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Abstract: Aluminium and its alloys are interesting for many applications because they are very light,
cheap, and unlimitedly recyclable. Despite being a promising base material for the fashion-jewellery
sector, their tendency to form a passivating film makes them difficult to be galvanized, even more
when recycled aluminium contains impurities of refractory elements. Indeed, the most common
processes for galvanising aluminium are often expensive and not environmentally sustainable because
they involve the use of cyanides. In this work we focussed on the pre-treatments and electroplating
on Al6082 aluminium which is largely used for fashion-jewellery applications. The objective of
the present study was to assess whether Al6082 series aluminium is suitable a as base material for
the fashion market; therefore, we investigated the effectiveness of plating pre-treatments and the
success of electroless zinc deposition using an innovative alkaline cyanide-free zincate solution.
After the electroplating, adhesion between the deposited layers was evaluated both with cross-
sectional scanning electron microscope (SEM) analysis as well as with an adhesion evaluation test
(ISO2819:2018): no detachments confirmed the positive test outcomes and thereby highlighted that
Al6082 can be exploited as base material in the fashion-jewellery market.

Keywords: aluminium; Al6082; electroplating; film characterization; sustainability; metal coatings;
fashion; decorative

1. Introduction

Differently from a few years ago, “sustainability”, “green” and “environmentally
safe” are becoming keywords for business opportunities. Industrial leaders of different
market sectors are indeed nowadays paying more and more attention to the consumers’
needs of feeling like an active part within a transition towards a better world. Making use
of recyclable materials is therefore paramount, especially in those sectors wherein a vast
number of precious resources are being depleted day by day. Among those resources, metals
depletion is one of the most concerning, hence scientists are called upon to find renewable
alternatives as fast as possible [1–6]. The fashion-jewellery industry makes extensive use
of scarcely available metals, which in most cases come from ore extraction. Nevertheless,
alternatives do exist, despite the fact that, from a technological point of view, a lot of work
has yet to be done to ensure at least the same performance of the materials nowadays
being used [7–9]. Since fashion-jewellery market players are constantly seeking new, viable
ways to render their whole value chain more sustainable, they are constantly looking at
making use of green and eco-compatible base materials, yet ensuring economically feasible
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processes [10–12]. Concerning fashion items and accessories like chains, rings, earrings,
bracelets and so on, among a wide variety of suitable base materials, aluminium is one
of the most interesting because is unlimitedly recyclable and is spread throughout the
world, hence is largely available and cheap [13–15]. However, aluminium galvanization
is challenging, especially when it comes down to the so-called “secondary aluminium”
which is aluminium that comes from the recycling process. Indeed, besides quickly and
spontaneously forming a layer of oxide when exposed to the air [16,17]—also primary
aluminium undergoes this natural process—secondary aluminium might contain a broad
range of metallic, semi-metallic or non-metallic impurities that hinder the electroplating
process, leading to weak adhesions between galvanic layers being deposited [18–21]. Since
most of the available aluminium on the market is recycled, it has been catalogued by type of
impurities in order to properly set up chemical and mechanical treatments depending on the
chemical composition [22–24]. Methods for cleaning, properly activating its surface and for
plating ensuring adhesion have been developed through the years and have turned out to
be different depending on the aluminium series considered [25–27]. For the aforementioned
reason, each aluminium series has to be separately studied from the others. In particular,
6082 series aluminium alloys are nowadays getting more and more interest from the fashion
market due to its workability as well as for the large availability and therefore the low
market price. However, belonging to the “anticorodal” series, Al6082 contains silicon
traces, and its electroplating becomes thereby challenging [28,29]. Accordingly, a proper
customized sample preparation before galvanization is paramount [30]. Scientific work
focusing on the electroplating of a single type of aluminium have to date already been done
but a holistic study making use of a sustainable approach focusing on the electroplating
of aluminium 6082 series for fashion-jewellery industries is missing [31]. By means of the
present work focusing on fashion-jewellery applications we propose an innovative process
that, following appropriate treatments, leads to a well-adhered zinc layer deposited from
an electroless cyanide-free galvanic process. The electroless deposition of a layer of zinc on
aluminium also allows the electrodeposition of other galvanic layers commonly used in the
fashion-jewellery industry such as nickel, bronze and palladium. What is more, the final
products obtained meet the common quality standards required by the fashion-jewellery
industry. To be plated, aluminium typically undergoes a pre-treatment involving activation
with acidic and alkaline fluorides-containing solutions followed by a double-zincating
step [32]. In this work a commercial cyanide-free zincate process was used in order to
assess the effectiveness of this solution towards Al6082 and to show that a green approach
can be pursued not only from a base-material point of view but also galvanic-wise [33].
Moreover, since when it comes down to electroplating the base material roughness is a
key parameter, both polished as well as unpolished aluminium samples were considered
in the present work. For instance, low roughness is sometimes achievable only by means
of time-consuming manual work. The latter, besides being challenging for tiny objects, is
indeed expensive. Therefore, samples were double-zincated to thoroughly assess whether
the setup process is able to produce well-adhered deposits regardless of the base material
roughness [34]. Prior to SEM characterization, a thick layer of nickel was deposited both
to shelter the underlying layer of zinc previously deposited onto the base material and to
evaluate adhesion by performing an adhesion-evaluation test (ISO 2819:2018). Furthermore,
the electrodeposition from a white bronze galvanic bath followed by a Pd-Ni bath were
performed in order to carry out ageing test commonly employed within the fashion industry
in order to assess whether a full galvanic electroplating cycle obtains durable plated Al6082
fashion items and accessories. Results showed that Al6082 can be exploited as innovative
base material within the fashion-jewellery industry since a simple electroplating cycle can
produce galvanized objects meeting sector standards. In addition, no constrains due to the
intrinsic roughness of the object being galvanized were underlined.
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2. Materials and Methods

