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Abstract: Hydrogen energy is recognized as the clean energy with the most development potential,
and hydrogen fuel cell technology is considered the ultimate solution utilizing hydrogen energy. The
proton exchange membrane fuel cell (PEMFC) has the merits of high energy efficiency, high energy
density, low operating temperature, is clean, and affords environmental protection. Improving the
structure of each functional layer could play a significant role in improving PEMFC performance.
In addition, membrane electrode assemblies (MEAs) are the core components of a PEMFC, and
their structure includes three main parts, namely, the gas diffusion layer (GDL), catalytic layer (CL),
and proton exchange membrane (PEM). Therefore, this review focuses on progress in the modeling
and simulation of the material structure in MEAs. First, the GDL simulation models are critically
reviewed, including two-phase calculation models and microscopic simulation models. Second,
CL microstructure models are comprehensively evaluated, involving power density enhancement,
catalyst loading distribution, electrochemical reaction and its performance optimization. Third, the
PEM simulation model, relating to molecular dynamics (MD) simulation techniques, 3D numerical
techniques, and multiphysics simulation, are reviewed. Finally, the three aspects of similarity,
individuality, and complementarity of these simulation models are discussed, and necessary outlooks,
including the current limitations and challenges, are suggested, providing a reference for low-cost,
high-performing PEMFC membrane electrodes for the future.

Keywords: modeling; simulation; membrane electrode; materials structure; PEMFC

1. Introduction

Coal, oil, natural gas and other fossil fuels are the foundation of modern industry.
In 2021, China’s natural gas consumption was 372.6 billion cubic meters, an increase of
12.7%; its consumption of refined oil was 341.48 million tons, an increase of 3.2%, of
which gasoline, diesel and aviation fuels increased by 5.7%, 0.5% and 5.7%, respectively.
There is no doubt that these fossil energy sources are non-renewable and unsustainable.
Moreover, the use of these non-renewable energy sources will also lead to increasingly
serious environmental pollution, such as the emission of carbon dioxide, sulfur dioxide
and other toxic chemicals [1–3]. In 2019, Chinese leaders announced that the country
would adopt more powerful policies and measures, strive to peak carbon dioxide emissions
by 2030, and strive to achieve carbon neutrality by 2060 [4,5]. Hence, it is necessary to
seize the opportunity of the latest scientific and technological revolution and industrial
transformation. It is, therefore, of great significance to find alternatives to traditional fossil
energy and to develop and utilize sustainable and green renewable energy [6].

Hydrogen energy is recognized as a clean energy with the most development potential.
In the 19th century, human beings became interested in the application of hydrogen energy.
Hydrogen fuel cell technology is considered the ultimate solution utilizing hydrogen energy.
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Fuel cells can be divided into proton exchange membrane fuel cells (PEMFCs), solid oxide
fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells and alkaline fuel cells,
according to the different electrolytes in the membrane electrodes [7–13]. Among these,
the PEMFC has the merits of high energy efficiency, high energy density, low operating
temperature, is clean, and affords environmental protection. It is now a mainstream fuel
cell technology, widely used in electric vehicles, fixed power stations, communication
equipment, aerospace, home power supply and other fields [9,14]. As seen in Figure 1,
hydrogen is divided into protons and electrons as it enters the fuel cell from the anode
side. The electrons are then forced through an external circuit to produce a current as the
protons travel through the electrolyte to the cathode side. Finally, oxygen is delivered to
the cathode, where it interacts with protons, electrons and water to form steam, which is
subsequently expelled via the exhaust [15].
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Figure 1. Schematic diagram of electrochemical process and application of a PEMFC [15].

Proton exchange membrane fuel cells are mainly composed of end plates, flow field
plates, membrane electrode assemblies (MEAs) and sealing elements. The MEA is the
core component of a PEMFC, being an all-in-one site for reaction generation, multiphase
material transfer and energy conversion in fuel cells and water electrolysis. The three-phase
interfacial reactions involved, and complex mass and heat transfer processes, directly
determine the performance, lifetime and cost of the PEMFC [16,17]. The structure of an
MEA includes three main parts, including the gas diffusion layer (GDL), catalytic layer
(CL) and proton exchange membrane (PEM). In the actual electrochemical reaction process,
the functional layers of GDL, CL and PEM must coordinate with each other and participate
together. Improving the material structure of each functional layer could play a significant
role in improving PEMFC performance [16]. Therefore, the material structure design of
membrane electrodes is now of great research interest, especially in terms of their modeling
and simulation.

