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Abstract: The in vitro fabrication of big osteoarticular implants integrating biomaterials and cells is of
tremendous interest because these tissues have a limited ability to regenerate. However, the growth of
such cells in vitro is highly problematic, especially later in the culture, when the extracellular matrix
has almost filled the initial porous network. Thus, the fluid flow required to properly perfuse the
sample cannot be obtained by the hydraulic driving force alone. Fluid pumping is a central concern of a
microfluidic system and electro-osmotic pumps (EOPs) are commonly employed for this purpose. Using
electro-kinetic equations as a basis, this study analyzed the variations of a two-fluid electro-osmotic
flow of viscoelastic fluid flow through a channel. The behavior of the fluid was studied through the
Ellis equation. This is how the electro-osmotic pump functions, as demonstrated in the literature that it
electrically drags a conducting fluid across a non-conducting fluid through interfacial dragging force
along the channel. A steady-state analytical solution for the system in a conducting fluid channel was
studied by undertaking an interface planner for fluids exhibiting Newtonian rheological properties. The
pumping characteristics were studied in detail by using the Ellis model’s parameters. The fluid rheology
was studied, which showed the viability of this technique.

Keywords: mathematical modeling; electro-osmotic flow; two immiscible fluids; Ellis model

1. Introduction

Electro-osmotic flows have been subjected to recent investigation due to their applica-
tion in electro-osmotic pumps, micro-reactors, micro-energy systems and micro-electronic
cooling systems [1]. In these micro-channel networks, fluid pumps are used, in which
the fluid is transported by an ion-dragging effect known as electro-osmosis. The review
carried out by Wang et al. [2] on various studies regarding electro-kinetic pumps is related
to a single-phase fluid, which is transported by a high electrical potential, with the help
of a classical electro-osmotic pump. Therefore, the classical electro-osmotic flow pumping
mechanism cannot be used for low electrical conductivity fluids. A new mechanism was
suggested to overcome this limitation by Brask et al. [3]. They used a highly conducting
electrolyte fluid to drag the low conductivity fluid. The non-Newtonian fluids with the
highest electro-osmotic fluxes have also been the subject of recent investigations. In this
regard, the power-law model was recently utilized [4,5]. They were successful in obtaining
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the exact relationships for the distributions of velocity, temperature, and concentration.
The viscoelastic Phan-Thien and Tanner (PTT) and the finitely extendable nonlinear elastic-
Peterlin (FENE-P) models have been used recently by Afonso et al. [6] to investigate the
electro-osmotic flows in channel and pipe geometries. In addition, an earlier numerical
study by Park and Lee [7], which was based on the PTT model with EOF in a square cavity,
is also worth mentioning. These investigations were carried out by considering small EDL,
in which a microfluidic device’s walls are separated from one another by a distance that is
greater than the EDL [6,7]. Due to the combined electric and pressure effects, the velocity
profile exhibited an additional term (which also contributed to the total flow rate), which
could be observed in non-Newtonian cases. In contrast, for Newtonian fluids, there was no
such extra term and, thus, the superposition principle was applicable. Sousa et al. [8] further
extended the study of viscoelastic models for pushing the zeta potential asymmetrically.
Dhinakaran et al. [9] thought about a skimming layer that was low in polymer and located
close to the walls. Dhinakaran et al. conducted an investigation into the pure EOF, with
a non-zero second normal stress differential and a lack of a pressure difference. [10]. The
fully developed electro-osmosis-driven flow of the SPTT or FENE-P models in a Newto-
nian solvent was also addressed by Afonso et al. [11]. Most recently, Martínez et al. [12]
discussed the two-fluid electro-osmotic flow model via the simplify PTT model. The flow
fluid rheology and pump ability were studied in detail under the influence of various rele-
vant dimensionless parameters. An analysis of the two immiscible power–electro-osmotic
law’s flow by Deng et al. [13]. discussed fluids in a micro-channel [13]. Mustafa et al. [14]
investigated heat transfer and Eyring–Powell fluid flow through a circular pipe. Foreseeing
the effects of shear-thinning and yield stress, the Ellis fluid model is a generalized Newto-
nian fluid model. It is claimed that the power law and the Bingham model are subsets of
this overarching paradigm. [15]. At extremely high shear loads, this model’s results were
identical to those of the power law model, while at moderate shear stresses, its behavior was
similar to that of the Newtonian model. Therefore, the Ellis model is a helpful framework
for evaluating the characteristics of different bio-fluids, such as blood, respiratory mucus,
chime and cervical mucus, as it outperforms the Power law [16], the Newtonian law [17]
and the Bingham Law models. The purpose of this article was to provide supplementary
evidence to the findings of Afonso et al. [11], by including the Ellis model.

