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Abstract: A tremendous volumetric increase in waste marble powder as industrial waste has recently
resulted in high environmental concerns of water, soil and air pollution. In this paper, we exploit the
capabilities of machine learning to compressive strength prediction of concrete incorporating waste
marble powder for future use. Experimentation has been carried out using different compositions
of waste marble powder in concrete and varying water binder ratios of 0.35, 0.40 and 0.45 for
the analysis. Effect of different dosages of superplasticizer has also been considered. In this paper,
different regression algorithms to analyse the effect of waste marble powder on concrete, viz., multiple
linear regression, K-nearest neighbour, support vector regression, decision tree, random forest, extra
trees and gradient boosting, have been exploited and their efficacies have been compared using
various statistical metrics. Experiments reveal random forest as the best model for compressive
strength prediction with an R2 value of 0.926 and mean absolute error of 1.608. Further, shapley
additive explanations and variance inflation factor analysis showcase the capabilities of the best
achieved regression model in optimizing the use of marble powder as partial replacement of cement
in concrete.

Keywords: compressive strength; waste marble powder; concrete; machine learning; regression

1. Introduction

Concrete is considered as the second most used material on earth, with cement com-
prising the primary source of its binder material. Cement production is the source of
about 8% of the world’s carbon dioxide production. It is also the most expensive concrete
component. This forces engineers to choose carefully between high strength and afford-
ability. Numerous studies have been performed in order to introduce newer materials
as a replacement for cement. However, the conventional approach of relying solely on
laboratory test data is quite costly and inefficient. One requires impractically huge number
of controlled testing to reach a reasonable conclusion and thus roll out innovations in
the construction industry. In times of computing advancements, it becomes imperative
to introduce newer technologies in concrete testing. Marble is another extensively used
construction material, representing the most used natural stone in the world [1]. About 500
million metric tons of the material is mined annually [2] out of which, approximately 10%
originates from India [3]. The Rajasthan state alone accounts for 85–90% of Indian marble
production. The marble industry produces marble dust every year which bears essentially
no utility, resulting in:

1. Damage to soil due to dumping of waste;
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2. Degradation of groundwater

There is a lack of codal provisions to use marble dust in concrete. Consequently, this
has prevented any large-scale commercial use. Well-documented research on the use of a
certain amount of marble dust in concrete can significantly reduce costs. Its importance
becomes quite evident given the losses that the industry has suffered from the COVID-19
pandemic, damage that will take several years to recover from. Cost reductions can help to
bridge the gap. Further, large quantities of solid waste generated from the marble industry
also need to be recycled to boost environment protection and economy.