This review focuses on the progress in the modeling and simulation of PEMFC mem-
brane electrode material structures. First, the GDL simulation models are critically re-
viewed, including two-phase calculation models and microscopic simulation models. Sec-
ond, CL microstructure models are comprehensively evaluated, involving power density
enhancement, catalyst loading distribution, electrochemical reaction and its performance
optimization. Third, the PEM simulation models, relating to MD simulation techniques,
3D numerical techniques, multiphysics simulation and machining learning methods, are
reviewed. Finally, the three aspects of similarity, individuality, and complementarity of
these simulation models are discussed, and necessary outlooks, including the current
limitations and challenges, are suggested.
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2. GDL Simulation Models
2.1. Brief Introduction

The GDL is located between the gas flow field and the CL. Its main functions are to
collect current, conduct gas and discharge reaction product water. The GDL is usually
composed of a macroporous layer and a microporous layer [18], as shown in Figure 2. For
the macroporous layer, the materials are mostly porous carbon paper and carbon cloth,
with a thickness of about 100–400 µm, and its function is to support the microporous layer
and the CL. The microporous layer mainly plays the role of improving the interface state
between the GDL and the CL, reducing the contact resistance and limiting the leaching
of water [18,19]. On the one hand, the effect of the electrode permeability on PEMFC
performance depends strongly upon the flow-field pattern. On the other hand, the gas
diffusion layer may be one of the components with the most deformation. Some properties,
such as permeability and pore size greatly influence the power density and efficiency of
the fuel cell system [20]. In view of the complex microstructure inside the GDL, current
techniques cannot fully and clearly determine its gas, liquid and heat interaction mechanism.
Using the existing preparation technology to improve the components of GDL to prepare
it with differentiated properties is expensive and time consuming, and cannot accurately
solve the problem of the optimal GDL design. It is, therefore, still necessary to strengthen
basic theoretical research.

Coatings 2022, 12, x FOR PEER REVIEW 3 of 25 
 

 

complementarity of these simulation models are discussed, and necessary outlooks, 
including the current limitations and challenges, are suggested. 

2. GDL Simulation Models  
2.1. Brief Introduction 

The GDL is located between the gas flow field and the CL. Its main functions are to 
collect current, conduct gas and discharge reaction product water. The GDL is usually 
composed of a macroporous layer and a microporous layer [18], as shown in Figure 2. For 
the macroporous layer, the materials are mostly porous carbon paper and carbon cloth, 
with a thickness of about 100–400 μm, and its function is to support the microporous 
layer and the CL. The microporous layer mainly plays the role of improving the interface 
state between the GDL and the CL, reducing the contact resistance and limiting the 
leaching of water [18,19]. On the one hand, the effect of the electrode permeability on 
PEMFC performance depends strongly upon the flow-field pattern. On the other hand, 
the gas diffusion layer may be one of the components with the most deformation. Some 
properties, such as permeability and pore size greatly influence the power density and 
efficiency of the fuel cell system [20]. In view of the complex microstructure inside the 
GDL, current techniques cannot fully and clearly determine its gas, liquid and heat 
interaction mechanism. Using the existing preparation technology to improve the 
components of GDL to prepare it with differentiated properties is expensive and time 
consuming, and cannot accurately solve the problem of the optimal GDL design. It is, 
therefore, still necessary to strengthen basic theoretical research. 

 
Figure 2. Schematic diagram of a PEMFC GDL [18]. 

2.2. Two-Phase Calculation Models 
Bapat et al. [21] examined the impact of anisotropic resistivity on the current density 

and temperature distribution of PEMFCs using a two-dimensional two-phase model, as 
shown in Figure 3. Their findings showed that the higher in-plane resistivity of the GDL 
has a negative impact on the current density in the area close to the gas channel and 
results in a somewhat higher current density in the area close to the current collector. As 
the GDL in-plane resistivity increased, the local current density for the entire catalyst 
layer fell. In areas where the catalyst layer is immediately exposed to the gas channels, 
this effect was more pronounced. The temperature of a membrane electrode assembly 
(MEA) strongly affects the performance of fuel cells [22–26]. Without proper thermal 

Figure 2. Schematic diagram of a PEMFC GDL [18].

2.2. Two-Phase Calculation Models

Bapat et al. [21] examined the impact of anisotropic resistivity on the current density
and temperature distribution of PEMFCs using a two-dimensional two-phase model, as
shown in Figure 3. Their findings showed that the higher in-plane resistivity of the GDL
has a negative impact on the current density in the area close to the gas channel and results
in a somewhat higher current density in the area close to the current collector. As the GDL
in-plane resistivity increased, the local current density for the entire catalyst layer fell. In
areas where the catalyst layer is immediately exposed to the gas channels, this effect was
more pronounced. The temperature of a membrane electrode assembly (MEA) strongly
affects the performance of fuel cells [22–26]. Without proper thermal management, the
performance of the fuel cell may not be maintained. The minimum temperature expected
in the MEA is about 333–353 K and the maximum temperature is about 373–473 K [27]. The
maximum and minimum temperatures in the cathode catalyst layer were also dependent on
the average current density rather than the local current density for GDLs with significant
anisotropic thermal conductivity.
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Figure 3. Schematic representation of computational domain of a PEMFC (a) and transport of
electrons in a GDL (b) [20].

