concentration of KMnO4 has
a significant influence on the CuSO4 pitting time and ECR. With the increase in KMnO4
concentration, the pitting time of the coatings first increases and then decreases, which
is consistent with the electrochemical test results above, and the ECR shows a trend of
decrease, with the magnitude of the decreasing has lessened. In the formation of PCC,
MnO4

− will react with H+, so that the pH between the solution and the alloy increases,
thus promoting the deposition of phosphate and accelerating the formation of coating.
However, when the content of KMnO4 is too high, the surface of Mg alloy will be passivated,
which will inhibit the subsequent deposition reaction, and the thickness of the coating
will become thinner, the corrosion resistance will decrease, thus improving the electrical
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conductivity [30–32]. When the concentration of KMnO4 is 3.0 g/L, the coating has the
longest pitting time and a low ECR. With the further increase in the concentration, the
pitting time is significantly shortened, but the decrease in the ECR is not obvious. Therefore,
the optimum content of KMnO4 in the studied phosphating bath is 3.0 g/L.
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3.3. Effect of Additive

In the present study, Na2MoO4 is applied as the component of additive in the studied
phosphating bath. Figure 8 presents the appearances of samples treated in phosphating
bath with and without Na2MoO4 at various times during the 48 h immersion test, and the
time interval of each photograph is 12 h. It is seen that both samples exhibited obvious
pitting corrosion. The sample without Na2MoO4 showed obvious corrosion points at
24 h, while the sample containing Na2MoO4 showed corrosion points after 36 h. After
the 48 h immersion test, the corroded area of both samples was intensified. However,
the corroded area on the surface of sample with Na2MoO4 was less than that of sample
without Na2MoO4. The result shows that adding Na2MoO4 into the phosphating bath can
effectively improve the corrosion resistance of the coatings.
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times during the 48 h immersion test (a–e: without Na2MoO4, 0–48 h; f–j: with Na2MoO4, 0–48 h).

Figure 9 shows the results of electrochemical tests for the PCCs formed in the phos-
phating bath with different contents of Na2MoO4. The main fitting results of the PDP and
EIS curves are summarized in Tables 8 and 9, respectively. MoO4

2− can form insoluble
CaMoO4 with Ca2+. A small amount of Na2MoO4 can increase the nucleation site in the
phosphating process to promote the deposition of Ca2+ and accelerate the coating formation.
However, when the concentration of Na2MoO4 is too high, cracks in the coating will be
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thickened and many uneven coarse crystals will be generated on the surface, leading to the
decline in corrosion resistance [33]. It can be seen from Figure 9 that with the increasing
concentration of Na2MoO4, the icorr of the coating decreases first and then increases, while
the dimension of the high-frequency capacitive loop increases first and then decreases.
According to the data in Tables 8 and 9, when the content of Na2MoO4 is 1.5 g/L, the icorr
of the PCC is the lowest (3.74 × 10−6 A/cm2), and R1 reaches the maximum (7841 Ω·cm2).
Therefore, the optimal content of Na2MoO4 in the studied phosphating bath to form PCCs
with the best corrosion resistance is 1.5 g/L.
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Table 8. Electrochemical parameters derived from the PDP curves of the PCCs obtained at different
contents of Na2MoO4.

Content of Na2MoO4 (g/L) Ecorr (V) icorr (A/cm2)

0.0 −1.644 2.02 × 10−5

0.5 −1.673 1.87 × 10−5

1.0 −1.638 9.62 × 10−6

1.5 −1.597 3.74 × 10−6

2.0 −1.590 7.53 × 10−6

2.5 −1.545 1.02 × 10−5

Table 9. Fitting results of EIS curves of the PCCs obtained at different contents of Na2MoO4.

