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Abstract: Laser cladding was used to prepare three composite coatings, i.e., Inconel 718 nickel-based
superalloy (IN718), IN718-50 wt.% WC created by adding tungsten carbide (WC) particles and
IN718-50 wt.% WC assisted by ultrasonic vibration. The phase composition, microstructure evolution,
microhardness, residual stress and tribological properties of the three coatings were studied. The
addition of WC enhances hardness and improves tribological properties, but also causes aggregation
and considerable formation of carbides associated with rough structure. Ultrasonic vibration greatly
refines the solidification microstructure, as it can break the growing dendrites, reduce the aggregation
of reinforced particles and refine solidified structure. The average microhardness of the latter two
composite coatings was increased by 36.37% and 57.15%, respectively, compared with the first IN718
coating, and the last composite coating (ultrasonic assistance) had the lowest COF (0.494). The WC
particles and refined carbides converted the wear mechanism from adhesive wear to abrasive wear.
In addition, the resultant stress on the surface of the composite coating roughly doubled after adding
50 wt.% WC, and only increased by 49.53% with ultrasonic treatment. The simulation results indicate
that acoustic cavitation mainly occurs in the middle and bottom of the molten pool and proper
frequency ultrasonic is conducive to the generation of the cavitation effect.

Keywords: laser cladding; IN718 nickel-based superalloy; tungsten carbide; ultrasonic; acoustic cavitation

1. Introduction

IN718 is a precipitate-strengthened superalloy based on Ni-Fe-Cr elements, possessing
high yield strength and good resistance to heat, creep and corrosion, and therefore has
been widely used in the manufacturing of gas turbine blades, engine casings, pumps and
molds [1,2]. Under high-temperature, overloading and alternating-loading severe serving
conditions, the failure of nickel-based alloy components is mainly caused by surface
abrasion, corrosion and fatigue spalling, resulting in the scrapping of a large number of
expensive mechanical parts [3,4]. Therefore, numerous surface modification techniques are
used to improve surface performances of these parts to prolong service life. In recent years,
with the merits of good metallurgical bonding, convenience for automation and controllable
thickness, laser cladding technology has been widely used in preparing functional coatings
on surfaces [5,6].

However, it is difficult for pure nickel-based coating to meet practical application
requirements. Therefore, ceramic particles (such as TiC, WC, Al2O3 and ZrO2) possessing
the properties of good thermal stability, high hardness and superior wear resistance are
added into nickel-based alloy powder to fabricate metal-based ceramic composite coatings
with excellent performance [7–10]. Therefore, WC particles having a fine affinity with
nickel-based alloys are ideal materials for improving the wear properties of nickel-based
coatings [11–13]. Xia et al. [14] studied the tribological properties of laser melting GH3536-
WC composite coatings reinforced by coarse and fine WC particles, concluding that the

Coatings 2023, 13, 151. https://doi.org/10.3390/coatings13010151 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13010151
https://doi.org/10.3390/coatings13010151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings13010151
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13010151?type=check_update&version=1


Coatings 2023, 13, 151 2 of 19

more uniform distribution of fine WC particles can significantly enhance the effect of
dispersion strengthening under the same WC content. Shen et al. [15] fabricated NiCrSiBC-
WC composite coatings with different WC content to investigate the mechanism of grain
refinement and crack behavior, and found that high WC content can refine solidified
structures obviously while also causing increases in the tensile stress and crack susceptibility
of coatings. In fact, due to the differences in physical properties between ceramic particles
and Ni-based alloy as well as the rapid melting/solidification characteristics of laser
cladding, metallurgical defects such as uneven distribution of WC ceramic particles, cracks
and pores are more likely to appear in the composite coating [16–18].

Ultrasonic vibration, as a type of auxiliary field, has been applied in the solidification
process of molten metal to refine the growth of microstructures via the synergistic effect of
ultrasonic cavitation and acoustic streaming [19,20]. Based on mathematical deduction and
analysis, Zhu et al. [21] proposed that the degree of undercooling and nucleation rate of the
molten pool increase with increasing amplitude and frequency of the ultrasonic vibration.
Moreover, Fan and Chen et al. [22] conducted a series of experiments on ultrasonic-field-
assisted gas tungsten arc cladding high-entropy alloys and found that the size of grains
and crystal boundary decrease with an increase in ultrasonic power. In addition, the
acoustic streaming and thermal effect of ultrasonic in the molten pool were studied using
numerical simulation. At present, most research mainly focuses on the field of pure
superalloy coating, while the mechanism of ultrasonic vibration on the distribution and
decomposition of reinforced particles as well as the morphologies of precipitated carbides
in the composite coatings is still insufficiently studied.