Meng et al. [28] established a mathematical model of the two-phase flow dynamics
of fuel cells based on experimental observations. In the GDL, liquid water transport
was described using the standard two-phase mixing model, while the gas channel (GC)
employed the mist-flow model. To explain the water droplets that started to emerge on
the GDL surface, an interfacial coverage model of liquid water at the GDL/GC interface
was developed. This addition of this interface not only made it possible for the current
two-phase model to predict how cathode flooding affects cell performance, but it also
completely fixed the problem of the failure of earlier two-phase models to accurately depict
how gas velocity (or stoichiometry) affects cell performance. Koido et al. [29] modeled
the multi-component and two-phase liquid-gas transport phenomena in GDLs. They
measured and predicted the two-phase flow properties of GDLs, as well as modeling
two-phase multicomponent transport. In addition, they simulated gas–liquid two-phase
transport using a multiphase mixing model and combined single-phase and two-phase
lattice Boltzmann methods to make predictions. This method was applied to carbon fiber
paper GDLs to identify their two-phase multicomponent transport. However, further
development of transport simulation models of the two-phase flow properties in GDLs is
required to incorporate thermal effects when coupled to other layers to investigate further
their hidden phenomena.

As illustrated in Figure 4, Zhou et al. [30] used the VOF model with the finite element
method (FEM) to simulate the two-phase flow in the GDL microstructure and to investigate
the impact of various surface wettability distributions. The findings showed that two-phase
flow, particularly in the GDL, is influenced by the single gradient variation of surface
wettability. Additionally, the deeper immersion depth of thicker polytetrafluoroethylene
could aid in removing moisture from the GDL. A significant reference for regulated water
movement in the GDL could then be found in the suggested surface wettability distribution
system. Shi et al. [31] created a three-dimensional VOF model to study the impact of liquid
water saturation and liquid route development on microporous layer crack characteristics.
They investigated the effect of crack shape, crack spacing and crack number on GDL liquid
water transport. It was found that the liquid water saturation of GDL increased with the
number of cracks and the crack spacing, but not with the crack shape.
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distribution based on GDL microstructures [30].

2.3. Microscopic Simulation Models

Yiotis et al. [32] proposed an algorithm for stochastic reconstruction and the accurate
characterization of GDLs in resin deposition. Using the fiber diameter, average porosity,
anisotropy and the resin content of the composites as inputs, their model solved the
corresponding conservation equations at the microscale in the obtained digital domain to
determine their effective transport properties, such as the Darcy permeation rate, effective
diffusivity, thermal/electrical conductivity and pore tortuosity, focusing on the effects of
dielectric anisotropy and resin content. The experimental results showed that, as shown in
Figure 5, the pore-scale velocities calculated using the model were very close to the results
obtained for the X-ray µ-CT samples.
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Göbel et al. [33] adopted synchrotron radiation-based X-ray tomography and focused
ion beam scanning electron microscopy (FIB-SEM) analysis methods to study the mi-
crostructure of MPL-containing carbon fiber-based GDL materials to simulate GDL flow
and thermal properties. Figure 6 shows the simulated saturation levels for the two GDLs as
a function of capillary pressure, in which the capillary pressure–saturation curves charac-
terize the pore size distribution and microstructure of the GDLs, respectively. The findings
demonstrated that the H14C7 material has a saturation of 20% at a capillary pressure of
670 Pa, and the 28BC material has a saturation of 40% at a capillary pressure of 310 Pa.
Paper-based GDLs, such as 28BC, were more prone to flooding, and water management
of H14C7 was beneficial under high-current density. This suggests that the mass transfer
properties of GDLs can be better understood by establishing pores of different pore size
and shape.
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Zhou et al. [34] proposed mathematical models to study the effect of the assembly
force of different GDLs and membranes. The results showed that the cellular structure of
porous GDL undergoes significant deformation due to its weak mechanical strength. Cell
performance was inversely proportional to film thickness but more sensitive to changes in
assembly force. Moreover, Zhou et al. [35] applied a stochastic model to reconstruct the
microstructure of uncompressed GDL. Subsequently, FEM was used to perform assembly
pressure simulations to generate the compressed GDL microstructure, and a VOF model
was established to study the two-phase flow in the compressed GDL. The proposed hybrid
model, shown in Figure 7, investigated the effect of assembly pressure on the deformation
of the GDL. The assembly pressure was found to cause uneven deformation of the GDL
along the thickness direction. In addition, the simulation results confirmed that the water
saturation decreased with the increase in the compression ratio when the capillary pressure
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was greater than 4 kPa. When the capillary pressure was lower than 3 kPa, however, the
compression had little effect on the water saturation.
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2.4. Summary

