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Abstract: Deposition of a heteroepitaxial TiHfN film with a growth rate of about 1 µm/h was suc-
cessfully achieved on a Si (001) substrate at a temperature above 700 ◦C by direct current magnetron
reactive sputtering of a Ti0.6Hf0.4 (in atomic fraction) target with an Ar/N2 gas mixture. Annealing of
the as-deposited TiHfN/Si sample at a temperature above 1000 ◦C using microwave plasma with
H2/N2 gas was performed to further improve the TiHfN film’s quality. X-ray diffraction results show
that the heteroepitaxial TiHfN film on Si exhibits a cube-on-cube relationship as {001}TiHfN//{001}Si

and <110>TiHfN//<110>Si. X-ray rocking curve measurements show that the full width at half
maximum of (200)TiHfN is 1.36◦ for the as-deposited TiHfN film, while it is significantly reduced
to 0.53◦ after microwave plasma annealing. The surface morphologies of the as-deposited and
annealed TiHfN films are smooth, with a surface roughness of around ~2 nm. Cross-sectional
scanning/transmission electron microscopy (S/TEM) shows a reduction in defects in the annealed
film, and X-ray photoelectron spectroscopy shows that the film composition remains unchanged.
Additionally, S/TEM examinations with atomic resolution illustrate domain matching epitaxy (DME)
between TiHfN and Si at the interface. The TiHfN films have good electrical conducting properties
with resistivities of 40–45 µΩ·cm.

Keywords: TiHfN; reactive magnetron sputtering; epitaxial growth; plasma; annealing

1. Introduction

Transition metal nitrides have many outstanding material properties, including high
hardness, high thermal stability, good electrical conductivity and chemical inertness [1–5].
Those properties mean transition metal nitride has a high potential for many industrial
applications [6,7]. Recently, transition metal nitrides, such as HfN and TiN, which are
conductive, have been considered for a variety of electronic, photonic and plasmonic appli-
cations [8]. The ternary TiHfN compounds can form a solid solution at high temperatures
due to both TiN and HfN having a rock salt structure and similar properties [9–11]. Similar
to other ternary transition metal nitrides, TiHfN may have better thermal stability and
higher hardness than TiN and HfN [12].

TiHfN films have been deposited by arc ion plating [6,7,13] and sputtering [14] in
previous studies. However, the deposited TiHfN films were polycrystalline. If an epi-
taxial film can be obtained, it may enhance the understanding of basic TiHfN properties.
Heteroepitaxial growth of TiN [15–17] and HfN [18,19] has been commonly performed
on Si substrates with domain matching epitaxy (DME) [20]. The lattice parameters of
TiHfN range from 4.240 to 4.525 Å, depending on the atomic ratio of Ti/Hf. According to
first-principles calculations, Ti0.6Hf0.4N (in atomic ratio of Ti/Hf) has a higher formation
energy than other compositions, and it is in a solid solution above 700–900 K from the
calculated phase diagram [10]. The lattice parameter of Ti0.6Hf0.4N has been evaluated to be
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around 4.38 Å [21,22], which gives approximately a 5/4 matching between Ti0.6Hf0.4N and
Si for DME. Hence, Ti0.6Hf0.4N films with high crystallinity can be expected to be deposited
on Si substrates. However, for TiHfN deposition on Si by reactive sputtering, the formation
of silicon nitride and silicide on the surface of Si under N-rich and N-poor conditions needs
to take into consideration. For the growth of a cubic (001) HfN film on a Si (001) substrate
in our recent study, we observed that epitaxial orthorhombic HfSi2 forms between HfN
and Si [23]. Additionally, theoretical calculations of the phase diagram of TiN-HfN show
that TiHfN is of a single phase at high temperatures, while a miscibility gap exists at low
temperatures [10]. Nevertheless, epitaxial growth of TiHfN on Si is rarely reported.

Furthermore, annealing can significantly improve the crystalline quality of the thin
film. Knotek et al. have shown that the Ti0.3Hf0.7N films retained an initial single-phase
structure after annealing at 1000 ◦C for 24 h [11]. Recently, we have shown that the crys-
talline quality of the epitaxial TiZrN film can be effectively improved by microwave plasma
heating [24]. Similarly, it is expected that the TiHfN film may have better crystalline quality
after high-temperature microwave plasma annealing. In this work, heteroepitaxial TiHfN
films on a Si (001) substrate are successfully grown by reactive direct current magnetron
sputtering (DCMS) deposition, and the film quality is further improved by microwave
plasma annealing.