High purity (for analysis, ISO) nitric acid (65%) was purchased from Carlo Erba
Reagents (Milan, Italy). High purity (for analysis, ISO) sulfuric acid (96%) was purchased
from PanReac AppliChem (ITW Reagents, Monza, Italy). The following commercial elec-
troplating, etching, and degreasing solutions were all kindly provided by Valmet Plating
Srl (Calenzano, Italy): Solution A, TOPCLEANLQ, a proprietary degreasing solution used
to ultrasonically clean the samples; Solution B, ATMETPLUS, a proprietary degreasing
solution to electrochemically clean the samples surface; Solution C, ATMET70, a propri-
etary fluoride-based etching solution; Solution D, ALUCHEMCF, a proprietary electroless
alkaline cyanide-free zincate solution; Solution E, NILUXMU, a proprietary “Watts nickel”
electroplating solution; Solution F, BROMETN05, a proprietary white bronze electroplating
solution; Solution G, PALMET910, a proprietary Pd-Ni (85%–15%) electroplating solution.
The workflow followed in this study is schematized in Figure 1.
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Figure 1. Flowchart of the depositions and characterizations performed in this study.

Samples to be plated were cut out of a Al6082 slab (thickness = 1 mm) kindly provided
by Fulvio Casamonti Srl (Impruneta, Italy). A 1.5 mm diameter circular hole was mechan-
ically made in the upper part of each 5.0 × 3.8 cm2 aluminium sample to eventually tie
them with copper thread prior to galvanization. Half of the samples were mechanically
polished to diminish their surface roughness. Sample pre-treatments were performed using
Solution A, Solution B, and Solution C. Zinc plating was performed after the pre-treatment
procedure using an electroless immersion plating through Solution D.