In this study, IN718 coating, IN718-50 wt.% WC and IN718-50 wt.% WC (ultrasonic
assistance) composite coatings were prepared by laser cladding. The phase composition,
microstructure evolution, microhardness, wear resistance and residual stress of the three
coatings were investigated. In addition, both the sound pressure distribution and cavitation
process in the molten pool were analyzed by numerical simulation.

2. Materials and Methods
2.1. Materials

The raw materials were spherical IN718 alloy powder (particle size: 40–100 µm) and
spherical WC particles (particle size: 30–70 µm), as shown in Figure 1, which were then
mechanically mixed by a planetary ball mill for 180 min. Finally, the mixed powder was
dried in a vacuum drying oven at 373.15 K for 30 min. The chemical composition of bonding
metal IN718 alloy powder is shown in Table 1. The forged In718 alloy with the dimensions
of 58 mm × 38 mm × 6 mm was used as the substrate. Before the experiment, the surface
of the substrate was grinded with sandpaper and washed with acetone solution to remove
oil stains.
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Table 1. Chemical composition of bonding metal IN718 alloy powder (wt.%).

Elements Ni Cr Nb Mo Al Si Ti Fe

wt.% 52.3 19.01 5.07 3.06 0.57 0.35 1.00 Bal.

2.2. Experimental Procedure

The experiment was carried out on a composite device, and the details of the overall
layout diagram are shown in Figure 2. The whole device is composed of two parts,
including the laser cladding system and the ultrasonic vibration device. The laser cladding
system consists of a continuous fiber laser (IPG-YLS-2000-TR, Ipg Photonics Corporation,
Oxford, MA, USA), a powder feeder (Acunity, Acunity GmbH, North Rhine-Westphalia,
Germany) and a six-axis industrial robot (KUKA, KUKA Schweissanlagen, Augsburg,
Germany). The ultrasonic vibration device (CYCS-300TJ, Chiyu Ultrasonic Equipment,
Jinhua, China) is composed of a piezoelectric transducer, an acoustic horn and an ultrasonic
regulator. The resonant frequency of ultrasonic generator is adjustable from15 kHz to
60 kHz, and the maximum amplitude is 30 µm. The perpendicular relation and tight
junction between the horn and the substrate were double-checked before the experiment to
ensure the introduction of ultrasonic.
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Figure 2. Setup for laser cladding with ultrasonic assistance. (a) Overall layout diagram; (b) schematic
diagram of ultrasonic-assisted laser cladding processing system.

Based on the optimization results of previous experiments, the process parameters
of laser cladding are listed in Table 2 [18,20,23]. The IN718 coating, IN718-50 wt.% WC
and IN718-50 wt.% WC (ultrasonic assistance) composite coatings were fabricated, and
were marked as Coating A, Coating B and Coating C, respectively. Figure 3a,b show their
dimensions and the scanning strategy, respectively. Moreover, all coatings and the single
track were fabricated using the same process parameters of laser cladding.

Table 2. The process parameters used in preparation of coatings.

Laser Cladding Value Ultrasonic Vibration Value

Laser power (w) 1300 Ultrasonic power (w) 300

Scanning speed (mm/min) 450 Amplitude (µm) 20

Power feeding rate (g/min) 16 Angular frequency (kHz) 20

Overlapping ration (%) 50 Wavelength (mm) 1.7
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2.3. Microstructure and Properties Characterization

Samples were prepared using wire-cutting machine for metallographic observation
and phase detection. The metallographic samples were etched by aqua regia solution
(HCl: HNO3 = 3: 1) for 220 s to observe the microstructure under scanning electron
microscopy (SEM, S-3400N, Japan) and optical microscope (OM, Axio-Lab.A1, Carl Zeiss
AG, Baden-Wurttemberg, Germany). X-ray diffractometer (XRD, Bruker D8 Advance,
Bruker, Karlsruhe, Germany) was used to analyze the phase of coatings. The residual
stress on the surface of coatings was obtained by the sin2ψ method with a Proto-LXRD
instrument (X-350A, Aurora Group Company, Vancouver, Canada). The high voltage of the
X-ray was 22 kV and the current was 6 mA. Cr-Kα characteristic X-ray filtered by nickel
and the diffraction plane 220 were utilized for the measurement. The stress constant was
−601 MPa/deg.