2. Flow Geometry

The governing flow equation is modeled using equations of mass and momentum. The
body force term is incorporated using the well-known Poisson equation for electric potential.
The analytical solution of the governing flow equation is presented in this paper, and graphical
results are displayed and discussed for several values of the involved parameters.

The time-independent flow of two layers of immiscible viscoelastic fluid was under
consideration in this study. A schematic of the flow configuration is introduced in Figure 1a.
Such a flow situation can be encountered in some EOP pumps, in which there are two layers
of conducting and non-conducting fluids. The electrically non-conducting liquid was in the
upper half (Fluid A), while the electrically conducting liquid occupied the lower half (Fluid
B) of the channel. This was because the electrically conducting liquid carries the electrically
non-conducting liquid. This situation is demonstrated in Figure 1b. The movement of ions
resulting in the development of electric double layers (EDLs) was, naturally, expected in
the presence of an electrically conducting liquid and a dielectric wall. The process of the
formation of EDLs is explained as follows: The lower charged channel wall attracts the
opposite ions, forming a thin layer of electrically conducting liquid in the vicinity of the
wall and pushing away the co-ions. This layer is called the stern layer. A more thickly
diffuse layer of moving opposite ions succeeds the stern layer. The two layers formed in
this way result in the EDLs. Next, when a DC and an external force are applied across
the channel, then an external electric field is created, and, thus, the opposite ions of the
EDLs accelerate near the bottom wall. As a result of the motion of these ions, the neutral
liquid in the core is also dragged along the wall by the viscous effect. In the same manner, a
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second EDL is formed due to the dielectric interaction of the fluids at their interface in the
charged fluid (near the interface). The external electric field is what causes the electrically
conducting liquid to move, and the electrically non-conducting liquid is dragged by the
conducting liquid as a result of the viscous effect at the interface. An external pressure
gradient can also be added at the ends of the channel. The direction of the action of pressure
can be either along the direction of the external body force or vice versa. We placed the
origin of the frame of reference at (x, y), when the two fluids meet at their interface. The
thickness of Fluid A and Fluid B is denoted by H1 and H2, respectively. It was further
assumed that width, W, was supposed to be W >> H1 + H2 = H. Furthermore, the holdup
of the fluid in the lower half was given by the following:

RB =
H1

(H1 + H2)
=

H1

H
, (1)
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Figure 1. (a) Schematic diagram of flow geometry in a channel. (b) The diagram of EOF pump. (c) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = 0; 𝑅 = ; (d) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = 0; 𝑅 = . 

2.1. Potential Field for Fluid B 
The flow under consideration was steady and fully developed. The potential differ-

ence inside the charged Fluid B was obtained using the Poisson equation. A potential field 
is created by the charge, so, in this study, we could relate the potential field and charge 
density by a divergence relationship. This relationship is a combination of Maxwell’s 
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This is, in fact, the ratio of the cross-sectional area of Fluid B to the total cross-sectional
area of the channel. In the same manner, the holdup of the fluid in the upper half was given
by the following:

RA = 1− RB =
H2

H1 + H2
=

H2

H
, (2)

The zeta potential of the EDL that formed near the bottom wall is denoted by ζ1, while
ζi stands for the zeta potential of the EDL that formed at the interface. The equation [16–18],

∂ρ

∂t
+∇.ρu (3)

is known as the continuity equation. In Equation (3), ρ is the density, u is the fluid velocity
and t is the time. When flow is incompressible, the above equation becomes the following:

∇.u = 0 (4)