2. Materials and Methods

TiHfN films were deposited on p-type (001) Si substrates with a size of 1 × 1 cm2

by reactive DCMS with a 2-inch Ti0.6Hf0.4 alloy target (99.9% purity). Before loading in
the vacuum sputter chamber, the substrates were ultrasonically cleaned in sequence with
acetone, methanol and ethanol, each for 10 min. Finally, the surface oxide was removed by
dipping the substrates in 6% HF, followed by drying with nitrogen gas. After the pressure
was evacuated to below 8 × 10−6 mbar, the temperature of the stage was heated at 750 ◦C
for 1 h to reduce the residual gas contamination in the vacuum. The substrate temperature
was measured by an optical pyrometer. Prior to deposition, the TiHf alloy target was
pre-sputtered with pure Ar plasma for 5 min to clean any contamination and oxide on the
surface. The working pressure for sputtering was maintained at 4 × 10−3 mbar. The N2
flow in Ar was set at 9% for the present work. The sputtering time was 8 min. The working
distance between the TiHf target and Si substrate was set at 12 cm, and the DC power
was 65 W. After sputtering, the sample was cooled to room temperature under Ar/N2
ambient conditions.

For subsequent annealing of the as-deposited TiHfN film, the TiHfN/Si sample was
placed on a Mo holder and loaded into a microwave plasma system (ASTeX, 2.45 GHz, MA,
USA). The annealing process was similar to that used for TiZrN films [24], and for plasma
nitridation of sapphire and TiO2 to obtain epitaxial AlN and TiN, as shown in our previous
studies [25–27]. The surface of the TiHfN film was first cleaned with pure hydrogen plasma
at a microwave power of 300 W and a pressure of 13 mbar for 5 min, followed by plasma
annealing with a gas flow rate of 400 sccm (2.5% H2/N2), a power of 800 W and a pressure
of 90 mbar for 2 h. The temperature of plasma annealing was 1000–1100 ◦C, as measured
by the optical pyrometer. After the plasma was turned off, the sample was cooled to room
temperature at 13 mbar with a gas mixture of 2.5% H2/N2.

High-resolution X-ray diffraction (XRD, BRUKER, D8 DISCOVER, Billerica, MA, USA)
was applied to examine the lattice parameter and quality of TiHfN films using techniques
including 2θ-ω, ω (rocking curve) and φ-scans. The surface roughness of the TiHfN
films was measured by atomic force microscopy (AFM, Bruker, Edge-AFM, Billerica, MA,
USA). The chemical compositions of the TiHfN films were determined by using X-ray
photoelectron spectroscopy (XPS, ULVAC-PHI, PHI QuanteraII, Chigasaki, Japan) with a
monochromatic Al Kα radiation source. Argon ion sputtering was used to obtain the XPS
depth profiles with a sputtering rate of ~20–25 nm/min. Microstructural observations of
the samples in a cross-section view were carried out in a S/TEM (JEOL, ARM200F, Tokyo,
Japan) at 200 kV. Cross-sectional TEM specimens were prepared by a focused ion beam
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(FIB, TESCAN, LYRA3, Brno, Czechia) with Pt protective coating. Electrical resistivity
measurements were conducted by a four-point probe measurement (Tektronix, Keithley
2400, Cleveland, OH, USA).

3. Results and Discussion

The 2θ-ω XRD pattern of the as-deposited TiHfN film on a Si substrate is shown in
Figure 1a. The (002)Si, (002)TiHfN, (004)Si and (004)TiHfN peaks can be clearly observed. It is
apparent that the deposited TiHfN film is in the <001> orientation on the Si (001) substrate.
The out-of-plane lattice parameter of TiHfN was determined to be 4.368 ± 0.004 Å from the
interplanar spacings of the (002)TiHfN and (004)TiHfN peaks, which is close to the value of
Ti0.6Hf0.4N derived in reference [21]. The crystal orientation relationship between TiHfN
and Si can be determined by φ-scan patterns using the {113}TiHfN and {113}Si reflections.
As shown in Figure 1b, both TiHfN and Si in the φ-scan patterns have four peaks located at
the same angles and separated by a 90◦ interval. Therefore, it is evident that the TiHfN film
is epitaxially deposited on the Si substrate with a cube-on-cube orientation relationship
of {001}TiHfN//{001}Si and <110>TiHfN//<110>Si. Figure 1c shows that the full width at
half-maximum (FWHM) of the (002)TiHfN X-ray rocking curve (XRC) was 1.36◦ and the
average FWHM of TiHfN peaks in the φ-scan was about 3.2◦, suggesting that the epitaxial
TiHfN film has a reasonably good quality.
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Figure 1. XRD analyses of the as-deposited TiHfN/Si sample. (a) 2θ−ω pattern, (b) φ−scan patterns
of {113}TiHfN and {113}Si reflections and (c) (002)TiHfN rocking curve.