To realize high performance in PEMFCs, GDL materials should meet the requirements
of ultra-thinness, high mechanical strength, high permeability and low resistivity. The
optimization of the GDL material structure through traditional processes, such as design,
preparation and experiment is time consuming and inefficient. The solution to the dilemma
requires a combination of simulation models and traditional methods. At present, the two-
phase model is a commonly used model to study GDL fluid characteristics and flooding
phenomena of different degrees of complexity [28,36]; however, the two-phase model is a
macroscopic model and lacks correlation with the real two-phase fluid flow, resulting in
a difference between the simulation and experimental results. The establishment of the
microstructure model enables an understanding of the influence of the GDL microstructure
on multiphase mass transfer [32,35]. However, the establishment of the microscopic model
is relatively complicated, and the computation is very large, requiring further optimization.
For example, it can be combined with artificial intelligence models to reduce computing
time by 1–2 orders of magnitude at the expense of a small amount of accuracy [37–39];
other modeling approaches for GDL are shown in Table 1.
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Table 1. Summary of GDL modeling.

Model
Dimension Area of Study Data Used for Model

Validation Reference

One-
dimensional

Fuel cell performance Experimental data Springer et al. [40]

Species migration mechanism and
factors affecting fuel cell performance Experimental data Bernardi et al. [41]

Two-
dimensional

Humidification effects None Nguyen et al. [42]

Transport of two phases within the
PEM fuel cell None Pasaogullari et al. [43]

Microstructure of two-phase flow in
GDL and the influence of surface

wettability distribution
None Zhou et al. [30]

Microstructure of MPL-containing
carbon fiber-based GDL materials None Göbel et al. [33]

Three-dimensional

Effect of cell assembly pressure on
contact resistance between bipolar

plate and GDL
None Atyabi et al. [44]

Liquid water flow from GDLs to the
gas channels of the PEM fuel cell Experimental data Berning et al. [45]

Formation of liquid water with GDLs
and CLs of the PEM fuel cell None Ye et al. [46]

3. Simulation Models of CL
3.1. Brief Introduction

Optimizing the catalyst in membrane electrode assemblies (MEAs) involves a better
understanding of Pt utilization at the triple-phase boundary in the catalyst layer, where
the reactant, the ionic conducting polymer and the electronic conducting substrate are
present on the same platinum (Pt) or Pt-alloy nanoparticle (NP) [47]. Platinum can only be
used for electrochemical reactions when it is simultaneously in contact with the membrane
electrolyte and the carrier, while allowing the reactant gas and water to enter and exit
the reaction site. Therefore, increasing the number of these active sites and improving
the utilization efficiency of platinum are critical to improving battery performance. The
challenge is to activate Pt as a catalyst and to improve the catalytic performance by cov-
ering/impregnating the Pt NPs by a thin ionomer membrane, while maintaining their
accessibility to the transport of fuel gases and water. Optimal battery performance always
strikes the best balance between catalytic activity and maximum platinum utilization,
proton conductivity and oxygen delivery [48].

Generally, the position where the reactive gas, Pt particles and high molecular polymer
are combined is called the three-phase reaction interface, and is essentially the intersection
of electron, proton and molecule (reactive gas) transfer channels. The CL is an important
site in that the electrochemical three-phase reactions occur inside the fuel cells [49,50].
During the operation of fuel cells, the transfer of protons and electrons occurs, as well as
the transfer of the two-phase flow of the reactant gas and the product water gas–liquid
(the gas flow and the water flow are kept unobstructed). In general, the more effective
reactive sites exposed in the catalytic layer, the stronger the catalytic ability of the catalytic
layer and the better the performance of the fuel cell. The distribution of reactive sites
is closely related to the material structure and shape of the catalytic layer. Therefore,
improving the activity of the fuel cell catalyst layer and reducing the amount of the catalyst
are urgent technical problems requiring solutions in the field of fuel cells. In addition,
numerical simulation is an effective means of studying the CL mass transfer process [51,52]
and includes power density enhancement, catalyst loading distribution, electrochemical
reaction and its performance optimization.
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3.2. Models and Simulation Results

