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Abstract: Over the past decades, ferroelectric photovoltaic (FE-PV) systems, which use a homogenous
ferroelectric material as a light-absorbing layer, have been studied using ferroelectric oxides. The PV
activity of materials can be enhanced by adjusting the bandgap of materials, and it would have a large
effect on the ferroelectric complex oxides. This phenomenon in epitaxial thin films of ferroelectric
complex oxide, Bi3.25La0.75Ti3O12 (BLT), Fe- and Co-doped films were observed. Compared with
undoped BLT, Co-(BLCT) doping and Fe and Co combined (BLFCT) doping resulted in the gradual
reduction in the bandgap and efficient visible light absorption. The reduction in the bandgap to
11.4% and 18.1% smaller than the experimentally measured Eg of the bismuth titanate-based film
using a simple Fe- and Co-doping method was performed, while maintaining ferroelectricity by
analyzing the BLCT and BLFCT films based on polarization loops, and the temperature range of the
out-of-plane lattice parameters and the photocurrent density of the BLFCT film was 32.2 times higher
than that of the BLT film, which was caused by the decrease in the bandgap. This simple doping
technique can be used to tune additional wide-bandgap complex oxides so that they can be used in
photovoltaic energy conversion or optoelectronic devices.

Keywords: ferroelectric; thin film; photocurrent density; bandgap

1. Introduction

Solar energy is one of the most abundant and reliable sources of energy and can be
used to replace fossil fuels [1,2]. The photovoltaic (PV) effect is a process to generate
electricity by transforming incoming photons into flowing free-charge carriers using solar
energy. Since Albert Einstein discovered the PV phenomenon, PV technology has been
enhanced for more than a century. After decades of study and development, commercial
crystalline silicon solar panels are still expensive compared with inexpensive fossil fuels [3].
Second- and third-generation PV cells, e.g., thin-film amorphous silicon solar cells, are
being developed to reduce the cost to harvest energy from PV cells.

The ferroelectric PV phenomenon, which may generate a steady PV response (pho-
tocurrent and photovoltage) along the polarization direction, was identified approximately
half a century ago in several ferroelectric materials without centrosymmetry [4]. The
ferroelectric photovoltaic effect is caused by spontaneous polarization in ferroelectric ma-
terials [5]. The direction of the photocurrent can be altered in the presence of an electric
field by changing the direction of the spontaneous polarization of the ferroelectric material,
which is a unique property of ferroelectric optoelectronic devices. To date, the PV effect
in barium titanate (BaTiO3, referred to as BTO) [6], lithium niobate (LiNbO3) [7], lead
zirconate titanate (Pb(Zr, Ti)O3 or PZT) [8], and bismuth ferrite (BiFeO3 or BFO) [9] has
been studied.

Reduction in the bandgap is one of the key factors for the ferroelectric PV. While the
non-ferroelectric silicon with a bandgap of 1.1 eV can absorb the spectrum below 1130 nm,
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the bandgaps of well-known ferroelectric and multiferroic materials (e.g., BaTiO3, BiFeO3,
LiNbO3, and Pb(Zr, Ti)O3 crystals) exceed 3 eV. As a result, they can only absorb most of
the ultraviolet (UV) radiation. However, UV light (<400 nm) contributes to 3.5% of the
overall radiation intensity from the sun, while visible light (400–700 nm) accounts for 42%.
To achieve an enhanced photocurrent, ferroelectric materials with narrow Eg (bandgap
energy) used for high light absorption (including visible light) are required. The large
bandgap represents the reduction in the spectral range that can be absorbed. Only a small
part of the ultraviolet radiation can be absorbed.

Various regulation methods were adapted to oxide thin films for the change of the
bandgap and the adjustment of the photovoltaic performance. For example, the solution-
drop epitaxy method to embed the crystal in the perovskite matrix to improve the gen-
eration of luminescent quantum was evaluated [10]; applying a magnetic field to the
ferroelectric thin film, the ferroelectric photovoltaic effect The modulation method of the
phase structure, which is changed by the magneto-induced in situ stress, was also stud-
ied [11]; the use of the lead-free solid solution film BiMnO3 to modify the bandgap to
improve the photovoltaic response is also gradually widely used [12].