The TiHfN/Si sample was further annealed by using microwave plasma. The 2θ-
ω XRD pattern of the annealed TiHfN/Si sample is shown in Figure 2a. Similar to the
observations on the XRD pattern of the as-deposited film on Si in Figure 1a, there are
only peaks belonging to (002)Si, (002)TiHfN, (004)Si and (004)TiHfN, with no other reflections,
indicating that the annealed film maintains a single cubic phase. The out-of-plane lattice
parameter of the annealed TiHfN film was about 4.360 ± 0.004 Å, slightly lower than
that before annealing (4.368 Å). The φ-scan patterns in Figure 2b show only {113}TiHfN
and {113}Si reflections as well. Therefore, the annealed TiHfN film still retains the same
heteroepitaxial relationship with Si as presented above for the as-deposited film. The
average FWHM of φ-scan peaks of TiHfN was reduced to 1.4◦ after plasma annealing,
indicating the reduction in the extent of in-plane twists. The XRC FWHM value of the
(002)TiHfN reflection in Figure 2c is 0.53◦, which is far less than that of the as-deposited film
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(1.36◦). From the above results, the crystalline quality of the epitaxial TiHfN film on Si can
be significantly improved by plasma annealing. Additionally, the annealed TiHfN film of a
single phase shows that it has good thermal stability under the annealing conditions.
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AFM images in Figure 3a,b show the surface morphologies of the as-deposited and
annealed TiHfN films, respectively, from which the surface roughness root mean square
value was determined to be 1.6 and 2.1 nm, respectively, indicating that the surface of the
annealed TiHfN film remains almost as smooth as the as-deposited film.
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Figure 3. AFM images in a scan area of 5 × 5 µm2 of the TiHfN/Si samples: (a) as-deposited and
(b) annealed films.

The XPS depth profiles of the as-deposited and annealed TiHfN/Si samples are shown
in Figure 4a,b, respectively. For the as-deposited film, the N/(Ti + Hf) ratio was around
50/50, and the Ti/Hf ratio was about 60/40, corresponding to the composition of the target
alloy. The uniform film composition through the whole film implies a constant rate of
reactive sputtering during the deposition. After plasma annealing, the N/(Ti + Hf) ratio was
close to 51.5/48.5 in the TiHfN film, and the Ti/Hf ratio remained almost the same as before
annealing. As the N/(Ti + Hf) ratio was > 1, this indicates that the annealed film was slightly
enriched with nitrogen, which might be caused by the microwave plasma containing a high
concentration of nitrogen species/radicals. It is interesting that after annealing, the nitrogen
concentration also retains a uniform distribution in depth. At the end of the experiment,
the composition of the plasma-annealed TiHfN film had barely changed.
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Furthermore, the binding characteristics of the as-deposited and annealed TiHfN films
were studied from the XPS spectra shown in Figure 5a–c. For the as-deposited TiHfN,
Figure 5a shows a doublet of the Ti 2p1/2 and 2p3/2 signals at 454.5 and 460.5 eV, with an
interval of about 6 eV, suggesting that Ti-N in TiHfN has the same binding characteristics
as that in TiN [28]. Figure 5b shows Hf 4f7/2 and 4f5/2 peaks at 15.0 and 16.7 eV, with a
ratio of integrated intensity of 4/3. The binding energies are the same as those of Hf-N in
HfN, suggesting that Hf in the TiHfN is adjacent to N [29,30]. Figure 5c shows the XPS
spectra of the N 1s signal at ~397.2 eV, which is typical of an N atom bonding with Ti or
Hf, as the binding energies in TiN and HfN nitrides are consistent with Ti and Hf binding
characteristics [28,31]. After plasma annealing, the XPS spectra of Ti 2p, Hf 4f and N1s
exhibited no apparent differences from those of the as-deposited TiHfN, indicating that the
binding characteristics remain almost unchanged in the annealed film.