The equation of motion can be expressed as follows, in which b is the body force per
unit volume and σ is the Cauchy stress tensor [18]:

ρ
du
dt

= ∇.σ + ρb. (5)

2.1. Potential Field for Fluid B

The flow under consideration was steady and fully developed. The potential difference
inside the charged Fluid B was obtained using the Poisson equation. A potential field is
created by the charge, so, in this study, we could relate the potential field and charge density
by a divergence relationship. This relationship is a combination of Maxwell’s equation
and vector calculus operation, known as divergence [17]. The divergence of the electric
potential at some point is equal to the charge density divided by the dielectric constant of
the material, i.e., as follows:

∇.E =
ρe

∈ (6)

The expression of the electric potential in terms of voltage can be expressed in vector
form, as follows:

E = −∂ψ

∂x
i− ∂ψ

∂y
j− ∂ψ

∂z
k (7)

E = −∇ψ (8)

By substituting Equation (8) into Equation (6), the following is obtained:

∇2ψ = −ρe

∈ . (9)

Equation (9) is known as the Poisson equation for electric potential. The expression of ρe
for the electrolyte solution in equilibrium in the neighborhood of a charged wall is as follows:

ρe = −2n◦ezsinh
(

ez
kBT

ψ

)
(10)

where n◦, e, z, kB and T are the density of the ions, electric charge, active ions, Boltzmann
constant and temperature, respectively [11].

To obtain the velocity field inside Fluid B, the net charge density, ρe, had to be calculated
beforehand. Using a combination of Equations (9) and (10), under the assumption that the
flow was fully developed, we obtained the following:

d2ψ

dy2 =
2n◦ ez
∈ sinh

(
ez

kBT
ψ

)
. (11)
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Equation (11) is a well-known Poisson–Boltzmann equation. The application of the
Debye–Huckel linearization principle gave us the following:

d2ψ

dy2 = k2ψ, (12)

where k2 = −2n◦e2z2

∈kBT is the Debye–Huckel coefficient. The parameter, k, is related to the

Debye thickness, λD, as λD = 1
k . The above approximation holds for a small Debye

thickness, i.e., for 10 < kH < 103. As an implication, the induced potential and its energy
remain small. Physically, the Deby–Huckel principle means that electric potential energy
is small in comparison to the thermal energy of ions. Given the appropriate boundary
conditions, we can solve Equation (12).

ψy=−Hi = ζ1, ψy=0 = ζi.

The solution of Equation (12) is as follows:

ψ(y) = ζ1

(
ψ1eky − ψ2e−ky

)
, (13)

where

ψ1 =
Rζ ekH1 − 1
2sinh(kH1)

, ψ2 =
Rζ e−kH1 − 1
2sinh(kH1)

, Rζ =
ζi
ζ1

.

The case Rζ = 1, corresponding to the symmetric potential profile was examined by
Afonso et al. [5]. In another attempt, Afonso et al. [7] also discussed the case for vanishing
zeta potential.

In view of Equation (11), the charge density, ρe, becomes the following:

ρe = − ∈ k2ζ1

(
ψ1eky − ψ2e−ky

)
= − ∈ k2ζ1Ω−1 (y), (14)

where
Ω±(y) =

(
ψ1eky

)p
±
(

ψ2e−ky
)p

,

is an exponential function that is dependent on both the zeta potential and the Debye layer’s
width. Both the potential and the related charge density were zero for the non-conducting
Fluid A.

2.2. Governing Equations and the Rheological Model

The equations governing the flow problem under investigation are Equations (4) and (5).
In the present scenario, the body force term was ρeE, therefore, the momentum equation was
the following:

ρ
du
dt

= −∇P +∇.σ + ρeE. (15)

where E = −∇φ the applied electrostatic and ρe is the net electrostatic charge density.
The term ρeE in Equation (2) was zero for the electrically non-conducting liquid. The
constitutive model that was used in this study to represent the visco-elastic characteristics
of the fluid was the Ellis model, for which the τ satisfies [18] the behavior of fluid in both
regions and is characterized by the constitutive equation of the Ellis model. For Ellis’s
model, the constitutive equation is as follows:

τ = 2η(τ)D, (16)

where,
η(τ) =

n◦

1 +
(

τ
τ2◦

)α−1 (17)



Coatings 2023, 13, 115 6 of 18

and where τ is the magnitude of the extra stress tensor given by

τ = |τ| =
√

1
2
(τ : τ). (18)

τ◦ and α are materials constant, D =
(∇uT+∇u)

2 is the rate of deformation tensor and
η◦ is the zero-shear rate viscosity. The continuity of Equation (3) for the present flow
problem — for which u = [u(y), 0, 0] — was satisfied identically, while the momentum in
Equation (5) for conducting Fluid B became the following:

τxy,B = Pxy+ ∈ kζExΩ+
1 (y) + τB. (19)

In the above equation the component of the extra stress tensor, τxy, satisfies the
following equation:

τxy =
η duB

dy

1 +
(

τxy
τ2◦

)α−1 . (20)

By substituting Equation (19) into Equation (20) and rearranging, we obtained
the following:

η
duB
dy

=
(

Pxy+ ∈ kζExΩ+
1 (y) + τB

)
+

(
1
τ2◦

)α−1(
Pxy+ ∈ kζExΩ+

1 (y) + τB
)α. (21)

The integration of the above equation was performed for arbitrary, α. Therefore, we
shall give the results for some specific values of α.

For α = 1, Equation (21) can be integrated using the boundary condition uB = 0 at
y = −H1 to give the result in the dimensionless form

k = kH1, y =
y

H1
, τB =

τBRBH
ηush

, Dek = λkush, Γ =
−(RBH)2Px

∈ ζ1Ex
.

For brevity, we are defining ε = εB, η = ηB, where

Ωa,b(y) = (ky)b−1Ω±a (y)− (−1)(b+1)(kH1)
(b−1)Ω±a (−H1).

uB
ush

= ΓB
(
y2 − 1

)
+ 2τB(y + 1)− 2Ω−1,1(y).

(22)

Similarly, for α = 2, 3, one can easily find the following:

uB
ush

= 2k
2
ψ1ψ2β1(y + 1) + τB(y + 1) + τ2

Bβ1(y + 1)−Ω−1,1(y)

−2τBβ1Ω−1,1(y)−
2β1Γ

k
Ω−2,1(y) +

Γ
2
(
y2 − 1

)
+ β1ΓτB

(
y2 − 1

)
+ β1Γ2

3
(
y3 + 1

)
+ 2β1Γ

k
Ω+

1,1(y) +
1
2 kβ1Ω−2,1(y)

(23)

uB
ush

=
ΓB
2

(
y2 − 1

)
+τB(y + 1) +

3β2
1ΓBτ2

B
2

(
y2 − 1

)
+ β2

1τ3
B(y + 1)−Ω−1,1(y)

+
6β2

1Γ2
B

k

(
Ω+

2,1(y)−Ω−1,1(y)
)
− 3β2

1Γ2
BΩ−2,2(y)− 3β2

1τ2
BΩ−1,1(y)

+3β2
1ΓBkψ1ψ2

(
y2 − 1

)
+ 6β2

1k
2
τBψ1ψ2(y + 1)

+
3β2

1ΓB

2

(
Ω−1,3(y)−

Ω−1,3(y)
2

)
+

3β2
1kτB

2
Ω−2,1(y)

−
β2

1k
2

3
Ω−3,1(y)− 3β2

1k
2
ψ1ψ2Ω−1,1(y)

(24)
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The volumetric flow rate of Fluid B for α = 1, 2, 3, was calculated by integrating
Equations (22)–(24). This gave us the following:

QB =
∫ 0

−1

uB
ush

dy = τB −
2
3

ΓB + 2Ω−1 (−1)− 2
k

Ω+
1,1(0), α = 1 (25)

QB =
∫ 0

−1

uB
ush

dy= k
2
β1ψ1ψ2 −

ΓB
3

+
β1Γ2

B
4

+
τB
2
− 2β1ΓBτB

3

+
β1τ2

B
2

Ω−1 (−1) +
Ω+

1,1(0)

k
−2β1ΓBΩ−1 (−1)

+
4β1ΓB

k
2

(
Ω−1 (0) + Ω−1 (−1)