It is known that transition metal dopants can affect optical properties and their PV
performance. Based on the calculation of previous literatures [13,14] and our previous
report [15], a doping approach based on theoretical research to study the tuning of the
bandgap on ferroelectric Bi3.25La0.75Ti3O12 (BLT) films was used. For instance, despite the
arbitrary doping of B sites in the ABO3 type perovskite structure, the photocurrent density
of the BLCT film improves by a factor of 6 compared with that of the BLT film while preserv-
ing ferroelectricity, unlike that of superlattices. Furthermore, the photocurrent density of the
BLFCT film is 32.2-fold larger than that of the BLT film. It can confirm a significant reduction
in the bandgap after simple doping based on the considerable increase in the photocur-
rent density of the BLCT and BLFCT films. In this study, bandgap-tuned Co-doped BLT
(Bi3.25La0.75Co1Ti2O12, BLCT) and Fe- and Co-doped BLT (Bi3.25La0.75Fe0.25Co0.75Ti2O12,
BLFCT) films were fabricated by radio frequency sputtering (RF sputtering). The bandgaps
of BLCT and BLFCT films were reduced to 2.25 and 2.08 eV, respectively. For BLFT and
BLFCT films with a reduced energy band, more of the spectrum, including ultraviolet light,
can be absorbed, so that more photons can enter the film to excite electrons and improve
the efficiency of photocurrent or photovoltage.

2. Experiment Detail
2.1. Sample Fabrication Process

All thin-film deposition targets were made from the following binary oxide powders
as raw materials: Bi2O3 (99.9%, Kojundo Chemical Company, Saitama, Japan), TiO2 (99.99%,
Kojundo Chemical Company), La2O3 (99.99%, Kojundo Chemical Company), Fe2O3 (99.9%,
Kojundo Chemical Company), and Co3O4 (99.99%, Kojundo Chemical Company). The ratio
of the transition metal dopant, Co, Fe in doped targets was considered to enhance bandgap
tuning. Doping ratios were Bi3.25La0.75Co1Ti2O12 and Bi3.25La0.75Fe0.25Co0.75Ti2O12 based
on our previous studies [13]. The undoped BLT, doped BLCT, and doped BLFCT powders
were completely combined during the milling process for 24 h in stoichiometric proportions,
dried in an oven at 80 ◦C, and calcined in air for 10 h at 800 ◦C. The calcined powders
were pressed into the target for 5 min at 50 MPa and sintered for 24 h at 1000 ◦C as shown
in Figure 1.
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Figure 1. (a) the flowchart for the target fabrication procedure and (b) the schematic diagram of
off-axis RF magnetron sputtering inter configuration.

Epitaxial BLT, BLCT, and BLFCT films (d = 250 nm each) were deposited using RF
magnetron sputtering at an operating repetition rate of 135 mTorr and a RF power of
<50 W on the (001)-oriented Nb-SrTiO3 substrate under 40-sccm argon gas flow. To ensure
deposition efficiency, the lowest operating pressure (50 MPa) at which glow discharge
could occur was considered, and the substrate temperature of all films was 750 ◦C as shown
in Figure 1.