EX354RD DUAL power supply (280 W) was used for all the experiments involving
the use of current (i.e., cathodic alkaline electrochemical degreasing, nickel, white bronze
and Pd-Ni electroplating). Electroplating was performed in a two-electrode electrochemical
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cell consisting of 500 mL beakers. The counter electrode (anode) was a bare nickel plate
in the case of nickel plating and a mixed metal oxide (MMO) mesh for the white bronze
and palladium alloy depositions. Sample pre-treatments and plating necessary to obtain
well-adhered galvanic coatings are given in Sections 3.2 and 3.3. The nickel coating was
used both to shelter the underlying layer of zinc during the cross sectioning as well as
to evaluate adhesion. Nickel deposits were obtained by depositing from Solution E at
60 ◦C and 3.5 A/dm2 for a variable amount of time (10–40 min) in order to evaluate any
possible impact of the thickness on the adhesion. White bronze deposit was obtained
from Solution F at 60 ◦C and 1 A/dm2 for a deposition time of 5 min. Pd-Ni alloy was
electroplated from Solution G at 28 ◦C and 1 A/dm2 for a deposition time of 8 min. During
all the electrodeposition, the solution was kept in motion by means of a magnetic stirrer.
Unpolished sample roughness was measured by means of a HOMMEL WAVE profilometer
(OGP Hommel srl, Desio, Italy) whereas a Molecular Imaging PicoSPM Atomic force
microscopy (AFM) with a triangular Si3N4 cantilever (Veeco, NP-S10, Munich, Germany)
was used to measure the roughness of the mechanically polished samples. A Hitachi
SU3800 scanning electron microscope equipped with an UltimMax Oxford instrument
detector (Oxford instrument, Wiesbaden, Germany) was used both to gather data with
respect to the composition of the Al6082 as well as to collect the energy-dispersive X-ray
spectroscopy (EDS) signals to evaluate the composition of the samples. For SEM cross-
section analysis, samples were cut and incorporated within a conductive polymeric resin.
After resin curing, samples were polished with abrasive papers, following the typical
procedure for cross-section analysis [35].

The software CASINO v2.51 [36] was used to simulate and evaluate the depth from
which the X-ray was generated in the sample during the EDS analysis. The simulation was
performed using 105 electrons with various accelerating potentials.

X-ray fluorescence (XRF) thickness measurements [37] were performed with a Bowman
B Series XRF spectrometer (Schaumburg, IL, USA) using an acquisition time of 60 s, 50 kV
tube voltage, 0.8 mA tube current, and a collimator of 0.6 mm in diameter.

ISO 2819:2018 standard was followed to assess the adhesion between layers. In partic-
ular, a TQC Sheen CC3000 cross-cut tester ISO-compliant was used to cut the plated surface
of the objects and a TESA 4124 tape was employed to try to peel off the metallic deposits.

Eventually, damp heat test (ISO 4611:2011), salt spray test (ISO 9227:2017) and synthetic
sweat test (NF S80–772:2010) standards were followed to evaluate electroplated items
ageing resistance. In particular, a Haida International Equipment (HD-E808-90) chamber
(Haida International, Dongguan, China) was employed to perform the salt spray test and a
Ghumy Climatic Chamber (F.LLI GALLI G. & P. snc, Milan, Italy) was used when requested
from standard procedures. Salt spray test was conducted by using a 5% NaCl (Merck,
Ph EUR, BP, USP) solution (pH = 6.5–7.2) whereas synthetic sweat composition was 5%
lactic acid (Fluka Analytical, Milan, Italy) and 10% NaCl (Merck, Darmstadt, Germany) in
deionized water.