Since the catalytic layer structure is heterogeneous and complex, macroscopic mod-
eling methods may not capture the actual phenomena and interactions that occur. The
best way to simulate the catalytic layer is to directly model and simulate the actual mi-
crostructure. Ebrahimi et al. [53] proposed a numerical method to evaluate the effect of
different catalyst loadings on compact CL (CCL) to evaluate the performance effects of
different catalyst loadings on PEMFCs, depicted in Figure 8. In their proposed method,
a two-dimensional steady-state isothermal implicit model of a PEMFC was established,
which was a CCL condensation model based on computational fluid dynamics (CFD)
simulations. Experimental results showed that using the developed model to determine
the optimal catalyst-loading distribution increases the maximum density of the PEMFC
by about 7%. Sabharwal et al. [54] proposed a microscale electrochemical model, includ-
ing a description of the ionomer membrane resistance and a multi-step electrochemical
reaction model for the oxygen reduction reaction, to analyze microstructure, transport
and electrochemical performance. Further, the pore morphology of the catalyst layer was
extracted from the FIB-SEM images by employing a local thresholding algorithm to explain
the microstructural variation between different images of the same catalyst layer, resulting
in the anisotropy of the catalyst layer. Micro-scale numerical mass transport simulations
show that transport predictions are affected by image resolution and that a minimum
domain size of 200 nm is needed to estimate transport properties. To improve the design
of the cathode CL, Barreiros et al. [55] proposed a multi-physical model combining an
electron microscope characterization technique and numerical simulation to realize its
discretization (platinum, carbon, ionomer and pore phase) and the morphology design of
the microstructure. The established multi-physical model, as shown in Figure 9, includes
gas and ion transport in Nafion and gas transport in pores. The electrochemical problem
was solved through the four-step reaction mechanism, and the numerical simulation of the
catalyst layer was realized. The results showed that due to the oxygen-diffusion limitation
of the Nafion membrane, the structural heterogeneity had a great impact on the mass
transfer performance, which, to a certain extent, may be related to the competition effect
between particles.
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reconstructed carbon phase; (d) carbon phase with platinum particles distributed on the surface;
(e) addition of an ionomer layer on the Pt/C aggregate; (f) addition of pore phase. (Legend grey:
pore phase; green: ionomer stage; orange: carbon phase; yellow: platinum phase).

Machine learning (ML) is also utilized in PEMFC chemical reaction molding and
is classified into two categories (black box and white box approaches). Calculation and
time expenses are typically quite expensive in multi-physical approaches for complex
chemical reaction molding (electrochemical/physical molding based on the white box
method). However, ML is able to understand the inherent laws of complicated physical
model simulation results, which can substantially aid the application of these physical
models at reasonable prices. Dalasm et al. [56] devised a mathematical surrogate technique
(in Figure 10a) that combines a physical model of the cathode CL with an artificial neural
network (ANN) model to forecast CL performance, such as activation over-potential, in
PEMFCs. For the testing dataset, the experiments revealed that the accuracy in prediction
performance was reached with an R2 of 0.8. The most critical structural characteristics that
affected CL performance were its thickness and membrane volume content, according to
the surrogate model. Also, surrogate models of PEMFCs were created by Wang et al. [57],
resulting in an efficient digital twin. The test set verification results showed that the relative
root mean square errors (rRMSEs) between the prediction of surrogate ANN/SVM models
and the simulation of multi-physical models ranged from 3.88 to 24.80%, indicating that
the proposed models could be used to predict hydrogen concentration, relative humidity,
oxygen, temperature and liquid saturation. Li et al. [58] suggested an intelligent method
(in Figure 10b) for predicting the current density of a PEMFC by combining a 3D physical
model with a deep belief network (DBN) model. With an R2 of 0.9979, the validated
findings showed that the suggested model had outstanding accuracy in predicting PEMFC
performance of current density.
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3.3. Summary

The current research direction of CL materials is to adopt porous structure design, with
a large specific surface area, high porosity, and a controllable porous structure. Therefore,
since mathematical [59–61], statistical and meta heuristic models [62–64] of CL are based on
the macroscopic level, they cannot accurately simulate microscopic chemical phenomena
and interactions. The microscopic model established based on the chemical reaction process
and material topology [53–55] can, therefore, better optimize the material structure of CL
to obtain excellent performance, such as power density enhancement and catalyst-loading
distribution. In addition, with the help of ML-related techniques, the CL chemical reaction
process can be combined with ML algorithms [56,58] to reduce simulation time and cost, so
as to better design the CL material structure. Other modeling approaches for CL are shown
in Table 2.
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Table 2. Summary of CL modeling.