2.2. Characteristics Measurements

X-ray diffraction (XRD, SmartLab, Rigaku, Tokyo, Japan) examined structural char-
acteristics using Cu Kα radiation (λ = 1.54056 Å, 40 kV, 40 mA). Field Emission Scan-
ning Electron Microscope (FE-SEM, Hitachi, S-4700, Tokyo, Japan) and atomic force mi-
croscopy (AFM) analyzed the microstructure of the thin films (Park NX10, Park Systems,
Suwon, Korea). A ferroelectric tester (Precision Multiferroic, Radiant Technologies Inc.,
Albuquerque, NM, USA) was used to measure polarized hysteresis (P-E) loops. BLT, BLCT,
and BLFCT films were fabricated on single crystal SrTiO3- (110) doped 0.5 wt% Nb sub-
strates as bottom electrodes to evaluate polarized hysteresis loops. Photolithography was
used to etch the upper electrode, and radio frequency (RF) sputtering was used to de-
posit the Pt top electrode (diameter of 150 nm) on the films. In the c-plane orientation,
the polarization value and the P-E loops of the films were evaluated between the bottom
(Nb-doped SrTiO3) and top electrode (Pt). An ultraviolet-visible (UV-Vis) near-infrared
(NIR) absorption spectrometer (Agilent 8453, Agilent Technologies, Santa Clara, CA, USA)
was used to examine the optical characteristics of the films under light within a wavelength
range of 385–800 nm. To prevent the modification of the absorption coefficient caused by
the thickness effect, a comparable thickness for all three films (pristine BLT, BLCT, and
BLFCT) was considered. A source meter (Source Meter 2410, Keithley, Cleveland, OH,
USA) was used to measure photocurrent density. A 100W solar simulator was used for
measurement under light illumination (K3000, McScience, Suwon, Korea). The sputtering
was used to deposit Pt circular electrodes (thickness = 100 nm) with a spacing of 0.95 mm
on the film surface. The photocurrent density of the film was observed between the Pt
electrodes after the 2 points were in contact. The interesting area between the two electrodes
was 4.86 × 10−4 cm2, the solar light spot size was 15 × 15 cm2, and the photocurrent was
taken 10 s per one time.

3. Results and Discussion
3.1. Film’s Crystal Structure and Ferroelectricity

Figure 2 shows XRD patterns measured in 2-theta scans of BLT, BLCT, and BLFCT thin
films grown on a (001)-oriented Nb-doped SrTiO3 (Nb-STO) substrate. Even though the
films have layered crystallographic structures, all films were grown epitaxially, and it was
confirmed by using XRD [16,17]. All the thin films were formed along the (00l) direction,
and BLT crystal structures of the BLCT and BLFCT films were preserved according to the
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XRD patterns. This implies that doping Co and Fe into the BLT structure does not result
in additional phases, and dopants can be changed. Furthermore, (008) exhibited crisp
and powerful diffraction peaks, indicating extreme crystallinity. No impurity peaks were
observed owing to the exceptional purity of the thin films. Moreover, diffraction peaks,
e.g., BLT (008), gradually shifted to a higher diffraction angle with the doping of Co and Fe
atoms, implying successful alloying in the BLFCT thin films.
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Figure 2. X-ray diffraction patterns of the BLT, BLCT, and BLFCT epitaxial films on the Nb-doped
SrTiO3 (001) substrate.

An increase in the dopant would induce enhancement of light absorption and PV
performance. However, the heavy doping at the B-site would cause a change in crystal
symmetry. That can cause a complete loss of ferroelectricity because the property can exist
only with the noncentrosymmetric crystal structure. The concentration of the dopant was
optimized to avoid this situation. Based on XRD results, it was confirmed that all grown
films had the same crystallographic symmetry with and without doping atoms.