The mechanical properties of different coatings were measured by Vickers microhard-
ness tester (MHVS-1000BZ, Yizhong Precision Instrument, Shanghai, China) and friction
and wear tester (HT-1000, Kaihua Technology Company, Lanzhou, China). The load and
hold time of the microhardness test were set as 0.2 kg and 15 s, respectively. Before friction
and wear test, the surface of coatings was grounded with sandpapers from 400# to 2000#
and then polished with diamond polishing agents to obtain high-quality smooth surface. In
addition, the material of grinding balls (ϕ = 5 mm) was Si3N4. The wear tests were carried
out with a load of 1500 g and a constant duration of 20 min.

3. Results and analysis
3.1. Cross-Sectional Morphologies of Different Coatings

Figure 4 shows the cross-sectional morphologies of three coatings fabricated by laser
cladding. It can be found that Coating A contains many pores, while the main defects of
Coating B are longitudinal and transverse cracks, as shown in Figure 4a,b. Due to the rapid
solidification in the laser cladding process, pores are caused by shielding gas and air which
cannot escape out of the molten pool in time, as shown in Figure 4(a1,a2). Under natural
conditions, melt flow in the molten pool is not strong enough to overcome agglomeration
and sedimentation of WC particles because of considerable density differences (Table 3), as
shown in Figure 4(b2). Carefully observing Figure 4(b1,b2), it can be seen that transverse
cracks occur at the interface between the coating and the substrate, while longitudinal
cracks are observed in the overlapping area. The longitudinal cracks propagate in the
direction of the highest temperature gradient, i.e., the preferentially growing direction
of dendrites, and then penetrate the whole composite coating. The transverse cracks
are induced by the difference of the coefficient of thermal expansion in different regions,
especially the reinforced WC particles which tend to cluster toward the bottom of the
coating. The micro-jetting and acoustic streaming generated by ultrasonic can effectively
promote the internal flow of the melt pool, and thus the WC particles are relatively evenly
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distributed across the cladding layer. In addition, there are no obvious pores and cracks in
the cross-section of the coating, as shown in Figure 4c.
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Table 3. Physical properties of bonding metal IN718 alloy and WC particles.

Materials
Density Expansion Coefficient Elastic Modulus Melting Point

g cm−3 10−6 K−1 Gpa K

IN718 8.24 11.8–18.7 199.9–240 1523

WC 16.5 6.5–7.4 650–710 2798
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3.2. Microstructure of Coatings
3.2.1. Phase Composition Analysis

Figure 5a shows the XRD patterns of the three coatings. Tungsten carbide particles
possessing high thermal stability and chemical inertness experience almost no conversion
or chemical reactions under individual heating. The possible decomposition reactions
of WC particles in the molten pool were calculated using HSC thermodynamic software.
The Gibbs free enthalpy (∆G) of WC decomposing into W2C and WC turns out to be
negative only when temperature surpasses 2614 K (as shown in Figure 5b), which means
this reaction can proceed spontaneously with the rise in temperature. However, with
strong thermal convection and high-density energy in the molten pool, tungsten carbide
particles can decompose into W2C even at low temperatures (873 K~1143 K), as reported by
Nerz et al. [24]. The free enthalpy of decarburization reaction (2) is positive, which means
that it cannot proceed spontaneously without external force. In fact, the non-equilibrium
solidifying characteristics of the laser cladding process, including high cooling rate (up to
7800 K/s) and strong thermal convection (up to 0.5 m/s) induced by the Marangoni effect,
promote the forward process of the reaction [25,26].

2WC→W2C + C (1)

W2C→ 2W + C (2)

WC + W + L→ M3W3C (3)

M + C→ MC (4)

where L means Fe-C liquid phase and M means Cr elements in the IN718 alloy.
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Therefore, under high-intensity laser irradiation, WC decomposes into W2C and C at
the beginning, and then the intermediate product (W2C) proceeds to undergo the decar-
burization reaction. During the dynamic decomposition process, the W and C elements
can react with the active elements (such as Fe, Mo and Cr elements) in the molten pool
to precipitate carbides with different shapes and crystalline structures. The XRD pattern
shows that the dominant phase in Coating A is Fe0.64Ni0.36 supersaturated solid solution
(namely γ-Ni). With the addition of numerous WC particles, the phases of Coating B and
Coating C are mainly γ-Ni, WC, W2C, M6C (Fe3W3C and Fe3Mo3C), M7C3 (Cr7C3) and
M23C6 (Cr23C6) [15,27].