3. Results
3.1. Al6082 Aluminium Plate Surface Analysis
3.1.1. Unpolished Aluminium Samples

Unpolished 6082 series aluminium samples were manually degreased by means of a
common soap, thoroughly washed with deionized water and then with isopropanol. SEM
analysis was performed both to collect surface images as well as to check aluminium alloy
composition (Figure 2a,b). Regular longitudinal marks due to the manufacturing of the
metal are visible on the surface of the aluminium plates using a medium-high magnification
(×5 k, Figure 2a). EDS spectrum was collected with a ×100 magnification to minimize any
compositional inhomogeneities; the analysis was performed at two different acceleration
potentials: 5 kV, to obtain the surface composition of the alloy, and 20 kV, to evaluate the
bulk composition (Figure 2b).
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Figure 2. SEM analysis of unpolished Al6082 aluminium plate surface: (a) ×5 k magnification image;
(b) EDS analysis of the sample by using a 5 kV and 20 kV acceleration potential at a magnification
of ×100.

EDS measurement performed with 5 kV and 20 kV on aluminium element was sim-
ulated using CASINO software. Results show that the 99.99% of the X-rays produced by
the samples comes from a maximum depth of 320 nm in the case of the 5 kV measurement,
while the depth for the 20 kV measurement is 3.9 µm. For this reason, it is evidence that the
measurement performed at 5 kV certainly produces a more superficial compositional result
than the one at 20 kV.

Table 1 reports a comparison between the theoretical composition of 6082 aluminium
series alloy [38] against the aluminium slab used in this study measured with EDS. Adven-
titious carbon and oxygen contaminations detected on the surface of the sample have been
excluded from the quantification and the normalized composition is also reported. The EDS
analysis shows that the measured and normalised compositions agree with the theoretical
one. On the surface (5 kV measurement) higher amounts of silicon and magnesium with
respect to the bulk material (20 kV measurement) were detected. These elements are mainly
responsible, together with the oxide layer, for the difficulties encountered in the plating
of aluminium.

Table 1. Comparison between theoretical composition of Al6082, and the measured composition with
EDS at 5 kV and 20 kV.

wt%

Element Theoretical 5 kV 20 kV

Al Remaining 95.5 ± 0.2 97.4 ± 0.1
Si 0.7−1.3 1.3 ± 0.1 0.8 ± 0.1
Fe 0.5 - 0.3 ± 0.1
Mg 0.6−1.2 3.2 ± 0.1 1.0 ± 0.1
Mn 0.4−1.0 - 0.6 ± 0.1
Cr 0.25 - -
Cu 0.10 - -
Zn 0.20 - -
Ti 0.10 - -

The surface roughness of unpolished samples was evaluated performing five mea-
surements perpendicularly to the visible scratches. The results are reported in Table 2.
The surface of the Al6082 unpolished sample is highly rough; indeed the linear roughness
parameters Ra (arithmetic average of profile height deviations from the mean line) and Rz
(maximum peak to valley height of the profile) values are within the µm range.
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Table 2. Unpolished Al6082 aluminium surface roughness: values are intended as an average of
5 measurements.

Roughness Parameter Average (µm) Standard Deviation

Ra 0.40 0.01
Rz 1.98 0.04

3.1.2. Polished Aluminium Samples

To perform surface analysis, polished samples followed the same characterization
of the unpolished ones (compare Section 3.1.1). SEM analysis was performed to collect
surface images and to check aluminium alloy composition, and ×5 k magnifications were
used to observe the surface of the sample (Figure 3a). SEM images show that the polished
aluminium has a uniform and smooth surface. The EDS analyses were performed with an
acceleration potential of 5 kV and 20 kV at a magnification of ×100, confirming the results
obtained for the unpolished sample (see Figure 2b and Table 1). Since the low roughness
of the polished sample did not allow for a profilometer analysis, AFM investigation was
adopted (Figure 3b).

Coatings 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

The surface roughness of unpolished samples was evaluated performing five meas-
urements perpendicularly to the visible scratches. The results are reported in Table 2. The 
surface of the Al6082 unpolished sample is highly rough; indeed the linear roughness pa-
rameters Ra (arithmetic average of profile height deviations from the mean line) and Rz 
(maximum peak to valley height of the profile) values are within the µm range. 