Figure 3a–c show the surface and cross-sectional SEM results of all the prepared BLT
thin films on the Nb-SrTiO substrate. This implies that the thin film surfaces were relatively
dense, and the grain size gradually increased with the doping of Co and Fe; the grain
growth kinetics were enhanced owing to the doping of Co and Fe (Figure 3a). Few well-
defined grains and nanoscale pores were observed. Figure 3c,d show SEM images of the
BLT films doped with Fe and Co under the same RF sputtering conditions. In the second
case, both BLT films were deposited using the same deposition parameters with an increase
in the grain size. Figure 3c shows a distinct granularity, which is caused by the growth of
BLT caused by the doping of Fe and Co on the Nb-SrTiO3 substrates. Although the peak
of CoFe2O4 was not evident in XRD, it was observed on the SEM map of BLFCT. Several
diverse domains appeared, which is similar to previously reported results. Therefore, the
probability this is caused by the appearance of the CoFe2O4 phase [15] is expected. To
assess the large-area uniformity and stability of the thin film on the Nb-SrTiO3 substrate,
AFM imaging was performed at multiple locations of the sample. AFM images (Figure 3d,e)
show highly ordered stripes on the as-deposited BLT, BLCT, and BLFCT thin films over the
entire sample, similar to the SEM images discussed previously. In particular, the root-mean-
square roughness of the stripes is 0.8, 3.8, and 3.9 nm; this implies that BLT, BLCT, and
BLFCT thin films possess a morphology of smooth, dense, and crack-free surfaces, which
agrees with the SEM images.
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Figure 3. Surface morphologies (FE-SEM and AFM images) of the derived thin films; (a,d) BLT,
(b,e) BLCT, and (c,f) BLFCT.

The polarization of the BLT and BLCT films as functions of the electric field (Figure 4a)
was measured. The films were fabricated on the Nb-SrTiO (001) substrate enclosed with the
Nb(0.5 wt%) bottom electrode to accurately analyze ferroelectricity, because the polarization
direction of the BLT film was in-plane, and it became difficult to check the ferroelectricity of
the film along the direction of c-axis [18]. As shown in Figure 4a, the BLT and BLCT films
show a ferroelectric response. Based on the analysis of the previous results [13,15], they
used a BLFCT (Fe:Co of 50%:50%) target, and CoFe2O4 and BLT were separated from each
other in the films obtained using pulsed laser deposition (PLD), and ferroelectric properties
were maintained. However, the BLFCT (Fe:Co 25%:75%) films, also deposited using PLD,
exhibited weak ferroelectricity. Unlike the films sputtered using PLD, film growth on the
substrate differed depending on the method of film sputtering, especially in the case of the
BLT film doped with multiple elements, which has resulted in various morphologies. This
may be one of the reasons why BLFCT (Fe:Co of 25%:75%) films in this study do not exhibit
ferroelectricity [15,19,20]. To summarize, with hysteresis polarization loops, BLT and BLCT
films maintain ferroelectricity at different frequencies (Figure 4b,c).
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Figure 4. (a) Polarization-electric field loops were observed using the ferroelectric tester for the BLT,
BLCT, and BLFCT films on the Nb-SrTiO3 (001) substrate (Room temperature, frequency of 10 kHz).
(b,c) P-E hysteresis loops for the two films; BLT and BLCT films were tested with the frequency range
of 0.8–20 kHz.

Figure 4b shows hysteresis polarization loops in which the BLT film sustains ferroelec-
tricity at various frequencies. The hysteresis loop shifts to the positive side of the electric
field axis. This phenomenon is known as imprinting and may cause the capacitor to fail. Ti
and Bi ions are known to be unstable. Bi ions readily evaporate, but Ti ions can exist as
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Ti3+ and Ti4+, and defects, e.g., bismuth and oxygen vacancies, are the most mobile charges
and play a key role in conduction and polarization fatigue. At the grain boundaries and
film–electrode interfaces, oxygen vacancies coupled with bismuth vacancies (Bi+3-O−2) can
increase local stoichiometry deviations and change the form of the hysteresis loop [14]. The
grain border percentage decreases as the Co-doping level increases, limiting the likelihood
of space-charge trapping at the grain boundaries. This mark was eliminated by doping BLT
films with Co.