With the advancement of various soft computing techniques, data handling capabili-
ties of researchers have increased and are more efficient now over conventional ways. As
a result, many algorithms have gained popularity in the due course of time. However, a
detailed comparison between these algorithms still remains less explored and need further
study. Use of machine learning (ML) algorithms can provide a reliable mix design for
industry. In the long run, the Indian Standard codes can also be updated with marble dust
parameters. ML is being increasingly used in civil engineering for the purpose of strength
prediction. Elyas Asadi Shamsabadi et al. [4] studied marble-dust-incorporated concrete
for strength predictions. Extreme Gradient Boosting (XGB) and ANN were found to be
appropriate models, while XGB had fewer errors in prediction, on the other hand, Artificial
Neural Network ANN was deemed to be more sensitive to marble dust content. The study
also confirmed the non-pozzolanic nature of marble dust incorporated in concrete. Further,
Karimipour et al. [5] conducted a soft-computing-based study involving marble dust in
steel-fiber-reinforced self-consolidation concrete. In addition, other ingredients such as
granite, red mud and limestone were also used. ANN, GMDH-NN and GMDH-Combi
models were exploited to predict split tensile strength as well as compressive correction
factors. It was observed that ANN using 4 neurons and 1 hidden layer gave better per-
formance than other 2 models. Of the other two, GMDH-NN (neural networks group
method of data handling) performed better than GMDH-Combi (combinatorial algorithm
group method of data handling). Further, Hong-Hu Chu et al. [6] explored gene-expression
programming (GEP) and multi-expression programming (MEP) to predict the compressive
strength of geopolymer concrete. Various parameters such as curing regime, silica and
superplasticizer content, curing period and age of the sample were related to compressive
strength. However, GEP resulted in higher correlation coefficient, minimal statistical error
and simplicity. In addition, it covered the impact of each independent parameter, as it was
utilized for parametric study and sensitivity as well. Swaidani et al. [7] discussed the use
of scoria as a partial replacement for cement in making environmentally friendly concrete.
Concrete strength and durability were studied for the same purposes. It was inferred that
ANN model was well suited for concrete strength prediction at different curing times for
different mix ingredients. Further, it was also observed that compressive strength predic-
tion for concrete comprising ground granulated blast furnace slag could also be achieved
using ANN. A Multiple Regression Analysis (MRA) and an ANN model were constructed
for comparing the predicted compressive strength of high-performance concrete using
nano silica and copper slag as partial replacement and fine aggregate replacement, respec-
tively, [8], by collecting data from laboratory experiments. Levenberg–Marquardt (LM)
algorithm was used for generating the ANN model. Models for predicting compressive
strength on 22 mixes were generated using MRA analysis and ANN, with ANN resulting
in higher accuracy and correlation values. Further, Naddaf et al. [9] proposed an ANN and
GEP model to train and study 640 different mix designs and predict various properties by
partially replacing cement with nano silica and micro silica by weight. Kazemi et al. [9]
presented an ANN model for compressive strength prediction of mortar mixes containing
cement of different strengths. The study predicted good accuracy and higher R value in
predicting the compressive strength of the mortar. Later, Naderpour et al. [10] exploited
ANN to predict the compressive strength of environmentally friendly concrete, comprising
recycled aggregate material. The data used for developing the ANN Model were prepared
from the literature. Back propagation network was used in the study, resulting in efficient
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predictions. An Adaptive Neuro Fuzzy Inference System (ANFIS) model was provided
by Nejadi et al. [11] that established a relationship between the compressive strength of
self-compacting concrete (SCC) and slump flow and mix proportion. In past studies, SCC
has proved advantageous in achieving sustainable characteristics, reduction in the overall
structural costs, increase in construction rate, quality of casted structure and increase in con-
struction productivity. Poon et al. [12] aimed to predict the compressive strength of concrete
comprising recycled aggregate, using ANN. The model constituted 14 different properties
of the constituents to predict the 28-day compressive strength of the concrete. Soft comput-
ing has been found to have applications in recycled concrete, where deep-learning-based
techniques have been found to outperform traditional neural networks in terms of precision,
generalization and efficiency [13]. A deep neural network was designed by Ly et al. [14] for
predicting compressive strength of concrete with rubber content, resulting in high accuracy.
Further, Nunez et al. [15] studied and analysed different ML models predicting the com-
pressive strength of concrete. It was observed that ANN was the best-suited method for
prediction, but was accompanied by a lack of clarity in the prediction process with high
computational costs. Fuzzy-logic-based models had similar accuracy, but were of higher
complexity. Furthermore, Support Vector Machine (SVM)-based models were considered to
have lower computational costs than ANN but with comparable accuracy. Hybrid models
were found to be the most promising due to the presence of a secondary model to obtain
hyperparameters for the main model. Mansouri et al. [16] explored the usage of 4 types of
soft computing techniques, viz., ANN, ANFIS, MARS (Multivariate Adaptive Regression
Splines) and M5Tree (M5 Model Tree), to predict FRP-confined concrete. These models
were found to outperform the existing models, with ANN resulting in the best estimation
of strain enhancement ratio. Sahoo et al. [17] studied fly-ash-based concrete using ANN
modelling by considering two different replacement levels, i.e., one at Low-25%, the other
at High-40%. Fly ash concrete resulted in a better performance than control concrete over
long periods of sulphate exposure. The ANN model was developed by minimization of
mean square error. Furthermore, the R2 values ranged from 0.953 to 1.00, depicting high
accuracy and reliability of the model. Recently, Khan et al. [18] discussed the performance
of ANN, ANFIS and GEP models in order to estimate compressive strength of geopolymer
concrete based on fly ash, with ANFIS giving the best performance of all.