)
− 4β1ΓB

k
Ω+

1 (−1)

+2β1τBΩ−1 (−1)− 2β1τB

k

(
Ω+

1 (0) + Ω+
1 (−1)

)
+

β1

4
(
Ω+

2 (0)−Ω+
2 (−1)

)
− kβ1

2
Ω+

2 (−1), α = 2

(26)

QB =
∫ 0

−1

uB
ush

dy=
τB
2

+ 3k
2
β2

1τBψ1ψ2 +
β2

1τ3
B

2
− ΓB

3
− 2k

2
β2

1ΓBψ1ψ2

−β2
1τ2

BΓB +
3β2

1τBΓ2
B

4
−

β2
1Γ3

B
5
−

Ω+
1,1(0)

k

−3kβ2
1ψ1ψ2Ω+

1,1(0) + 3k
2
β2

1ψ1ψ2Ω−1 (−1)

+3β2
1τBΩ−1 (−1) +

β2
1τ2

B

k
Ω+

1,1(0)− 6β2
1τBΓBΩ−1 (−1)

+
12β2

1τBΓB

k
2 ×

(
Ω−1,1(0)−Ω+

1 (−1)
)
+ 3β2

1Γ2
BΩ−1 (−1)

−
18β2

1Γ2
B

k
3 Ω+

1,1(0) +
18β2

1Γ2
B

k
2 Ω−1 (−1)

+
9β2

1Γ2
B

k
Ω+

1 (−1) +
3β2

1τB

4
×
(
Ω+

2 (0)−Ω+
2 (−1)

)
+

3β2
1ΓB

2
Ω−2 (−1)−

3β2
1ΓB

4k
Ω−2,1(0) +

3kβ2
1ΓB

2
Ω+

2 (−1)

+
k

2

9
(
Ω+

3 (−1)−Ω+
3 (0)

)
−

3kβ2
1τB

2
Ω−2 (−1)

+
k

2
β1

3
Ω−3 (−1), α = 3

(27)

The momentum in Equation (5) for non-conducting fluid A was as follows:

τxy,A = Pxy + τA (28)

By substituting Equation (28) into Equation (20) and rearranging, we arrived at the
following equation:

η
duA
dy

=
(

Pxy + τA
)
+

(
1
τ2◦

)α−1(
Pxy + τA

)α (29)
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Again, the integration of the above equation was performed for arbitrary, α. Therefore,
we shall give the results for some specific values of α. For α = 1, Equation (29) was
integrated using the boundary condition uA = 0 at y = H2, to give the following:

uA
ush

= 2τA(y− 1) +
ΓA
β

(
y2 − 1

)
. (30)

Similarly, the corresponding profiles for α = 2 and 3 were as follows:

uA
ush

= τA(y− 1) +
ΓA
2β

(
y2 − 1

)
+ β1τ2

A(y− 1) +
β1τAΓA

β

(
y2 − 1

)
+

β2
1Γ2

A
3β2

(
y3 − 1

)
(31)

uA
ush

= τA(y− 1) + ΓA
2β

(
y2 − 1

)
+

β2
1Γ3

A
4β3 +

β2
1Γ2

AτA
β3

(
y3 − 1

)
+

3β2
1ΓAτ2

A
2β3 (y− 1)

+β2
1τ2

A(y− 1).
(32)

The volumetric flow rate of Fluid A for α = 1, 2, 3 was an expression of the following:

QA =
∫ 1

0

uA
ush

dy = −τA −
2ΓA
3β

, (33)

QA =
∫ 1

0

uA
ush

dy = −ΓA
3β
− β1Γ2

A
4β2 −

τA
2
− 2β1ΓAτA

3β
− β1τ2

A
2

, (34)

QA =
∫ 1

0

uA
ush

dy = −τA
2
− β1τ2

A
2
− ΓA

3β
−

β2
1τ2

AΓA

β3 − 3β1τ2
AΓ2

A
4β3 +

β2
1Γ3

A
4β3 . (35)