In general, photogenerated carrier separation and light absorption are directly con-
nected to the PV performance in FE-PV materials. The bandgap is the primary determinant
of light absorption. As a result, by modifying the doping degree of the films, the mechanism
of the PV effect was further examined, with the doping dependence of the bandgap being
explored initially. Figure 5a shows the light absorption of BLT thin films with different
doping concentrations. Due to the influence of the black Nb-STO substrate, the absorption
edge here is not particularly obvious. The intensity of light absorption gradually increases
with doping, indicating that the doping of Fe and Co is favorable for light absorption. The
bandgap was calculated based on the Tauc plot, i.e., a linear extrapolation of (αhν)2 versus
hν (Figure 5b–d) [21,22]. The optical bandgap decreases from 2.64 to 2.08 eV based on
different doping concentrations. The Eg values of BLCT and BLFCT were 11.4% and 18.1%,
respectively, which are smaller than the experimentally evaluated bandgap Eg values of
pristine BLT (Figure 5b).
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Figure 5. Optical response of BLT, BLCT, and BLFCT films grown on the Nb-SrTiO3 (001) substrate;
(a) Absorbance data with the wavelength (385–800 nm), and (b–d) bandgap energy estimated by
extrapolating the linear part of the (αhν)2 versus energy plots for BLT, BLCT, and BLFCT on the
Nb-STO substrate.

The substitution sites are determined by two factors: ion state and ion size. Iron and
cobalt are typical transition metals with the same three-dimensional orbital states as those
of Ti. Co2+/3+ and Fe2+/3+ are stable ion states, and their ionic radius is less than that of
Bi3+ but comparable to that of Ti4+. Owing to the same ion size, transition metal Fe, Co
ions may favor substituting in the B site of the perovskite block rather than in the A site.
However, their ionic states had differences from the state of Ti4+. Therefore, owing to the
mismatch of ionic states, it cannot be determined whether Co and Fe ions can substitute Ti
ions. However, using experimental results and electronic calculations based on the density
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functional theory, Choi et al. confirmed that transition metal can substitute Ti in BiT/LCO
superlattice films [23]. Moreover, Fe can randomly substitute Ti in the ABO blocks, as
confirmed in the BLT film doped with LaFeO3 [24] and BiFeO3 [25]. Consistent with the
previously reported results, in our experiments, Co and Fe ions possibly substituted Ti ions
in the BLT perovskite block, as we confirmed that the bandgaps of the BLCT and BLFCT
films were narrower than those of the BLT films. Several studies tune the bandgap of BiT
films by transition metal doping [25,26]. The optical bandgap of the BLFCT films was
reduced significantly compared to the BLCT films. Owing to the similar ionic radius and
stable ionic states of Fe and Co, the doping atoms, Fe and Co were probable to be randomly
substituted at the Ti sites in the perovskite block based on the doping ratio (1:3). There is a
large reduction in the bandgap, which can significantly change the photocurrent. Therefore,
the bandgap is the main reason for variation in the PV performance of the BLT films with
different doping concentrations.

Out-of-plane lattice parameters of the Nb-STO substrate and BLT, BLCT, and BLFCT
films were observed at intervals of 50 ◦C using the high-resolution XRD at a high-temperature
sample stage. Before measuring the lattice parameters, the system was equilibrated for
10 min to ensure the correct sample temperature. The lattice parameters were measured
at higher temperatures between 25 and 600 ◦C using a variable temperature four-circle
X-ray diffractometer.

The positions of (002) diffraction peaks from the film and substrate based on the x-ray
diffraction data at each temperature value were analyzed using the pseudo-Voigt fitting
function to determine out-of-plane lattice parameters. Figure 6 shows changes in the lattice
parameters of Nb-STO for the BLT, BLCT, and BLFCT films with regard to temperature.
The lattice parameter of the Nb-STO substrate increased up to 600 ◦C, exhibiting no signs of
a phase transition. Between 25 and 600 ◦C, the average linear thermal expansion coefficient
along the (002) axis of the Nb-STO single crystal was 6.93 × 10−6 K−1, which is reasonably
consistent with previously reported values between room temperature and 700 ◦C [20].
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3.2. Photovoltaic (PV) Performance