As can be observed, there are only a handful of studies regarding the effects on
compressive strength for partial replacement of cement by marble dust. Although a huge
number of experimental studies have been carried out for investigating possible effects of
waste marble powder (WMP) on concrete, there is still a lack of in-depth understanding
on use of WMP in concrete. Regarding the use of soft computing, it remains in its infancy
in civil engineering applications. As discussed above, soft computing has been largely
applied in materials other than marble dust, such as fly ash, FRP and rubber, to name a
few. This study aims to contribute by filling this gap and thus, pave the way for further
research and eventual codification of marble dust in concrete. The soft computing approach
makes use of various algorithms to arrive at its conclusions. There exists a relentless lack
of a comprehensive understanding related to the dosage level of WMP so as to intensify
the engineering properties of concrete. The WMP characteristics vary based on geological
and weather conditions, and also on the methods for production of marble sheets for
construction industries. In addition, thermogravimetric results along with various phases
in cement paste containing WMP in cement and concrete exhibited the benign nature of
the product [19,20]. Various alterations in experimentation make it difficult to generalise
and hence, achieve a standard mixture design for WMP-incorporated concrete. Exploiting
ML techniques can help in achieving cost- and time-effective simulation of the same, thus
maximising the application of WMP in concrete industry by complementing the outcomes
acquired from the already existing experimental investigations.
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2. Data Collection and Modelling

Data for the present study were collected from experimental trials previously con-
ducted by Singh et al. [21]. Table 1 shows the physical and chemical properties of cement
and dried marble slurry, respectively.

Different mix design proportions for the combinations are presented in Table 2. Due
the decrease in slump with the increase in dosage of marble dust a superplasticizer was
used to keep a constant slump of 100 ± 10 mm. 12 different mix designs were designated
for different variations in dosage of marble dust at 5 different replacement levels and
superplasticizer. Thus, the data comprises of 60 instances with one associated real-value
target, viz., compressive strength. We further augmented the data by replicating each
instance 12 times and introducing an error to the target within the range of −10% to +10%.
Thus, a total of 720 instances were considered for the experiment. 12 concrete cube samples
for each variation were casted and tested thus generating a data set of 720 values. Table 3
shows the range of parameters used for developing the model.

Relationship of all input parameters with compressive strength is shown in Figure 1.
Fine aggregate and waste marble powder had the strongest correlation with CS, followed
by superplasticizer, water and cement. However, cement showed a weak linear relationship
with CS, which is not generally the case observed in concrete. This can be owed to the poor
distribution of the machine to learn from the data and that is where the expert opinion and
experimental results play an important role.

Table 1. Physical and chemical properties of cement and marble dust.

Chemical
Composition

OPC
(%)

Marble Dust
(%)

Physical
Properties

OPC
(%)

Marble Dust
(%)

SiO2 20.27 3.86
Al2O3 5.32 4.62
Fe2O3 3.56 0.78 Specific

gravity 3.15 2.67CaO 60.41 28.63
MgO 2.46 16.9 Fineness

(m2/kg)
313 250SO3 3.17 -

LOI 3.55 43.3

Table 2. Proportions of concrete mixtures.

Water–Binder
Ratio

Cement
(kg/m3)

Marble Dust
(%)

Marble Dust
(kg/m3)

Coarse Aggregate
(kg/m3)

Fine Aggregate
(kg/m3)

Superplasticizer Admixture
(L/m3)

Water
(kg/m3)

0.35 422 0 0 1278 689 0.9 148
0.35 400.9 5 21.1 1278 689 1 148
0.35 379.8 10 42.2 1278 689 1.1 148
0.35 358.7 15 63.3 1278 689 1.2 148
0.35 337.6 20 84.4 1278 689 1.3 148
0.35 316.5 25 105.5 1278 689 1.4 148
0.4 394 0 0 1257.2 707.2 0.63 158
0.4 374.3 5 19.7 1257.2 707.2 0.67 158
0.4 354.6 10 39.4 1257.2 707.2 0.74 158
0.4 334.9 15 59.1 1257.2 707.2 0.84 158
0.4 315.2 20 78.8 1257.2 707.2 0.95 158
0.4 295.5 25 98.5 1257.2 707.2 1 158
0.45 351 0 0 1183 858 0.35 158
0.45 333.45 5 17.5 1183 858 0.39 158
0.45 315.9 10 35.1 1183 858 0.45 158
0.45 298.35 15 52.6 1183 858 0.52 158
0.45 280.8 20 70.2 1183 858 0.61 158
0.45 263.25 25 87.7 1183 858 0.7 158
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Table 3. Range of parameters used for Modelling.