Figure 6a,b show typical cross-sectional bright-field (BF) TEM micrographs of the
as-deposited and annealed TiHfN/Si, respectively. The cross-sectional TEM micrograph
in Figure 6a shows that the film thickness is about 160 nm, indicating a corresponding
deposition rate of 1.2 µm/h. Additionally, the defects in the deposited film, shown in dark
contrast, suggest that the defect density is high, in agreement with the XRC FWHM. For the
annealed film in Figure 6b, the film thickness is uniform with a relatively smooth surface
and a flat interface, implying that the film is thermally stable under the plasma. As most of
the annealed film exhibits a strong bright contrast, it is believed that a significant reduction
in defects has occurred after annealing in comparison with the as-deposited film, which is
consistent with the XRC results. The appearance of a ~10 nm surface layer with relatively
dark phase contrast in Figure 6b is caused by oxidation of the annealed film after exposure
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to the ambient air for a few weeks before TEM specimen preparation. The as-deposited
film had been exposed to air for a shorter period.
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Figure 7a shows a typical cross-sectional high-resolution TEM (HRTEM) image ob-
tained from the TiHfN/Si interfacial region in the as-deposited film with the corresponding
fast Fourier transform (FFT) diffraction pattern in Figure 7b. The FFT pattern shows
only reflections of TiHfN and Si in the <110> zone axis, without additional diffraction
signals, indicating that the as-deposited TiHfN/Si samples have the epitaxial relationship
of {001}TiHfN//{001}Si and <110>TiHfN//<110>Si, corresponding well to the XRD results.
Furthermore, the Z-contrast atomic-resolution STEM image in Figure 7c shows approx-
imately a 5/4 match between the atomic arrangement of Ti0.6Hf0.4N/Si, corresponding
well to the value calculated in the literature [21,22], which is evident for the DME at the
interface. Additionally, it was observed that no intermediate compounds, such as silicide
and silicon nitride, exist between TiHfN and Si at the interface, implying that TiHfN is
directly grown on the surface of the Si substrate.
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zone axis. (a) HRTEM image, (b) the FFT pattern of (a), and (c) the STEM image in Z-contrast.

The out-of-plane (a⊥) and in-plane (a||) lattice parameters of the TiHfN films can be
deduced from X-ray reciprocal space mapping (RSM) results (not shown). For the as-deposited
TiHfN, a⊥ was 4.368 ± 0.002 Å and a|| was 4.374 ± 0.002 Å. After plasma annealing, the a⊥
and a|| values were 4.360 ± 0.002 Å and 4.368 ± 0.002 Å, respectively. For a cubic structure,
the relaxed lattice parameter, a0, can be determined from Equation (1):

a0 = a⊥

1−
2ν
(

a⊥ − a||
)

a||(1 + ν)

 (1)

where ν is the Poisson ratio. The value of ν used was 0.226, as calculated from Vegard’s
law for νTiN = 0.22 and νHfN = 0.25 [32,33]. After substituting the values of a⊥ and a||
into Equation (1), a0 was calculated to be 4.370 Å and 4.363 Å for the as-deposited and
the annealed TiHfN films, respectively. The lattice parameter of TiHfN film decreased
slightly as the N/(Ti + Hf) ratio increased. Additionally, if a⊥ and a|| were determined
from the HRTEM lattice fringes of TiHfN and Si with the FFT patterns, a0 = 4.375 Å and
4.365 Å, within experimental error, can be obtained for the as-deposited and annealed
TiHfNs, respectively. The smaller lattice parameter for the annealed TiHfN may be related
to the N-rich composition. This is supported by previous reports that show a decrease in
the a0(x) of both TiNx and HfNx with an increase in the N/Ti and N/Hf values [32,33].

The calculated phase diagram shows that two phases may coexist in equilibrium in
such a temperature range. However, from the above results, the TiHfN film in a single
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phase is stable after growth at 700–750 ◦C followed by vacuum cooling, and does not result
in the decomposition of TiHfN into TiN-rich and HfN-rich phases. Either a single phase
might be present or the decomposition rate might be very low, which may be worthy for
further investigation. Additionally, under the plasma conditions for annealing and the
following cooling, even with hydrogen in the plasm, TiHfN was thermally stable after
annealing above 1000 ◦C. Both of the measured film resistivities for the as-deposited and
annealed TiHfN were in the range of 40–45 µΩ·cm, indicating that ternary nitride is a good
electrical conductor.

4. Conclusions

Heteroepitaxial growth of a Ti0.6Hf0.4 film on a Si (001) substrate has been successfully
demonstrated by DC magnetron reactive sputtering of a Ti0.6Hf0.4 alloy target with a gas
mixture of N2 and Ar. The TiHfN film on the Si (001) substrate exhibits a cube-on-cube
epitaxial relationship of {001}TiHfN//{001}Si and <110>TiHfN//<110>Si. The (002)TiHfN XRC
FWHM is 1.36◦, indicating that the epitaxial TiHfN film is of good quality. The TiHfN
film remains in epitaxy with Si after microwave plasma annealing. The crystallinity of the
annealed TiHfN film is significantly improved, as the (200)TiHfN XRC FWHM is reduced
to 0.53◦. Additionally, the S/TEM results show evidence of DME between TiHfN and Si
with a ratio of 5/4. Overall, the TiHfN film has good electrical conducting properties with
resistivities of 40–45 µΩ·cm.
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