The lattice parameters (0 0 16) of the grown film monotonically increased with tem-
perature, without any discontinuity (Figure 6). Furthermore, no substantial changes were
observed in the diffraction peaks, which may have indicated a transition from the tetragonal
P4mm ferroelectric structure, at <400 ◦C; however, significant changes were observed at
450 and 500 ◦C for the BLCT and BLFCT films, respectively. Moreover, no changes were
observed in the BLT film until 600 ◦C. Although the phase change temperature was lower
than that of the BLT film, we confirmed that all samples maintained their structure at
temperatures above 450 ◦C. The actual operating temperature for most applications, e.g.,
PVs and optoelectric, does not exceed 450 ◦C in practical use. The high crystalline quality of
the thin films and substrates suggests that structural defects either on the substrate surface
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or in the thin film are unlikely to alter the phase transition behavior of BLT, BLCT, and
BLFCT thin films.

Similar to other types of PV devices, ferroelectric-material-based PV devices should
be able to absorb as much sunlight as possible to generate considerable photocurrent,
for which they require ferroelectric materials with large absorption coefficients and low
bandgaps. The most commonly used ferroelectric materials, e.g., LiNbO3, BaTiO3, and
PZT crystals, exhibit bandgaps greater than 3 eV and can harvest sunlight in the UV
range [27,28]. However, light with wavelengths less than 400 nm accounts for approxi-
mately 3.5% of the overall solar energy. As shown in Figures 4b and 6, the doped BLT
films have maintained the polarization loops and phase transition behavior of ferroelectric
materials. Figure 5b–e show that the optical bandgap decreases from 2.64 to 2.08 eV owing
to different doping concentrations.

To estimate the contribution of reducing the bandgap of the BLCT and BLFCT films,
their photocurrent densities (J) were measured. As shown in Figure 7, all films exhibit
almost zero current in the absence of light (dark current), while their photocurrent response
is significantly enhanced in the presence of light. The lens was used to enhance the light
using concentrator PVs. The photocurrent densities of the BLCT (157.32 uA/cm2) and
BLFCT films (2974.3 uA/cm2) were 1.7 times and 32.2 times higher than that of the BLT
film (92.38 uA/cm2) under the light of concentrator PVs (lens microscope with 10× magni-
fication) (Figure 7a,b)). Platinum was deposited as the electrode on the surface to optimize
electrical conductivity [29–31]. Based on previous reports on BiFeO3 conductivity and PV
reactions [32,33], the detected local conductivity changes on domain walls, consistent with
different electronic properties, and the additional degree of control on the conductivity of
the walls through the chemical doping of oxygen vacancies were obtained. The doping
of the domain walls with Co and Fe atoms, which generate high conductivity, may be
responsible for the high current obtained in the BLFCT PV reaction. As shown in Figure 7b,
the photocurrent between the Pt electrodes on the film was measured at 0−4.8 V under the
optical field. The results of photocurrent density confirm that the reduced bandgap based
on dopants enhanced the photocurrent density of the BLT film, and the optical response of
the doped BLT films was enhanced to efficiently absorb more photons.
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4. Conclusions

In this study, the BLT materials were doped with Fe and Co to minimize the bandgap
of the ferroelectric material and enhance the carrier lifetime, allowing additional free charge
to be created by sunlight and removed from the device. The bandgap reduction is promoted
by doping with Fe and Co, and its significant photocurrent density change is 32.2 times
higher than that of BLT. Studies on ferroelectric PV devices have been increasing with
the contribution of enhanced material engineering and new methods to use ferroelectric
dipoles. These findings show that ferroelectrics can be applied to solar systems [34,35]. The
reduction in the bandgap to 11.4% and 18.1% lower than the experimentally measured
optical bandgap of the BLT film using a simple Fe- and Co-doping method was observed,
while maintaining ferroelectricity by analyzing the doped films based on polarization loops
and the temperature range of the out-of-plane lattice parameters.

Although very simple doping was used here, the properties of ferroelectric thin
films after doping are very objective, and this simple technique using doping would
be used to tune additional wide-bandgap materials to enable. It can be used for solar
energy conversion or optoelectronic applications to facilitate the further development of
ferroelectric solar cells.
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