Variables Minimum Maximum

Cement (kg/m3) 263.25 450
Marble dust (kg/m3) 0 112

Water (kg/m3) 148 200
Superlasticizer (kg/m3) 0 1.4

Slump (mm) 84 199
Aggregate (kg/m3) 1011.9 1278

Sand (kg/m3) 675 858
Compressive strength (MPa) 21.23 42.67

(a) Cement (b) Marble dust

(c) Coarse aggregate (d) Fine aggregate

(e) Admixture (f) Water

Figure 1. Cont.
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(g) GBR (h) Correlation matrix

Figure 1. (a–g) Correlation between input variables and compressive strength; (h) Correlation
between various input variables.

3. Machine Learning Modelling

Different feature compositions contribute to the strength of concrete in different ways.
Since the present work aims for estimating the compressive strength of concrete with partial
replacement of cement by WMP at various compositions, hence, the problem is treated as
that of regression. In the proposed work, we have selected different regression algorithms
to analyse the effect of WMP on concrete, viz., Multiple Linear Regression (MLR), K-Nearest
Neighbour (KNN), Support Vector Regression (SVR), Decision Tree (DT), Random Forest
(RF), Extra Trees (ET) and Gradient Boosting (GB) [22]. For evaluating and comparing
efficacy of the applied models, various statistical metrics have been used. These include
R2 Score, MAE, MSE, RMSE, MAPE, MBE which are directly computed using the first and
second power of the error in prediction values. The lower value of MAE, MSE, MAPE,
MBE and RMSE implies higher accuracy of a regression model. However, a higher value of
R square is considered desirable. Another parameter, known as Tstat is also evaluated to
analyse the uncertainty level during the prediction.

Considering the total number of samples as N, let yi be the original value of ith sample
with y

′
i being its corresponding predicted value. Taking ȳ as the average of all the true

values, the performance parameters can be calculated as shown in Table 4. Each modelling
technique was performed using in the Python programming language in i5 processor. A
generalised process flow for each ML model is shown in Figure 2.

Tuning of hyperparameters for any ML algorithm is considered as a fundamental
task for any ML algorithm. Manually estimating the performance of an ML algorithm
can be challenging. Additionally, formation of different pairs of hyperparameters is also
challenging. Hence, in our work, we have selected a Grid Search Strategy (GSS) so as
to automate parameter tuning. GSS accepts manual sets of hyperparameters based on
experience to form all exhaustive pairs of different hyperparametes. In order to evaluate
performance of one specific pair of hyperparameters, a subset of data, known as validation
data, is selected from the training data. Based on the performance on validation data, a
set of hyperparameter is selected. GSS is used for all the algorithms mentioned above to
generate the best combination of hyperparameters. The following section discusses the
applied algorithms for the present work in detail.
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Table 4. Performance parameters used in the proposed method.

Metric Formula Description

R2
1− ∑N

i=1(yi−y
′
i )

2

∑N
i=1(yi−ȳi)

2
Coefficient of determination: Measure of goodness of the fit

MSE 1
N ∑N

i=1(yi − y
′
i)

2 Mean squared error: Measures closeness of the fitted line to the
data points

RMSE
√

1
N ∑N

i=1(yi − y′i)
2 Root mean squared error: Measures spread of the residuals

MAE 1
N ∑N

i=1 | yi − y
′
i |

Mean absolute error: Measures average of absolute differences
between true and predicted values

MAPE 1
N ∑N

i=1 |
yi−y

′
i

yi
|

Mean absolute percentage error: Measures average of absolute
percentage differences between true and predicted values

MBE 1
N ∑N

i=1(yi − y
′
i)

Mean bias error: Measures average of differences between true
and predicted values

Tstat
√

(N−1)MBE2

RMSE2−MBE2

t-statistic test: Measures significance of the differences between
true and predicted values

Figure 2. Process flow for various ML algorithms.

3.1. Multiple Linear Regression Model

Multiple Linear Regression MLR model assumes data points, i.e., inputs, to have a
liner relationship with the outcome to be estimated. Thus, the model aims to learn a linear
dependence of the output variables (compressive strength in our case) on the independent
(features) variables, giving the best-fit regression line for the data. Taking into consideration
Occam’s razor rule [23], MLR model is applied initially to study the need of exploiting more
complex data-driven regression modelling techniques. The output (i.e., concrete strength)
is weighted sum of the features used. Weights used in this model are optimized using
ordinary least-squares method on the estimated and actual outcomes of training data. This
helps in predicting the target values such that the error difference between the predicted
and true value is minimum.