Model
Dimension Area of Study Data Used for Model

Validation Reference

One-
dimensional

Coarsening and performance
monitoring of Pt particles None Hung et al. [65]

Two-dimensional

Calculation method of diffusion
coefficient of in situ oxygen under

different conditions
None Thosar et al. [66]

Predicting the current density of
PEMFCs by combining a 3D physical

model with DBN model
None Li et al. [58]

A multi-physical model to realize its
discretization and morphology

design of microstructure
None Barreiros et al. [55]

Three-dimensional

Influence of water flooding on
performance of PEM fuel cell None Dawes et al. [67]

Effects of the air velocity and
wettability Experimental data Han et al. [68]

Air flow distribution in the PEM fuel
stack for two different configurations None Mustata et al. [69]

Transport and formation of liquid
water Experimental data Mazumder et al. [70]

4. PEM Simulation Models
4.1. Brief Introduction

It is well known that PEM is the key obstacle that restricts the commercial application
of PEMFC batteries. Among the different ionomers available for PEMFC applications,
perfluorosulfonate-type ionomers (PFSI), such as Nafion by DuPont, are used most widely.
A PEM fuel cell requires expensive and scarce platinum or platinum-alloy catalyst particles
to provide sufficient catalytic activity; it is important to reduce the platinum loading in the
electrode and to improve the electrode performance [71–74]. Several studies concentrate on
producing high-quality catalyst layers by using an optimal amount of Nafion [75–79]. Low
Pt loading was also achieved by a process that features cross-linking carbon- supported
Pt (Pt/C) with perfluorosulfonate ionomer during its coagulation from the colloid [80,81],
thereby realizing efficient utilization of the platinum catalyst.

The operating temperature of PEM determines the operating temperature of the
fuel cell and is a key factor affecting the manufacturing cost and operating life of a
PEMFC [82,83]. PEM consists of a proton-conductive membrane coated with a porous
electrocatalyst layer on both the anode and cathode sides. In MEAs, PEM is mainly re-
sponsible for proton conduction between the electrodes on both sides. When working,
the role of PEM conducts protons in the MEA to form a closed loop [84–86]. Therefore,
the fast proton- conduction characteristics in MEAs and the high catalytic activity of the
catalyst are the necessary conditions to obtain high-performance PEMFC. Generally speak-
ing, PEM materials should have good proton conductivity, allow low electro-osmosis of
water molecules in the membrane, have low permeability of gas in the membrane, good
electrochemical stability, good dry-wet conversion performance, good workability and be
cost effective [87,88]. Despite great progress in recent PEM research, many problems still
exist, such as complex material preparation, high production cost, short service life, and so
on. The future development of PEM, therefore, also requires the use of a simulation model
to solve the problems of its material structure in terms of the mechanism.
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4.2. Molecular Dynamics Models and Results

Molecular dynamics (MD) is a comprehensive technology combining physics, mathe-
matics and chemistry. It relies mainly on Newtonian mechanics to simulate the motion of
the molecular system, so as to calculate the system’s configuration integral, and further
calculate its thermodynamic quantities and other macro properties [89–91]. Similarly, MD-
simulation techniques can also be used in the simulation of PEM to study details of its
morphology, structure and transport properties [92]. To study the microstructure of the pre-
pared PEM, Li et al. [93] employed MD simulations to study the migration behavior of water
molecules and ions in hydrated sulfonated styrene-grafted fluorinated ethylene propylene
(FEP) membranes with different side chain lengths. The simulation results showed that the
proton conductivity of a membrane with a side chain length of 7 sulfostyrene units is the
highest, at about three-fifths of the experimental data (in Figure 11). This indicated that
the MD-simulation method has certain guiding significance for designing the PEM of a
side chain structure polymer. Rao et al. [94] calculated and analyzed proton mobility and
ion conduction using MD simulations to study the effect of crosslink formation on proton
conduction. The simulation results demonstrated that with the increase in the number
of crosslinks, the proton diffusion coefficient first increases and then decreases. This was
because the formation of cross-links is beneficial for opening new channels and improving
proton conductivity. However, too much crosslinking also reduced proton diffusivity due
to blockage on the backbone. In addition, they also found that the conduction of protons is
better at 350 K than at 300 K (in Figure 12), suggesting that temperature also has a signifi-
cant effect on diffusivity and conductivity. In addition, several scholars also used an MD
model to study other properties of PEM, such as proton transport and conductivity [95],
proton mobility and thermal conductivities [96], water-induced phase segregation [97],
water channel morphology [98], and so on.
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4.3. Multiphysics Simulation and ML Methods