Attentive examination of Figure 5a reveals some detailed information: the main peak
position of Coating A is 50.7038◦ and those of Coating B and Coating C are 39.7464◦ and
39.7656◦, respectively. The left shift of the diffraction peak is closely related to the increase
in residual stress caused by a considerable number of precipitated carbides, which is
consistent with prior studies [14,25]. The mean grain size of the coating can be deduced
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from the Scherrer equation [28]. The full width at half maximum (FWHM) of the XRD
diffraction peak is calculated by

L =
0.9λ

βcosθ
(5)

where L is the mean grain size, λ is the X-ray wavelength, β is the FWHM and θ is half
the scattering angle. According to this equation, the FWHM is inversely proportional to
the mean grain size. Fitting the main peaks of XRD curves using Gaussian functions, the
FWHM values of Coatings A, B and C are measured to be 0.31849, 0.25541 and 0.26437,
respectively. Therefore, the mean grain size of the three coatings first increases and then
decreases. It is noted that the grain size of precipitated carbides is generally larger than
the γ-Ni phases of IN718 alloy, and this kind of microstructure is more refined with the
application of ultrasonic (as is shown in Figure 6), corresponding with the above inference.
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3.2.2. Microstructure Analysis

The typical microstructure of Coating A is shown in Figure 6. According to the
constitutional supercooling criterion, the morphology of a solidified structure depends
on the combined parameters of temperature gradient G and solidification rate R [29]. The
solidification rate R is defined as the rate of normal advance at the solidification interface,
which can be expressed as [26]:

R = Vs · i · n∗ (6)

where Vs, i and n* correspond to the laser scanning velocity, the unit vector of scanning
direction and the interface normal vector of the solidification front, respectively. Therefore,
the value of solidification rate R gradually decreases in the depth direction. The surface
of the molten pool is at the gas–liquid interface where it is affected by a strong dual
action of thermal radiation and thermal convection, while the interior is mainly affected by
thermal convection caused by the Marangoni effect. As a result, the temperature gradient
G gradually decreases in the depth direction. The morphology of the solidified structure
is determined by the morphological parameters G/R; the larger the value, the rougher the
microstructure. Meanwhile, the size of the solidified structure decreases with the increase
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in the cooling rate G × R [30]. Therefore, the microstructure of Coating A sequentially
presents as fine equiaxed grains, dendritic crystal and coarse columnar grains from the top
to bottom of the coating, as shown in Figure 6(a1–a3).

When adding 50 wt.% WC particles, the microstructure undergoes a dramatic shift from
single γ-Ni solid solution phase to a large number of precipitated carbides. At the top region
of Coating B, the direct laser radiation and endothermic decomposition of tungsten carbide
both promote the higher temperature gradient G and cooling rate G × R around WC parti-
cles [14]. Thus, WC particles act as heterogeneous nucleation sites for precipitated carbides
which appear as long columnar and large block carbides with sharp edges, as shown in
Figure 6(b1). Due to the addition of a high content of WC particles, obvious cracks and
pores occur in the cluster regions of multiple particles at the middle region of Coating B,
as shown in Figure 6(b2). It is noted that cracks initiate at the edges of WC particles and
gradually extend to the interior, presenting as brittle fracture of multiple clustered particles.
These phenomena are mainly related to local stress concentration and poor flowability of
IN718 melt caused by the agglomeration of WC particles [15,27]. At the bottom region of
Coating B, the WC particles with high density tend to sink, and the precipitated carbides
become granular and columnar in shape rather than block-shaped, and clustered in floccu-
lent and chrysanthemum shapes. In addition, mixed microstructures such as feather-like,
long columnar and large block carbides with obvious dendrite orientation form, as shown
in Figure 6(b3).

After introducing ultrasonic vibration into the molten pool, the solidified microstruc-
ture is refined, apparently because of the synergetic effects between acoustic streaming
and cavitation. The acoustic streaming and micro-jet emitted by the collapse of cavitation
bubbles both accelerate the thermal convection of the molten pool, which is conducive to
reducing the temperature gradient G. Thus, plenty of fine equiaxed carbides are generated
at the top of Coating C, as shown in Figure 6(c1). Moreover, the solidification rate R
decreases with increasing depth, which leads to the formation of columnar carbides. The
refinement of the microstructure is more remarkable at the bottom region associated with
less ultrasonic attenuation, as shown in Figure 6(c2,c3). The epitaxial growth of dendrites as
well as the large block eutectic carbides are broken on the side near the bottom. In addition,
fine dispersed carbides in the shape of cells and arborization are generated.