3.2. K-Nearest Neighbour

K-nearest neighbour KNN [24] is a non-parametric regression method that is used
to approximate the relation between input features and out variable by averaging the
observations in the same neighbourhood. It exploits ‘feature similarity’ to predict values
of any new data points. In this algorithm, all the training data is stored in memory and
similarity between each test instance with the training data is calculated. The most similar
K instances are chosen for prediction. The size of the neighbourhood is chosen such that
the predicted value is in close proximity to the target value, resulting in minimum errors.
In the present work, the KNN regression algorithm takes the number of neighbors (K) and
distance metric (d) as its parameters, and considers uniform weights for all the features. In
this model, similarity between a test instance with all the training instances is measured
using Euclidean distance. The instances with the highest similarity, i.e., minimum distance,
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are chosen as the K neighbors. The value of K is chosen as 1, 3, 5, 10 and 15% of the total
data, thus resulting in K = 8, 22, 36, 72, 108 and 144, respectively.

The model can be very complex for large training data, and may be infeasible to
predict when there a large amounts of data.

3.3. Support Vector Regression

Support Vector Regression SVR [25] tries to learn a function that approximates the
given input instance to a discrete value output. SVR aims to learn a hyperplane that can
distinguish the data points with different outcomes. It is possible that data points may not
be separable in lower dimensions. Therefore, a kernel function is used in order to map
the data to a higher dimension. Further, there may be multiple hyperplanes that could
separate the data points. However, only one particular hyperplane that demonstrate the
maximum separation between the outcomes is selected. The separation margin around the
hyperplane is termed as boundary. Different parameter in SVR are the type of kernel, regu-
larization parameter (C) and regularization parameter penalty (epsilon) as its parameters.
Since the strength of regularization in inversely proportional to C, hence, the value of C
has been experimentally chosen to be 10. Further, the regularization parameter penalty
helps the optimisation function to obtain optimal solutions by imposing a cost during the
training process.

In the present work, L2-loss is used as the type of penalty. Thus, if the error value is
less than 0.2 (epsilon), no penalty is associated during regularization. Further, RBF kernel is
taken into consideration which assumes non-linearity in separating the training data points.

3.4. Decision Tree

Decision tree DT is a non-linear algorithm, that makes use of tree representation to
solve the regression problem. DT employs a “divide and conquer” approach, where a
complex task is divided into simpler, regional tasks. A tree is composed of decision nodes
(features) and leaves (outcome). Commencing from the root node, each decision node
applies a splitting test to the input. Based on the outcome of the test, one of the branches is
chosen. The search stops upon reaching a leaf. Each path from the root to a leaf corresponds
to a conjunction of different conditions in the decision nodes on the path and such a path
can be written as an if–then rule. Thus, a tree can be converted to a rule base of if–then
rules that are easy to interpret.

The size of the DT depends on the complexity of the problem underlying the data.
Selecting an optimum size of the tree is the major hyper-parameter that can affect the
efficiency of the model. Trees with less depth can lead to under-fitting, failing to reach an
optimum decision owing to under-training, whereas deeper trees result in models with
high complexities.

In the present work, the model considers compressive strength as its leaf node, and
the input parameters as its internal nodes. The depth of the tree and splitting criteria are
considered as two critical parameters that need to be tuned for best results. In this model,
squared error has been selected as the splitting criteria. Tree depths of 1, 2, 3, 4, 5, and 6
have been chosen so as to search for the best parameter.

3.5. Random Forest

Random forest RF is also a non-linear model. As an improvement to the DT algorithm,
RF [26] algorithm for regression was introduced, which takes into account the decision of
multiple DTs. RF performs bootstrapping to construct multiple subsets of the dataset for
each tree. Here, bootstrapping implies sample selection from dataset without replacement.
RF is a supervised learning regression algorithm that makes use of ensemble learning
by combining predictions from multiple trees so as to make more accurate predictions
compared to a single model. Each tree runs individually and in parallel to each other during
training time so as to make predictions. The model estimates the compressive strength
based on majority voting of multiple trees.
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However, similar to DT, optimum choice of tree depths is an important factor for
efficient performance. Furthermore, the number of trees in a forest have to be chosen
accurately so as to avoid the problem of overfitting.