Jourdani et al. [99] adopted a 3D numerical model to study the effect of different
membrane geometries on the performance of PEMFC. The geometric model, with the
corresponding COMSOL multiphysics simulation results. The simulation results demon-
strated that the performance of the PEMFC improves as the film thickness decreases toward
the nanometer scale. Validation experiments confirmed that the proposed models are
in good agreement with actual operation. Increasing the maximum power density of
PEMFCs can further advance their applications, which require very high current densities.
Tsukamoto et al. [100] performed 3D numerical simulations of full-scale PEMFC stacks
at high current densities. The results revealed that GDL gas diffusivity and thermal con-
ductivity significantly affect the distribution of its PEM temperature and water saturation,
which are related to cell performance and durability. The influence of diffusivity and
thermal conductivity of GDL gas on PEM temperature and water saturation is shown
in Figure 13. Haghayegh et al. [101] proposed COMSOL multiphysics to evaluate the
performance of PEM fuel cells with a serpentine flow structure. The model results con-
firmed that the catalyst had a higher specific surface area and active site and good catalytic
performance; they also predicted a reasonable decrease in oxygen concentration along
the channel, which indicated the consumption of oxygen by the electrochemical reaction.
Liquid water was produced at a higher rate due to the high oxygen consumption of the
cathode. Sezgin et al. [102] utilized COMSOL multiphysics to simulate high-temperature
PEM fuel cells to study the effects of membrane conductivity, reactant inlet velocity, and
designed performance parameters. Jourdani et al. [103] used COMSOL multiphysics to
study the effect of membrane geometry on the performance of PEM fuel cells. The results
demonstrated that the thinner the film, the more current the PEM fuel cell produces, the
more oxygen and hydrogen it consumes, and the more water it produces.



Coatings 2022, 12, 1145 15 of 25Coatings 2022, 12, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 13. Influence of diffusivity and thermal conductivity of GDL gas on temperature and water 
saturation distribution of PEM; (a) gas/coolant flow direction; (b) temperature distribution of 
middle and terminal cells for the modified MEA at 3.5 A/cm2; (c) temperature of PEM; (d) water 
content of PEM; (e) water saturation in cathode GDL; (f) cell voltage [100]. 

The performance of an MEA is physically related to many parameters at different 
scales [104–108]. It is very expensive to optimize several parameters simultaneously 
when designing the experiment. Therefore, various models were proposed to locally 
simulate the internal processes of a PEMFC. These theoretical model simulations based 
on numerical analysis were shown to be able to describe the behavior of PEMFCs in 
certain processes with acceptable accuracy. 

As data-driven models, ML models can consider and incorporate any feature from 
any physical or chemical processes at any scale into the model simultaneously. For 
example, ML can be integrated with multiphysics simulation models to optimize the 
performance of PEM. Tian et al. [109] proposed a method combining ANN, genetic 
algorithm (GA) and a 3D multiphysics model to predict the performance of PEM fuel 
cells, as shown in Figure 14. First, the multiphysics model generated a total of 1500 data 
points for training, testing and validating the ANN; second, deep learning was 
performed through GA to determine the maximum power and corresponding operating 
conditions; finally, the fuel cell was mapped through the learning results of ML physical 
and electrochemical processes. The results demonstrated that the combined ANN-GA 
method is suitable for predicting fuel cell performance and identifying operating 
parameters of maximum power at different temperatures, which is very useful in fuel cell 
applications. A deep learning-based method for optimizing a membraneless microfluidic 
fuel cell (MMFC) performance by combining the artificial neural network (ANN) and 
genetic algorithm (GA) was introduced [110]. A 3D multiphysics model that had an 
accuracy equivalent to experimental results (R2 = 0.976) was employed to generate the 
ANN training data. The ANN was equivalent to the simulation (R2 = 0.999) but with far 
better computation resource efficiency as the its execution time was only 0.041 s. As 
shown in Figure 15, the ANN-GA and numerically calculated maximum power densities 
differed only by 0.766%. The ANN-GA and 3D multiphysics simulations agree well in 

Figure 13. Influence of diffusivity and thermal conductivity of GDL gas on temperature and water
saturation distribution of PEM; (a) gas/coolant flow direction; (b) temperature distribution of middle
and terminal cells for the modified MEA at 3.5 A/cm2; (c) temperature of PEM; (d) water content of
PEM; (e) water saturation in cathode GDL; (f) cell voltage [100].

The performance of an MEA is physically related to many parameters at different
scales [104–108]. It is very expensive to optimize several parameters simultaneously when
designing the experiment. Therefore, various models were proposed to locally simulate the
internal processes of a PEMFC. These theoretical model simulations based on numerical
analysis were shown to be able to describe the behavior of PEMFCs in certain processes
with acceptable accuracy.