A map scanning analysis of a whole WC particle and the surrounding area in the
metal-base ceramic coatings was carried out, as shown in Figure 7. A dissolution–diffusion
layer can be obviously observed around the WC particle, with strips and blocks of tungsten-
rich dendrites growing perpendicular to the edges. The W elements are mainly enriched
in the surrounding bright white carbides, while the Cr, Fe and C elements are relatively
evenly distributed within the coatings. Based on previous studies [18,31], five main phases
are observed in Figure 7, namely the bright white tungsten carbide phase (1), the white
W2C phase in the dissolved diffusion layer (2), the block as well as striped eutectic carbide
phases (3) and (4), and the dark grey IN718 matrix phase (5). The eutectic carbide phase
is produced by the metallurgical combination of W elements released by the thermal
decomposition of WC with elements from IN718 alloy at locations relatively far from the
WC particles, and contains more Fe, Cr and Ni elements. The chemical compositions of
typical phases are shown in Table 4. The results show that the weight ratio of W and C
elements in the block carbide is higher than that of the strip carbide, which contains more
Nb and Cr elements.

Several typical decomposition characteristics of WC particles are generalized according
to the microstructure SEM images in different coatings, as shown in Figure 8. Figure 8a,c are
extracted from Coating B, while the others are from Coating C. Firstly, WC particles with a
small size are prone to experiencing disintegration and diffusion at high thermal energy
densities, while the decomposition type of large WC particles is dissolution–diffusion.
Secondly, the main differences between Coating B and Coating C are the morphologies
and sizes of precipitated carbides. In Figure 8a, the splitting decomposition of small-
scale WC particles occurs at a high temperature, then reacts with the active elements in
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the IN718 matrix, which finally precipitate large block carbides with sharp edges and
microcracks. However, when ultrasonic is introduced into the molten pool, the edges
of carbides become more rounded and their size reduces, as shown in Figure 8b. The
same phenomenon can be found in the morphology of the large WC particles. During
the cladding process, the energy in the molten pool is not sufficient to cause complete
dissolution of large WC particles. The borders of the WC particle are slightly eroded by
molten IN718 alloy and form a shallow alloyed reaction layer which is mainly composed of
the intermediate product (W2C) from the decarburization reaction of tungsten carbide. At
the same time, the surrounding carbides present as block and strip shapes, as shown in
Figure 8c. In Figure 8d, the decomposition of WC particles increases obviously because of
the completely disappearance of the shell-core structure, and rounded carbides nucleated
at the WC particle grow radially after ultrasonic treatment. Meanwhile, the microstructure
and size of precipitated carbides are generally refined.
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Table 4. Chemical compositions of different phases in the composite coating.

Point Phase
Composition (wt.%)

W C Ni Fe Cr Mo Nb

1 WC 78.63 10.13 1.62 2.35 0.96 0.09 6.22

2 W2C 75.65 6.56 1.05 1.64 0.70 0.18 14.21

3 Block
carbide 49.10 9.65 15.25 6.94 9.23 1.03 8.79

4 Strip
carbide 42.21 6.54 11.41 4.49 11.64 1.32 22.39

5 Ni matrix 12.35 2.1 45.85 17.58 15.25 0.76 6.11
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3.3. Performance of Composite Coating
3.3.1. Microhardness

Figure 9 shows the microhardness distribution along the depth direction of the three
coatings. The average microhardness of Coatings A, B and C is 304.27 HV0.2, 414.93 HV0.2
and 478.15 HV0.2, respectively. The microhardness of Coating C increases by 63.22 HV0.2
(15.25%) compared with Coating B and is 1.36 times that of Coating A. The enhancement of
microhardness in Coating B and Coating C can be ascribed to a large number of precipitated
carbides after the addition of WC particles. According to the Hall–Petch formula [32],
there is a nonlinear inverse relationship between microhardness and grain size. Thus,
the microstructure refinement caused by ultrasonic, as shown in Figure 6, can effectively
enhance the microhardness of Coating C. Meanwhile, the fluctuation of microhardness
along the depth direction is gentle, which indicates that the homogenization of particle
distribution and microstructure has improved significantly.
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3.3.2. Residual Stress

The residual stress of WC-reinforced composite coatings prepared by laser cladding
was made up of two parts: thermal stress and shrinkage stress [31]. Thermal stress was
generated due to high-temperature ingredients, especially at the interface between the
coating and the substrate, while shrinkage stress was induced by the incompatible coeffi-
cient of thermal expansion between carbides and nickel-based alloy [15,33]. The generation
mechanism of residual stress is shown in Figure 10. Basing on the laser scanning path
shown in Figure 3b, the direction along the laser scanning path was set as x, while that
perpendicular to it was set as y. Nine points selected evenly on the surface of coatings were
measured to obtain the average residual stress. Then, the residual stress component of
x direction was set as σx, and the residual stress component of y direction was set as σy.
Eventually, the resultant stress—which was the vector sum of σx and σy—was set as σt, as
shown in Figure 11.