In the proposed work, 100 trees are considered in the forest. Similar to DT, results for
RF model have been studied for tree depths of 1, 2, 3, 4, 5, and 6. This implies that each tree
in the forest bears depth.

3.6. Extra Trees

The function of Extra-trees ET regressor [27] is the same as RF, but differs in two
ways, viz., selection of the splitting method and bootstrapping. A DT and RF choose the
best split whereas ET chooses a random split. Moreover, unlike RF, ET does not perform
bootstrapping to construct multiple subsets of the dataset.

3.7. Gradient Boosting

Gradient boosting GB algorithm [28] uses sequence of N number of DTs. A regression
model is developed sequentially in order to obtain a strong regression model. First, a DT
regression model is trained on using available features and real-valued regression output.
Further, the residual to true and estimated real-valued regression output is used for training
a new regression model but features remain unchanged. Further, the residual of second
model work as the label for the third model. This process is continued until all the trees
are trained. During real-time deployment, when a test instance arrives, it is fed to all the
trained regression models for estimating the output values. Further multiple outputs are
converted to single output values using the parameter ‘shrinkage’.

4. Experimental Section and Results

The experiments using different ML algorithms were performed and analysed. Results
are described in two parts. The first part helps in deciding the regression model that can be
used for best prediction of compressive strength of concrete incorporated with WMP. In
the latter part, the best chosen regression model is further analysed to study the relevance
of each component used in manufacturing of concrete. Further, it would also help in
deciding the best proportion of WMP that can replace cement in order to achieve best
compressive strength.

4.1. Results Using Various Regression Models

In order to evaluate the performance of each regression model, the dataset is initially
standardized in a manner such that each feature has unit variance zero mean. As described
earlier, the data for the current work were collected experimentally by Singh et al. for
12 different sets of design mixes, with each mix considering 5 different marble slurry
percentage replacement levels, resulting in 60 variations. A set of 720 data points was
generated by casting 12 concrete cubes for each of the 60 variations [21]. From the entire
data of 720 samples, 70% is considered for training, while the remaining 30% is used for
testing purposes. Further, the experiment on each setup is repeated five times so as to
remove any biases from the results and average results have been reported.

Figures 3–5 depict the relationships between the true and predicted values for different
models. Since a higher R2 score indicates more perfectly fit data, hence, R2 values of each
regression model have been plotted in the figure. Owing to the lowest R2 value of 0.852
for the test data, MLR is the least-suited model for predicting compressive strength of
cement incorporated with WMP. Furthermore, the model results in maximum fluctuations
in prediction (Figure 4), leading to maximum error values as can be seen in Figure 5. Thus,
although Occam’s razor rule prioritizes simpler models, in cases where simpler models are
unable to perform efficiently, complex ML models prove useful in explaining the variation
of dependent variables.



Coatings 2023, 13, 66 10 of 17

(a) LR (b) KNN

(c) SVR (d) DT

(e) RF (f) ET

(g) GBR

Figure 3. Performance of various ML models in CS prediction.
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Figure 4. Fluctuations in errors, the model showing the least fluctuations represents the desirable
outcome.
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Figure 5. Error bound analysis, where the residuals are computed by taking absolute difference of
true and estimated values.

From the figures, it can further be observed that RF algorithm gives the best perfor-
mance out of all the models with an R2 value of 0.926. Keeping in mind the increasing
complexity of the model with increasing tree depths, a depth of 3 was found to give the
best performance. Further, being flexible in nature, it is more convenient for the model
to handle larger datasets more efficiently, hence, the method can be efficiently chosen for
prediction applications. Moreover, the error graphs (Figures 4 and 5) show that the RF
model provides the highest level of accuracy in prediction of compressive strength when
compared to the other models. Similarly, for regression analysis using DT model, it was
observed that a tree depth of 4 gave the best performance, taking in consideration the
saturation in parametric values with increasing tree depths thereafter. For the same, the R2

value was computed to be 0.924. However, in case of DT, a minute change in data might
manifest in the structure of the tree, leading to instability. Moreover, RF algorithm solves
the problem of overfitting that might occur in the case of the DT algorithm. Hence, the
method is not much preferred to predict compressive strength of concrete from a given set
of features.