Content of Na2MoO4 (g/L) 0.0 0.5 1.0 1.5 2.0 2.5

Rs (Ω·cm2) 11.34 10.72 8.011 9.342 12.73 12.1

CPE1 (µS·s−n·cm−2) 1.665 × 10−5 1.481 × 10−5 1.362 × 10−5 1.575 × 10−5 1.79 × 10−5 1.859 × 10−5

n1 0.8395 0.827 0.7817 0.7392 0.8423 0.8357

R1 (Ω·cm2) 3226 4289 5956 7841 6638 6165

CPE2 (µS·s−n·cm−2) 4.725 × 10−4 3.455 × 10−4 2.598 × 10−4 3.636 × 10−4 6.126 × 10−4 8.546 × 10−4

n2 0.9179 0.8701 0.8736 0.8127 0.8335 0.8314

R2 (Ω·cm2) 979 1187 1357 2278 2166 962

R1 + R2 (Ω·cm2) 4205 5476 7313 10,119 8804 7127

Figure 10 shows the results of the CuSO4 pitting corrosion test and ECR measurement
of PCCs with different Na2MoO4 contents. It is seen that the concentration of Na2MoO4
has a great influence on the CuSO4 pitting time, which increases first and then decreases
with the increase in the content, reaching the maximum at 1.5 g/L, which is consistent
with the results of electrochemical tests. However, the concentration of Na2MoO4 has
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little effect on the ECR, which shows an upward trend, and the difference between the
minimum 0.0 g/L and the maximum 2.5 g/L is about 1.5 Ω. Thus, 1.5 g/L is the optimum
content of Na2MoO4 in the studied phosphating bath considering corrosion resistance and
electrical conductivity.
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3.4. Effect of Surface-Active Agent

In the present study, OP-10 is applied as the component of surface-active agent in the
studied phosphating bath. Figure 11 presents the surface morphologies of PCCs formed in
the phosphating bath with and without OP-10. It is seen that no matter whether OP-10 is
contained in the phosphating bath or not, both coatings have a “dry riverbed” appearance.
However, the cracks on the PCC containing OP-10 are significantly fewer than that without
OP-10, and the crack width is also decreased. According to previous investigations [34],
the composition of OP-10 is alkylphenol ethoxylates (APEO), which can reduce the tension
between the metal and the solution interface, allowing the phosphating bath to moisten
the surface rapidly, and can also reduce the adhesion ability of bubbles generated by
the reaction, making them more easily separable from the sample surface, so that the
compactness of the coating is improved.
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OP-10 ×2000).

Figure 12 shows the results of electrochemical tests for the PCCs formed at phosphating
bath with different contents of OP-10. The main fitting results of the PDP and EIS curves
are summarized in Tables 10 and 11, respectively. It is seen that the icorr of the coating
decreases in the following order: 0.0 g/L > 2.5 g/L > 2.0 g/L >1.5 g/L > 0.5 g/L > 1.0 g/L.
The icorr reaches the minimum (3.74 × 10−6 A/cm2) when OP-10 concentration is 1.0 g/L,
and the coating resistance R1 of the PCC reaches the maximum (7841 Ω·cm2). Therefore,
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the optimal content of OP-10 in the studied phosphating bath to form PCCs with the best
corrosion resistance is 1.0 g/L.
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Table 10. Electrochemical parameters derived from the PDP curves of the PCCs obtained at different
contents of OP-10.

Content of OP-10 (g/L) Ecorr (V) icorr (A/cm2)

0.0 −1.619 1.35 × 10−5

0.5 −1.622 7.52 × 10−6

1.0 −1.597 3.74 × 10−6

1.5 −1.624 8.19 × 10−6

2.0 −1.595 9.45 × 10−6

2.5 −1.694 1.01 × 10−5

Table 11. Fitting results of EIS curves of the PCCs obtained at different contents of OP-10.

Content of OP-10 (g/L) 0.0 0.5 1.0 1.5 2.0 2.5

Rs (Ω·cm2) 10.72 14.48 9.342 11.26 10.99 12.07

CPE1 (µS·s−n·cm−2) 1.484 × 10−5 1.748 × 10−5 1.575 × 10−5 1.867 × 10−5 1.611 × 10−5 1.305 × 10−5

n1 0.7677 0.8481 0.7392 0.838 0.7655 0.7925

R1 (Ω·cm2) 3944 7468 7841 6126 5268 4957

CPE2 (µS·s−n·cm−2) 3.181 × 10−4 6.223 × 10−4 3.636 × 10−4 4.685 × 10−4 3.538 × 10−4 2.905 × 10−4

n2 0.8529 0.7445 0.8127 0.8662 0.8763 0.8331

R2 (Ω·cm2) 2804 1347 2278 2292 2522 2261

R1 + R2 (Ω·cm2) 6748 8815 10,119 8418 7790 7218

Figure 13 shows the results of the CuSO4 pitting corrosion test and ECR measurement
of PCCs with different OP-10 contents. It is seen that the ECR of coatings fluctuated between
4.4 Ω and 5.2 Ω, indicating that the concentration of OP-10 had no significant effect on
electrical conductivity, while the pitting time increases first and then decreases with the
increase in concentration, reaching the maximum at 1.0 g /L, which is consistent with
the electrochemical test results. Therefore, the optimum content of OP-10 in the studied
phosphating bath is 1.0 g/L.
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3.5. Performance Tests Results of PCC