It should be noted that the expressions of Equations (22)–(24) and Equations (30)–(32)
still involve unknown constants. To determine these constants, we used interfacial conditions
at y = 0, τxy,A = τxy,B and uA = uB. The application of these conditions yielded algebraic
equations in τB, which were solved analytically. Once τB was known, τA was computed
through the following equation:

τA =
RA
RB

1
β

τB −
k
β

Ω+
1 (0). (36)

3. Results and Discussion

In this section, we analyze a special case in great depth to learn about the system’s fluid
dynamics. The generic solution applies to the classes of two-fluid systems consisting of
Newtonian and non-Newtonian fluids; viscoelastic and non-Newtonian fluids; Newtonian
and viscoelastic fluids; and viscoelastic and viscoelastic fluids. We will only discuss
Case (c). In Case (c), the viscoelastic electrically conducting liquid dragged the electrically
non-conducting Newtonian liquid behind it. The Deborah number, zero, describes the non-
conducting fluid. The present finding is compatible with the analytical solution reported in
the literature for the motion of Newtonian fluids. The dimensionless velocity for α = 3, 2 is
shown in Figure 1c,d. Here, we can see that if the conducting fluid’s flexibility is increased,
then the velocities multiply more as a result of activities that shear down the thickness
of the EDL layer, which increases the bulk transport velocity value at the channel’s core.
This boosts the shear rates near the bottom wall, which increased as a result of the drag
force exerted by the non-conducting fluid, which was brought about by hydrodynamic
viscous forces at the interface. Figure 2a,b show the impact of Γ. When Γ < 0, then the
flow rate increased and, thus, the velocity increased. To further boost the flow rate, the
pressure force can be used to act directly on the two fluids. The dramatic improvement of
this investigation is the evidence of the shear-thinning effect, which can be seen in the flow
rate. The impact of the viscosity ratio on the dimensionless velocity profile is shown in
Figure 3. Accordingly, we can see that the dimensionless velocity increased as the viscosity
ratio decreased. Therefore, an increase in the dimensionless velocity can be predicted if



Coatings 2023, 13, 115 9 of 18

the conducting fluid has a viscosity that is significantly higher than the electrically non-
conducting liquid, as shown in this figure. However, a lower Helmholtz–Smoluchowski
electro-osmotic velocity is implied by a larger viscosity, and, as a result, it is possible that
the dimensional flow rate will go down. As we can observe in Figure 4’s profiles, a non-zero
interfacial zeta potential caused a significant difference in the surface charge, a favorable
additional Columbic forcing term occurred, and, when Rζ > 0, a significant rise in the
dimensionless velocity profile occurred. For small values of Rζ , the pumping action and the
associated dimensionless velocity were dampened by a detrimental, localized electrostatic
force. The accumulation of electrically non-conducting liquid was another factor that
had a considerable impact. As can be seen in Figure 5, the normalized velocities of both
fluids increased when the electrically non-conducting liquid had a greater height than the
conducting fluid (RA > RB). The Helmholtz–Smoluchowski velocity does not dependent
on Fluid B’s holdup, and the regions with greater velocities tended to coincide with the fluid
interface plane, as RA → 1 . This analysis further implies that the best configuration for an
EOF pump is a fluid flow with three layers in which the conducting fluid contacts only one
of the other layers, where the motion of the smallest layers of conducting fluid can serve
as a lubricant at the ends of the walls, and the non-conducting fluid is pulled, as a solid
body. Figure 6 displays the variation of the volumetric flow rate and the velocity profile
for the different values of the Ellis fluid parameters: α and β1. It was observed that the
effect of α was to decrease the velocity profile in both the conducting and non-conducting
regions. Due to this decrease, the volumetric flow rate also followed a decreasing trend,
with an increase in α. However, this decreasing trend prevailed up to a certain critical
value of β1 and, thereafter, the flow rate increased with an increasing in α. The viscosity
ratio, β =