The results indicate that residual tensile stresses are widespread on the surface of
coatings, and the residual stress component σx is the principal stress, similar to the results
of previous studies [34]. With the addition of numerous WC particles, σx and σy of Coating
B increased significantly. It is noteworthy that the gap between σx and σy on Coating C
decreased due to the homogenized effect of ultrasonic. Based on the synthesis results, the
resultant stress σt for Coating A was 237.19 MPa, while these values increased to 460.43 MPa
and 354.68 MPa for Coating B and Coating C, respectively. According to previous studies,
the bulk precipitated carbides with sharp edges and uneven distribution of WC particles
all increase residual stress levels [14,33]. In short, the distribution of WC particles was
improved, and the formation of bulk precipitated carbides with sharp edges was inhibited
by ultrasonic, as shown in Figures 6 and 8. Therefore, the resultant stress σt of Coating C
showed a 22.95% decrease compared with Coating B.
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3.3.3. Tribological Properties

The friction and wear curves of the three coatings are shown in Figure 12a. The friction
and wear curves of the three coatings can be divided into two stages: the rapid growth
stage and the steady wear stage. In the initial stage, due to the flatness of the sample and
the cold-welding effect of wear debris between friction pairs, the grind ball needed greater
friction force to overcome the above negative factors. Therefore, the friction and wear
coefficient increased significantly. After a period of running-in, as the cold-welding areas
were cut off, the friction and wear coefficient decreased sharply, and all curves entered a
relatively stable stage after 6 min. The mean coefficients of friction (COFs) for Coatings A,
B and C are 0.605, 0.546 and 0.494, respectively. Therefore, the abrasion curve of Coating C
is the most stable, and also has the smallest COF. In addition, the abrasion curve of Coating
C is more stable than those of the other coatings and it was the first to enter the steady wear
stage. This can be attributed to the more uniform distribution of WC particles and grain
refinement induced by ultrasonic, as shown in Figures 4 and 6.
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In order to further study the wear mechanism of various coatings, the morphologies
of worn surfaces were observed by SEM, as shown in Figure 13. The wear scar width
decreases successively from 1.058 mm on Coating A to 0.397 mm on Coating C, which
means the wear resistance of the coating was improved. For Coating A, which was prepared
by IN718 alloy powder, large wear debris, obvious plowing grooves and spalling pits in
the sliding direction were found (Figure 13a). The WC particles and precipitated carbides
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enhance the wear resistance of the coating. As shown in Figure 13(a2,a3), the WC particles
and granular-lump carbides with high hardness can improve surface resistance to local
plastic deformation and destruction capabilities. Compared with Coating A and Coating B,
Coating C has the smallest wear debris, which can be attributed to the uniform distribution
of WC particles and formation of fine dispersed carbides. Acoustic streaming and cavitation
induced by ultrasonic promote the even particle distribution in the upper region of the
coating and grain refinement. Coating C has excellent friction performance caused by
precipitation and grain refinement strengthening.
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Figure 13. Worn surface morphology of different coatings. (a1–a3) Coating A; (b1–b3) Coating B;
(c1–c3) Coating C.

4. Discussion

Numerous recent research works indicate that dendrite fragmentation and microstruc-
ture refinement in metal solidification processes with ultrasonic treatment are mainly
ascribed to the cavitation effect of ultrasonic [21,35,36]. The cavitation effect is the result of
the dynamic interaction between sound pressure and bubbles. Figure 14 shows the two-
dimensional model for finite element simulation. The model is predigested to an integration
of two semi-ellipses by gauging the cross-section of the single-track cladding layer.
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When high-intensity ultrasonic is introduced into the molten pool, the tiny bubbles in
liquid metal are subjected to periodic action of sound pressure. When there is a cavitation
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nucleus with initial radius R0 in the molten pool, the cavitation threshold of the molten
pool in the form of sound pressure is expressed as [37]:

PB = P0 − Pv +
2

3
√

3

 ( 2σ
R0
)