Table 2. Unpolished Al6082 aluminium surface roughness: values are intended as an average of 5 
measurements. 

Roughness Parameter Average (µm) Standard deviation 
Ra 0.40 0.01 
Rz 1.98 0.04 

3.1.2. Polished Aluminium Samples 
To perform surface analysis, polished samples followed the same characterization of 

the unpolished ones (compare Section 3.1.1). SEM analysis was performed to collect sur-
face images and to check aluminium alloy composition, and × 5k magnifications were 
used to observe the surface of the sample (Figure 3a). SEM images show that the polished 
aluminium has a uniform and smooth surface. The EDS analyses were performed with an 
acceleration potential of 5 kV and 20 kV at a magnification of × 100, confirming the results 
obtained for the unpolished sample (see Figure 2b and Table 1). Since the low roughness 
of the polished sample did not allow for a profilometer analysis, AFM investigation was 
adopted (Figure 3b). 

  
(a) (b) 

Figure 3. Polished Al6082 aluminium plate surface: (a) 5 k magnification SEM image; (b) AFM im-
age. 

The roughness results are reported in Table 3 in terms of the surface roughness pa-
rameters Sa (root mean square average of profile height deviations from the mean plane). 
The SEM and AFM images show that the polishing does not completely eliminate all the 
scratches present on the aluminium surface, however it does reduce roughness by two 
orders of magnitude (compare Tables 2 and 3), resulting in a very smooth surface. 

Table 3. Polished Al6082 aluminium surface roughness, values were obtained from AFM analysis. 

Roughness Parameter Value (nm) 
Sa 5.09 
Sq 6.55 
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The roughness results are reported in Table 3 in terms of the surface roughness pa-
rameters Sa (root mean square average of profile height deviations from the mean plane).
The SEM and AFM images show that the polishing does not completely eliminate all the
scratches present on the aluminium surface, however it does reduce roughness by two
orders of magnitude (compare Tables 2 and 3), resulting in a very smooth surface.

Table 3. Polished Al6082 aluminium surface roughness, values were obtained from AFM analysis.

Roughness Parameter Value (nm)

Sa 5.09
Sq 6.55

3.2. Samples Pretreatment

Both unpolished as well as polished aluminium samples followed the same prepara-
tion procedure:

1. Each aluminium sample was tied with copper wire and soaked into an ultrasound
bath filled with Solution A at 65 ◦C for 3 min.
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2. After thoroughly rinsing the sample with deionized water, a cathodic alkaline elec-
trochemical degreasing was performed by immersion for 10 s into a two-electrode
electrochemical cell containing Solution B applying 25 V.

3. Samples were again rinsed with deionized water and neutralized into a 3 wt%
H2SO4 solution.

4. After deionized water rinsing, 30 wt% HNO3 solution was used to etch aluminium
surface (45 s at room temperature).

5. After water rinsing, a fluoride-based solution (Solution C) was used to reduce the
presence of silicon on the surface of the samples (45 s at room temperature).

The decrease in the presence of silicon (the last step of treatment) is particularly
important for the subsequent plating step; indeed, the higher is the percentage of silicon
within aluminium alloy, the more difficult is the object to be plated, since silicon does not
react when aluminium is soaked into the zincate solution [39].

The pre-treated surface was characterised by SEM analysis before electroplating the
galvanic layers. Figure 4a shows the SEM image of the surface of the unpolished sample
surface after the last step of the pre-treatment with Solution C. Figure 4a, compared with
Figure 2a, clearly shows that the surface has been attacked by the chemicals agents used
during the pre-treatment steps. EDS analysis at 5 kV and 20 kV were repeated on this
sample (Figure 4b).
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Figure 4. SEM analysis of unpolished aluminium sample after fluoride-based solution treatment:
(a) ×5 k magnification image; (b) EDS analysis of the sample by using a 5 kV and 20 kV acceleration
potential at a magnification of ×100.