(
ηA
ηB

)
, affected the volumetric flow rate, as shown in Figure 7. Viscosity ratios

decrease when the dimensionless volumetric flow rate increases, if the conducting fluid
has a substantially higher viscosity than the non-conducting fluid. A decrease in the
Helmholtz–Smoluchowski electro-osmotic velocity, however, can be predicted by increased
viscosity and could result in a decrease in the dimensional flow rate. The dimensionless
flow rate is clearly affected by the pressure gradient to the electro-osmotic driving force
ratio, Figure 8, specifically, for flows where the pressure gradient is decreasing or where
it is increasing. Since Fluid B was also being propelled by electro-osmosis at the same
fluid height, its flow rate was obviously greater than that of Fluid A. As seen in Figure 9,
in situations where the height of the conducting fluid was greater than that of the non-
conducting fluid, keeping the holdup of the conducting fluid (Fluid B) to be a minimum,
which it is necessary in order to increase the volumetric flow rates in Fluid A. As shown
in the profiles of Figure 10, the interfacial zeta potential had a significant impact on the
volumetric flow rate, which significantly increased when

(
ζi
ζ1

> 0
)

. The pumping action
and the accompanying dimensionless flow rate were decreased due to the unfavorable,
localized electrostatic force.
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Figure 2. (a) 𝛽 = 1; 𝑅 = 20; 𝑅 = 0; 𝑅 = ; (b) 𝛽 = 1; 𝑅 = 20; 𝑅 = 0; 𝑅 = . Figure 2. (a) β = 1; R = 20; Rζ = 0; RA = 1
2 ; (b) β = 1; R = 20; Rζ = 0; RA = 1
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Figure 3. (a) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = 0; 𝑅 = ; (b) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = 0; 𝑅 = . Figure 3. (a) β = 1; Γ = 0; R = 20; Rζ = 0; RA = 1
2 ; (b) β = 1; Γ = 0; R = 20; Rζ = 0; RA = 1

2 .
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Figure 4. (a) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = ; (b) 𝛽 = 1; 𝛤 = 0; 𝑅 = 20; 𝑅 = . Figure 4. (a) β = 1; Γ = 0; R = 20; RA = 1
2 ; (b) β = 1; Γ = 0; R = 20; RA = 1

2 .
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Figure 5. (a) 𝛽 = 1; 𝛤 = 0; 𝑅 = 0.2; 𝑘 = 20; 𝑅 = 0; (b) 𝛽 = 1; 𝛤 = 0; 𝑅 = 0.2; 𝑘 = 20; 𝑅 = 0. Figure 5. (a) β = 1; Γ = 0; RB = 0.2; k = 20; Rζ = 0; (b) β = 1; Γ = 0; RB = 0.2; k = 20; Rζ = 0.
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Figure 6. (a) 𝛽 = 1; 𝛤 = 0; 𝑅 = 0.2; 𝑘 = 20; 𝑅 = 0; (b) 𝛽 = 1; 𝛤 = 0; 𝑅 = 0.2; 𝑘 = 20; 𝑅 = 0. Figure 6. (a) β = 1; Γ = 0; RA = 0.2; k = 20; Rζ = 0; (b) β = 1; Γ = 0; RA = 0.2; k = 20; Rζ = 0.
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Figure 7. 𝛽 𝑣𝑠 𝑄 for Fluid A and Fluid B. 

 

Figure 8. 𝛤 𝑣𝑠 𝑄 for Fluid A and Fluid B. 

Figure 7. β vs Q for Fluid A and Fluid B.
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Figure 8. Γ vs Q for Fluid A and Fluid B.
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4. Conclusions

The electro-osmotic flow of two immiscible fluids, which satisfied the Ellis constitutive
laws, has been analyzed. Analytical expressions of the velocity and the flow rate for specific
values of Ellis’ fluid parameter, α , were reported. Within the limit of infinitesimally small
shear stresses, the Ellis model characterizes the apparent viscosity of a shear-thinning
fluid without a singularity. In particular, when shear loads are extremely low, this model
agrees with Newtonian behavior. It was noted that, in contrast to the PTT equation, the
Ellis constitutive equation involves two material constants: α and β1. In this study, for the
specific values of α, both velocity and flow rate are increased with an increase in β1, in the
range β1 < 0.08. For the case of fixed β1, the velocity followed a decreasing trend, with an
increase in α. This was also true for the flow rate. However, an opposite trend prevailed for
β1 > 0.08, and the flow rate significantly increased, with an increase in α.
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