P0 − Pv +
2σ
R0


1
2

(7)

where P0 = 101 kPa is the liquid static pressure, Pv = 0 kPa is the saturated steam pressure,
σ = 1.5 N/m is the liquid surface tension coefficient of the IN718 alloy molten pool and
R0 = 5 µm is the initial radius of the cavitation bubble. The corresponding cavitation
threshold PB in liquid IN718 metal is 0.3 MPa, calculated by Equation (5). The ultrasonic
input position is located at the bottom of the substrate, the same as in the experimental setup.
The molten pool and the substrate are modelled separately with the pressure-acoustic,
frequency-domain and solid mechanics modules in COMSOL Multiphysics software. In
order to simplify the model, the influences of the WC particle’s distribution and dissolution
on physical parameters such as liquid metal density and dynamic viscosity are ignored.
The entire molten pool is assumed to be filled with the melting IN718 alloy to characterize
the function of ultrasonic. The Y-axis sinusoidal displacement A(t) on the middle of the
substrate’s bottom is set as

A(t) = Amsin(2π f t) (8)

where Am = 20 µm is the vibration amplitude and ω = 20 kHz is the ultrasonic frequency.
A sound-soft boundary is applied to simulate the vapor–liquid interface at the top of the
molten pool, and the acoustic impedance of the top boundary is nil. At the same time, an
acoustic-structure boundary coupling model was used to calculate the actual distribution
of sound pressure of the molten pool in this work and the results are shown in Figure 15.

Figure 15a shows the transient sound pressure distribution in the molten pool and
the displacement of the substrate which was extracted from 1 µs to 6 µs in the first period
of ultrasonic (50 µs). It is remarked that regions with the actual value of sound pressure
surpassing the cavitation threshold (0.3 MPa) are mainly distributed in the middle and
lower parts of the molten pool. Figure 15b shows the average, maximum and minimum
sound pressures of the whole molten pool within ten ultrasonic cycles. The results show
that the sound pressure in the molten pool gradually tends to be stable despite large
amplitude oscillation with time, which is mainly caused by the attenuation effect associated
with the propagation of sound waves in the fluid. In order to further investigate the
expansion, contraction and collapse process of cavitation bubbles in the molten pool, the
evolution law of individual cavitation bubbles under different sound pressure fields is
analyzed based on the Rayleigh–Plesset model [38]:

R d2R
dt2 + 3

2

(
dR
dt

)2

= 1
ρ

[(
P0 +

2σ
R0
− Pv

)(
R0
R

)3k
− 2 σ

R − 4µ 1
R

dR
dt − P0 + Pv + Pmsin(ωt)

] (9)

where R is the real-time radius of the cavitation bubble; t is time; k is the ratio of the specific
heat at a constant pressure to specific heat at a constant volume of gas in the bubble, taking
4/3; and µ is the dynamic viscosity of molten IN718 alloy, taking 0.005 Pa·s. Additionally,
Pmsin(ωt) is the acoustic pressure in the cladding pool substituted with the simulated
values, as shown in Figure 15, to solve this differential equation.

The Rayleigh–Plesset equation is solved using the differential equation interface in
COMSOL Multiphysics software, and the evolution law of the cavitation bubble under
specific sound pressure amplitude, initial radius and ultrasonic frequency is calculated as
shown in Figure 16. The horizontal coordinate is the ratio of time to ultrasound period and
the vertical coordinate is the ratio of the real-time radius of the cavitation bubble to the initial
radius, showing the variation of the cavitation bubble radius over ten ultrasound periods.
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When the radius of cavitation bubbles and ultrasonic frequency are certain, the evolu-
tion law of the bubble’s radius with different sound pressures from 0.40 MPa to 0.90 MPa is
shown in Figure 16a. The results indicate that only when the sound pressure in the molten
pool is much higher than the cavitation threshold can the radius of cavitation bubbles vary
significantly. The cavitation bubbles with various radii are invariably in the condition of
moderate amplitude and nonlinear oscillation at an acoustic pressure of 0.8 MPa; some do
not even collapse within ten sound pressure cycles, as shown in Figure 16b.