The composition of the sample obtained from EDS is reported in Table 4. Comparing
the results with Table 1, it can be seen that the treatment decreased the silicon content from
1.3% to 0.5% and the magnesium content from 3.2% to 0.3% from the surface (5 kV analysis).
On the other hand, the composition obtained with the acceleration potential of 20 kV (bulk
analysis) remains almost unchanged.

Table 4. Composition of the of Al6082 aluminium after the activation treatment measured with EDS
at 5 kV and 20 kV.

Element 5 kV 20 kV

Al 99.2 ± 0.1 97.7 ± 0.1
Si 0.5 ± 0.1 0.8 ± 0.1
Fe - 0.2 ± 0.1
Mg 0.3 ± 0.1 0.8 ± 0.1
Mn - 0.5 ± 0.1
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3.3. Zinc Plating

Electroless immersion plating through Solution D was performed for 45 s at room
temperature immediately after the pre-treatment procedure. Magnetic stirrers ensured
good mixing during all the passages carried out. Thanks to the pre-treatment, a thin layer
of zinc was deposited onto the aluminium surface [40–42]. Nevertheless, to ensure better
adhesion between layers, a double zincate step was preferred despite the fact that the
literature is still controversial with regards to this point [41,43–46]. Therefore, by again
rinsing with water in between each step, the zincate sample was soaked in 30 wt% HNO3
solution for 45 s (room temperature) and a new layer of zinc was deposited by means of
the cyanide-free zincate solution (45 s at room temperature).

The thickness of the zinc layer was measured by means of XRF for both the unpolished
as well as the polished samples obtaining 29 ± 6 nm and 23 ± 1 nm values respectively.
Results are expressed as the average of three measurements.

Eventually, a thick layer of nickel from an acid Watts bath (Solution E) was electro-
plated onto the galvanized aluminium, as described in Section 2. Unpolished sample was
plated for 20 min, while two polished samples was nickel plated one for 40 min and the
other for 10 min.

3.4. Cross-Section Analysis of Nickelated Samples
3.4.1. Unpolished Samples

SEM cross-sectional analysis of the samples was carried out. The unpolished sample
shows a good interlocking between layers with no detachment of the coating from the
substrate as a consequence of the cross-sectioning procedure and lapping (Figure 5a). EDS
profile analysis was performed (red arrow Figure 5a): the intensity of the Al, Zn and Ni
signals is reported in Figure 5b. A good overlapping is present between the Al and Ni
signals, confirming the good adhesion of the coating. The nickel coating thickness after
20 min of deposition was approximately 15 µm, whereas the Zn signal turned out to be too
weak to be observed. The reason could lie in the low thickness of this layer, below the lateral
resolution of EDS together with the partial dissolution of Zn when the sample is being
immersed in Solution E for the nickel plating, in the instants preceding the application of
the potential.
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3.4.2. Polished Samples

SEM and EDS profile analyses were repeated for the nickel-plated polished samples
(Figure 6). Figure 6a,b refer to the polished sample plated through solution E for 40 min,
resulting in a nickel coating of almost 35 µm. Figure 6c,d refer to the polished sample
plated by means of solution E for 10 min, resulting in a nickel coating approximately 5 µm
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thick. For these samples, as observed for the unpolished sample, no detachment of the
coating from the substrate and a good interlocking between the layers are observed. These
results suggest that the studied procedure is valid for a wide range of substrate roughness
and coating thicknesses.
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3.5. Adhesion Test

Adhesion between the nickel, zinc coatings and the aluminium substrate was tested
following ISO 2819:2018 standard criteria: outer nickel coating were all cross-cut and pieces
of TESA 4124 tape were manually applied onto each sample surface. Prior to peeling off
the tape it was left attached to the metallic surface for five minutes. None of the plated
samples showed detachment of the nickel layer (Figure 7), confirming that the coatings
were all well bonded to the substrate.
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3.6. Corrosion Test