Although ET and RF algorithms are very similar, the performance of the latter is
slightly better than that of the former. Rather, in our case, performance of ET is quite similar
to that of DT, with a similar R2 value of 0.924. However, from Figure 5, it can be seen that
predictions vary more from the true compressive strength values in case of ET as compared
to RF algorithm. Further, for ET, best results were obtained for a tree depth of 6, which
adds to the complexity of the algorithm in comparison to RF and DT, where optimal results
were obtained for a tree depth of 3.

While considering GB algorithm, it was observed that the algorithm produces results
in performance that is quite similar to ET algorithm with very minute difference of 0.001
in their R2 values. Although GB is considered as one of the most powerful algorithm for
regression applications, the presence of noise in the data makes it difficult for the algorithm
to perform well. On the other hand, RF algorithm works efficiently even if data are missing
or high noise content is present.

Further, in the case of KNN model, using GSS, the results are best obtained for 1% of
neighbours (K), i.e., for K = 8 with R2 value of 0.919. Since the model finds it difficult to
handle noisy data and is sensitive to outliers, thus, with increasing number of neighbours,
i.e., with increasing values of K, the error values are also increased. However, being a
lazy learner owing to instance-based learning, the model requires all available data in
order to make a prediction, thus making it even slower and costly for larger datasets. The
results obtained for KNN are comparable to those obtained using SVR algorithm in terms
of R2. It can be observed from Figure 3 that the results for SVR model are better than the
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MLR model by 6.92%, but underperforms when compared with the rest of the algorithms.
Moreover, SVR model requires extensive feature scaling of variables prior to its application,
thus making it computationally expensive.

Thus, the results show that the RF model is best suited to predict the compressive
strength of concrete, followed by DT models. RF, being a powerful ML algorithm, can
result in more accurate predictions when compared to the other algorithms, as can be seen
in Figure 4. Furthermore, Figure 5 shows that the RF model gives the least variation in
compressive strength values from their true values when compared with other algorithms.
Further, it can handle missing data more efficiently and is usually robust to outliers.

Table 5 shows different performance measures on the applied models. From the above
table, it can be observed that different performance measures consider different ML models
as the best performing. The R2 score, MAE, MSE and MAPE values are the best for RF
model. On the other hand, RMSE and MBE values are best shown for MLR, whereas Tstat
is best for GB modelling technique. Higher R2 score for RF indicates that the model best
fits the dataset compared to the rest. Further, the model shows least fluctuation in errors, as
is indicated by MSE, MAE and MAPE values. This shows that there is minimal variance
in residuals for RF model in comparison to the other ML models. Since the RF model
is best for the majority of the performance parameters, and the other three parameters,
i.e., RMSE, MBE and Tstat do not show any significant best performing model, hence RF
was considered for further analysis. Thus, it can be seen that MLR is the least preferred
model for regression since all the performance measures except RMSE and MBE are least
preferred, thus leading to the need of more complex models for prediction. Furthermore,
with exponentially increasing data in the current scenario, the applicability of MLR becomes
minimal. Further, RF model gives the best estimation of compressive strength of concrete
with partial replacement of cement by WMP. The overall performance of RF is higher when
compared to the rest of the models. Other methods, compared to the rest of the methods,
such as DT and ET can be considered as the next choice, but only in cases where data
complexity is low.

Table 5. Performance measures of applied models.

Method R2 Score MAE MSE RMSE MAPE MBE t-Stat

MLR 0.852 2.095 7.152 9.455 6.819 0.007 0.191
KNN 0.919 1.655 3.914 9.692 5.427 0.028 0.155
SVR 0.911 1.747 4.380 9.660 5.761 0.048 0.175
DT 0.924 1.632 3.679 9.685 5.370 0.050 0.130
RF 0.926 1.608 3.561 9.679 5.291 0.051 0.126
ET 0.924 1.612 3.668 9.649 5.315 0.017 0.149
GB 0.923 1.621 3.719 9.650 5.333 0.037 0.100

4.2. Analysis of the Best Model

Each independent variable has its own contribution in deciding its effect on the
compressive strength of concrete. Since RF regression technique exhibited best performance
among all the models tested, the importance of features was analysed using the same.
Average results are shown in the form of Variance Inflation Factor (VIF) in Figure 6. A
VIF of 1 indicates that the corresponding feature has no correlation with any of the other
features. Typically, a VIF value exceeding 5 or 10 is deemed too high. Any feature with such
high VIF value is likely to be contributing to multicollinearity. As has been discussed in
the literature and also shown by Singh et al. [21], marble dust does not explicitly affect the
hydration process. Rather, it mainly works as a filler by also providing nucleation sites for
enhanced hydration products. Accordingly, the contribution of marble dust on compressive
strength has been found lesser as compared to the other input variables, although not
entirely negligible (8%).