Based on the R–P equation to predict the effect of ultrasonic frequency on cavitation
bubble radius, Figure 16c shows that under the sound pressure field with the sound pressure
of 0.8 MPa and the initial radius of 5 µm, the collapse times of the cavitation bubbles at
frequencies of 20 kHz, 21 kHz, 22 kHz, 23 kHz and 24 kHz are 3.85 T, 5.16 T, 0.87 T, 3.16 T and
3.90 T, respectively. Moreover, the maximum radii of the cavitation bubbles during dynamic
evolution are 76.36, 53.57, 25.50, 58.62 and 63.88 times the initial radius, respectively. At an
ultrasonic frequency of 20 kHz, the intensity of cavitation is guaranteed to include higher
radius variation and moderate collapse time. Some experimental observations indicated
that when the ultrasonic frequency increased to a certain value, no ultrasonic cavitation
occurred or cavitation could not be detected, resulting in a more stable pressure value in
the flow field [39]. The main reason for this anomaly is that at higher ultrasonic frequencies,
the cavitation bubbles do not have enough time to expand and contract under the effect
of alternating strong positive and negative pressures, and the difficulty of generating the
cavitation effect increases. Therefore, low-frequency ultrasonic was used in this study.

In this study, the size of the molten pool formed by laser irradiation was approximately
equivalent to the width of a single-track cladding layer, which is about 2.4 mm. According
to the laser scanning speed (450 mm/min), the existence time of the molten pool was
estimated to be about 0.32 s, which was long enough to cover the annihilation time of the
cavitation bubbles (about 0.00005 s). Therefore, the solidification process of the molten pool
can experience up to ~103 cavitation.

Based on the above cavitation simulation, the ultrasonic used in this experiment can
generate the cavitation effect, and the cavitation intensity can be guaranteed. On the one
hand, a large number of cavitation bubbles are generated and then swell up at the initial
stage of ultrasonic cavitation; these bubbles absorb considerable heat from the liquid metal.
Therefore, the overall undercooling degree of the molten pool increases, which is conducive
to decreasing the grain size. On the other hand, acoustic streaming and microjets generated
by the collapse of cavitation bubbles both promote the internal flow of melt as well as the
uniform distribution of solute elements in the coating. The combined action of the above
two factors refines the microstructure of the coating. Some laboratory observations using
synchrotron radiation indicated that acoustic cavitation and acoustic streaming can break
the growing dendrites into tiny fragments, and these fragments then act as the nucleus of
heterogeneous nucleation [40,41].

The schematic illustration of grain refinement in the molten pool is shown in Figure 17.
Under the action of a high-energy density laser, WC particles decompose and react with
elements in the IN718 matrix to precipitate massive carbides with sharp edges and coarse
structure, as shown Figure 17a,b. After introducing ultrasonic into the molten pool, acoustic
cavitation and the acoustic streaming effect greatly improve thermal convection and mass
transfer, which promote the decomposition of WC particles, and the size of carbides is
refined, as shown in Figure 17c,d. Moreover, the tiny fragments from growing dendrites act
as the nucleus of heterogeneous nucleation, which can result in the growth of equiaxed grains.

In short, the enhancements in mechanical properties (microhardness, residual stress
and wear resistance) of IN718-WC composite coatings can be attributed to precipitation
strengthening and microstructure refining induced by fine dispersed carbides.
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5. Conclusions

IN718 coating, IN718-50 wt.% WC and IN718-50 wt.% WC (ultrasonic assistance)
composite coatings were prepared by laser cladding. The influences of decomposition of
WC particles and ultrasonic vibration on composition, microstructure evolution, micro-
hardness, residual stress and tribological prosperities have been systematically analyzed.
The following main conclusions can be drawn:

(1) The main phase in laser cladding IN718 coating is the γ-Ni phase. With the addition
of numerous WC particles, the phase compositions are converted into γ-Ni, WC, W2C,
M6C (Fe3W3C and Fe3Mo3C), M7C3 (Cr7C3) and M23C6 (Cr23C6) due to considerable
generation of precipitated carbides with various shapes and sizes.

(2) The decomposition of WC particles can greatly enhance microhardness and wear
resistance of composite coatings. Meanwhile, acoustic streaming and cavitation can
homogenize the distribution of WC particles and refine the microstructure. Therefore,
the composite coating assisted by ultrasonic has the highest microhardness (478.15 HV0.2)
and the lowest COF (0.494).

(3) Massive particles and carbides can increase residual stress on the surfaces of coatings,
while ultrasonic vibration can inhibit the formation of massive carbides with sharp
edges. Thus, the resultant residual stress and the gap between σx and σy can be
effectively decreased.
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(4) The cavitation effect is mainly concentrated at the bottom of the molten pool. The
ultrasonic used in this work can guarantee the intensity of cavitation, including
through higher radius variation and moderate collapse time.
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