A typical industrial electroplating cycle [3,47] was carried out both for zinc-plated
aluminium-based polished and unpolished samples. The samples were nickel-plated
with Solution E for 15 min obtaining a nickel deposit of ≈ 10 µm. Solution F was used
to deposit ≈ 2 µm of white bronze onto nickel coating. On top of the white bronze de-
posits, a ≈ 0.8 µm thick layer of Pd-Ni (Solution G) was electroplated in order to provide
corrosion resistance to the objects. The thickness of the layers was measured by XRF.
Damp heat test (ISO 4611:2011), salt spray test (ISO 9227:2017) and synthetic sweat test
(NF S80–772:2010) standards (the most used and representative in the fashion-jewellery
industry) were performed. A 24 h synthetic sweat led to partial corrosion—pitting—of all
the samples tested but to a low extent (<10% of the surface). A 24 h dump heat with leather
(40 ◦C, 93% RH) did not lead to any visible alterations. A 48 h salt spray test left some salt
traces on the samples surface but upon rinsing with deionized water no visible alterations
were highlighted. The results confirm that the employed galvanic cycle is able to produce
durable items for both polished and unpolished aluminium. In general, the use of rough
substrates (i.e., unpolished metal surfaces) leads to bad adhesion between the layers and
consequently to unsatisfactory results in corrosion tests (stains and detachments of coatings
are often observed). In this work, a suitable approach was developed. Pre-treatment of
aluminium and subsequent electroless deposition of zinc provide a suitable base substrate
for the electrodeposition of common metal coatings used in the fashion-jewellery industry.
Corrosion tests show that mechanical pre-treatment of the substrate is not paramount: the
developed galvanic process can provide excellent results even by making use of unpolished
substrates. Once the corrosion tests have been carried out, no major defects can be seen on
the surface of the external coating (Pd-Ni), which proves the good corrosion resistance and
excellent interconnection between the lower and upper layers.

4. Conclusions

The Al6082 alloy was characterized and plated by means of an innovative alkaline
cyanide-free solution kindly provided by Valmet Plating Srl. In particular, both polished
and unpolished aluminium samples were evaluated: profilometer and AFM measurement
were used to determine their roughness. Polished Al6082 had a lower roughness (1.98 µm)
compared to non-polished aluminium (6.55 nm). By means of SEM analysis, surface images
and composition were collected. Al6082 contains minor percentages of Si, Fe and Mg. Prior
to galvanization, samples underwent a pre-treatment with the purpose of cleaning and
activating their surface in order to improve the adhesion between the base material and
the very first layer of zinc being deposited. A fluoride-based solution turned out to be
effective in decreasing the number of shallower silicon atoms, the high presence of which
is otherwise detrimental when it comes to zinc-aluminium adhesion. The fluoride-based
treatment decreased the surface silicon content from 1.3% to 0.5%. A double zincating
step followed by nickel-plating was performed for each sample using different nickel-



Coatings 2023, 13, 13 11 of 13

plating times. The thickness of the zinc layer was measured by means of XRF for both
the unpolished as well as for the polished samples, obtaining 29 ± 6 nm and 23 ± 1 nm
values respectively. Cross-section analysis shows interlocked layers and both unpolished
as well as polished plated samples surpassed the ISO-compliant adhesion test; indeed,
detachment phenomena were not observed for any of the samples being electroplated.
Therefore, the samples pre-treatment and the cyanide-free zincating step are suitable for
Al6082 substrates of different roughness. In particular, mechanical preparation of the items
prior to electroplating turned out not to be mandatory since no influence in the adhesion has
been highlighted. In addition, the further electroplating through white bronze and Pd-Ni
galvanic baths underlined that producing Al6082-based fashion items able to withstand
the main ageing tests employed within the decorative electroplating sector is feasible.
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