SHapley Additive exPlanations (SHAP) is used further for explaining the compound
learned decision functions used by RF Technique as shown in Figure 7, where y-axis shows
features used for the model, while the x-axis shows the impact of the corresponding feature
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on the model output. The position of feature between the peak and lowest values is
indicated by the colour. Overlapping points show the density of Shapley values per feature.
According to the figure, the RF technique is highly sensitive to WMP and fine aggregate
content. Overall, mainly water, marble dust and fine aggregate contents are being used for
prediction, followed by cement, superplasticizer admixture and Slump content.

Thus, from the overall analysis, it can be said that marble-slurry-incorporated concrete
results in an improvement in mechanical properties at 15% replacement by weight of cement
as compared to control mix for lower water–binder ratio of 0.35 and 0.40. For the water–
binder ratio of 0.45, compressive strength is improved only up to a maximum replacement
of 10%. Further, with the simultaneous increment in the dosage ofsuperplasticizer and
marble slurry, higher strength magnitude is observed as compared to constant dosage,
owing to compactive power of superplasticizer admixture. This improvement is observed
from the acceleration effect of WMP on the hydration process, which is further related
to the formation of calcium carboaluminate hydrates. Furthermore, the improvement in
binding capacity of carboaluminate is likely due to its compact structure as described
by Bonavetti et al. [29]. Singh et al. [21] demonstrated the compaction and decreased
porosity of concrete on use of marble powder using Scanning Electron Microscopy (SEM)
images. Further, SHAP dependency plots help to obtain a deeper insight into the spread
and variation of the predicted CS values with respect to the content of WMP as well as fine
aggregate and water content being the main ingredients.

Superplasticizer

Figure 6. VIF analysis for RF.

Figure 7. SHAP analysis.
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5. Conclusions

On replacing cement with marble dust, there may be a dilution effect causing a re-
duction in the strength of concrete for varying water–binder ratios [21]. Thus, optimizing
the content of marble dust is key. In this study, the compressive strength of concrete
incorporated with WMP has been predicted using different ML algorithms. The estima-
tion of compressive strength for different compositions of concrete is considered to be a
regression problem. Data were collected from experimental trials using Ordinary Portland
cement (OPC 43) replaced with WMP in different proportions. Performances using different
regression models, viz., KNN, SVR, DT, RF, ET, GB and MLR, have been analysed and
reported. Results show that the RF model is best suited to predict the compressive strength
of concrete, followed by ET and DT models. Thus, RF can help in efficiently calculating
the amount of WMP that can replace cement without affecting the compressive strength of
concrete for practical applications. Further, on analysing the best obtained model, it can
be concluded that WMP contributes approximately 8% to the total compressive strength
of concrete. The data-driven models may help in predicting the strength based on input
and output variables and also apply them to a large-scale dataset. However, there is no
guarantee that they will explain the causality of the relationships accurately in prediction.
The error may be significantly lower; however, the chemical reactions and changes taking
place may not be completely predictable. These models may be used to understand the
complex behaviour of marble dust which in turn would help to maximize its benefits in the
construction industry. Notwithstanding, model robustness when faced with entirely new
samples should be taken into consideration in this type of analysis as a calibrated model on
a data point with a different structure.
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Abbreviations
The following abbreviations are used in this manuscript:

WMP Waste marble powder
ML Machine learning
ANN Artificial neural network
OPC Ordinary portland cement
CS Compressive strength
MLR Multiple linear regression
KNN K-nearest neighbour
SVR Support vector regression
RF Random forest
DT Decision tree
ET Extra tress
GB Gradient boosting
GSS Grid search strategy
MAE Mean absolute error
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MSE Mean squared error
RMSE Root mean squared error
MAPE Mean absolute percentage error
MBE Mean bias error
SHAP SHapley Additive exPlanations
VIF Variance inflation factor
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