From the results above, the optimum content for KMnO4, Na2MoO4 and OP-10 in
phosphating bath is 3.0 g/L, 1.5 g/L and 1.0 g/L, respectively.

Figure 14 shows the results of the electrochemical tests for the uncoated AZ91D
magnesium alloy and the PCC formed at the optimum phosphating bath formulation. The
main fitting results of the PDP are summarized in Table 12. The results show that PCC
can provide good protection for the magnesium alloy. It can be seen from Figure 14a and
Table 12 that the coated alloy has more positive Ecorr and lower icorr than the uncoated
one. The Ecorr positively shifts about 27 mV, and the icorr decreases by more than 1 order
of magnitude.
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Figure 14. PDP and EIS curves of uncoated AZ91D magnesium alloy and PCC formed at the
phosphating bath at the optimum condition (a: PDP curves; b: EIS curves).

Table 12. Electrochemical parameters derived from the PDP curves of uncoated AZ91D magnesium
alloy and PCC formed at the phosphating bath at the optimum condition.

Sample Ecorr (V) icorr (A/cm2)

Phosphate conversion coating −1.597 3.74 × 10−6

AZ91D magnesium alloy −1.626 7.84 × 10−5

As for the EIS curves in Figure 14b, the Nyquist curve of the PCC consisted of two
capacitive loops, while that of the uncoated alloy has an obvious inductive loop in the
low-frequency region. The shape of the impedance spectrum describes the type of electro-
chemical reactions that occur at the electrode surface. The low-frequency inductive loop
corresponds to the adsorption process of Mg2+ on the alloy surface. A fully covered PCC
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can block the contact between alloy and the test solution, thus hindering the generation and
adsorption of Mg2+ on the surface. Therefore, no inductive loop appears in the Nyquist
curve of the PCC.

Figure 15 presents the surface morphologies and the chemical compositions of PCC
formed at the phosphating bath at the optimum condition. It is seen that the coating has a
“dry riverbed” appearance and is covered completely. Clear irregular bright spots can be
seen, which are raised β phases according to the previous results. The β phases combined
with the ECR of the PCC is 4.91 Ω, demonstrating that β phases act as a conductive spot to
achieve electrical conductivity.
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Figure 15. Surface morphologies and the chemical compositions of PCC formed at the phosphating
bath at the optimum condition (a: ×500; b: ×2000; c: EDS).

Obvious scratches are visible on the surface, showing that the coating is thin, so that it
cannot effectively cover the polishing marks. However, the bilayer structure can be clearly
seen from the coating upon α phases in Figure 15b, which is consistent with the structure
of Ca phosphate conversion coatings in previous investigations [35], indicating that the
PCC has good corrosion resistance.

According to the chemical compositions shown in Figure 15c, the PCC consists of
Ca, Mg, Al, O, P and a small amount of Mn and Mo, and it is speculated that the main
coating-forming substances are phosphate of Ca and Mg and oxides of Mg and Al.

4. Conclusions

The conductive and corrosion-resistant phosphate conversion coating was prepared
upon the surface of AZ91D magnesium alloy. The PCC was completely covered, and the
main coating-forming substances were phosphate of Ca and Mg and oxides of Mg and Al.
The coating on α phases had bilayer structure and the β phases protruded as conductive
spots, which provided high corrosion resistance and low ECR.

The presence of strong oxidant KMnO4 formed an extremely thin passive film on
the protruded β phases and inhibited the formation of phosphate crystals to prevent the
conductive spots from being obscured.
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The optimum content for KMnO4, Na2MoO4 and OP-10 in phosphating bath was
3.0 g/L, 1.5 g/L and 1.0 g/L, and the pretreatment before phosphating was sonication
cleanout in acetone for 5 min after mechanical polishing.
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