As data-driven models, ML models can consider and incorporate any feature from any
physical or chemical processes at any scale into the model simultaneously. For example,
ML can be integrated with multiphysics simulation models to optimize the performance of
PEM. Tian et al. [109] proposed a method combining ANN, genetic algorithm (GA) and a
3D multiphysics model to predict the performance of PEM fuel cells, as shown in Figure 14.
First, the multiphysics model generated a total of 1500 data points for training, testing
and validating the ANN; second, deep learning was performed through GA to determine
the maximum power and corresponding operating conditions; finally, the fuel cell was
mapped through the learning results of ML physical and electrochemical processes. The
results demonstrated that the combined ANN-GA method is suitable for predicting fuel
cell performance and identifying operating parameters of maximum power at different
temperatures, which is very useful in fuel cell applications. A deep learning-based method
for optimizing a membraneless microfluidic fuel cell (MMFC) performance by combining
the artificial neural network (ANN) and genetic algorithm (GA) was introduced [110]. A 3D
multiphysics model that had an accuracy equivalent to experimental results (R2 = 0.976) was
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employed to generate the ANN training data. The ANN was equivalent to the simulation
(R2 = 0.999) but with far better computation resource efficiency as the its execution time was
only 0.041 s. As shown in Figure 15, the ANN-GA and numerically calculated maximum
power densities differed only by 0.766%. The ANN-GA and 3D multiphysics simulations
agree well in predicting the occurrence of the power density and current density at optimal
operating conditions.
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Yin and Razmjooy [111] proposed a method to identify the optimal parameters for
PEMFCs, which integrates a DBN model and an improved deer-hunting optimization
algorithm. The method was then used to optimize the performance of the parameters in
the PEMFC stack. The simulation results confirmed that their proposed method has high
accuracy in predicting the parameters of the PEMFC stack. Zhou et al. [112] proposed a
degradation model for PEMFC-stack performance based on a multiphysics aging model
and a particle filter. The proposed model was based on physical fuel cell equations. In
order to take performance degradation into account, three aging coefficient ohmic losses,
reaction activity losses and reactant mass transfer losses were integrated into the major
internal physical-aging phenomenon equations. By fitting the polarization curve at the
start of life, the aging parameters were initialized first. Two phases, the learning phase and
the prediction phase, rule the prediction. In order to study the aging behavior and update
the aging parameters, a particle filter framework was used for the learning phase. Suitable
fitting curve functions were then identified to satisfy the aging parameter evolutions; the
functions were used to extrapolate and predict their evolutions during the prediction
phase to finally predict voltage evolution. Although this method yields pleasing results, its
accuracy is subject to variations in operating conditions. In fact, this prediction method
was based on the identification of the best fitting curves, so the fitting functions must be
altered if the operating conditions change. As a result, the suggested modeling approach
would prefer to focus on steady-state operations and constant operating temperature.

4.4. Summary

It is very effective to model the material and structure of PEM using the MD method,
and to analyze and design the optimal material structure, so as to improve the performance
of PEMFCs; it is also of great current research interest and challenge. With the help of
the MD model, the modification of the material can be combined with the modification
of the membrane morphology to increase the stability of the membrane while increasing
the proton conduction, thereby improving its performance and prolonging service time.
However, is difficult to model the problem to be solved using the MD method, and the
simulation calculation is time-consuming [113,114]. At the same time, the output results
of the model are difficult to verify directly, which also hinders further promotion and
application of this method. Multiphysics simulation and machining learning methods have
their own advantages and disadvantages [115–117]. In the future, it may be a useful option
to combine multiphysics simulation and machining learning methods to solve the PEM
material structure problem, so that the calculation time and cost can be greatly reduced
under the premise of sacrificing less predictive performance. Other modeling approaches
for PEM are shown in Table 3.

Table 3. Summary of PEM modeling.

Model
Dimension Area of Study Data Used for Model

Validation Reference

Two-
dimensional

Effects of heat generation on PEM fuel cell
performance None Dutta et al. [118]

Microstructure of MPL-containing carbon
fiber-based GDL materials None Zhou et al. [112]

Three-
dimensional

Performance of multi-cell PEM stack (five
single cells) Experimental data Kvesić et al. [119]

Thermal and water management of single
PEM fuel cell and multi-cell stacks None Wöhr et al. [120]

Effects of oxygen transfer resistance and
catalyst reduction on performance of

Automotive PEM fuel cells at high current
density

None Li et al. [121]
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Table 3. Cont.

Model
Dimension Area of Study Data Used for Model

Validation Reference

Three-
dimensional

Deep learning-based method for optimizing
a membraneless microfluidic fuel cell

performance by combining the artificial
neural network and genetic algorithm

None Nguyen et al. [110]

Method combining ANN, genetic algorithm
and a 3D multiphysics model to predict the

performance of PEM fuel cells
Experimental data Tian et al. [109]

A 3D numerical model was developed to
study the influence of different membrane

geometries on PEMFC performance
None Jourdani et al. [99]

5. Discussion

This review focuses on progress in the modeling and simulation of membrane electrode
material structures for PEMFCs, including GDL, CL and PEM models. Table 4 lists the
comparison of different models of PEMFCs grouped by GDL, CL and PEM. As listed in
Table 4, the advantages and shortcomings of models based on microstructure simulation or
integrated with ML are reviewed. This section discusses the above in terms of three aspects:
similarity, individuality and complementarity of these simulation models.

Table 4. Comparison of different models of PEMFCs grouped by GDL, CL and PEM.

Propose Models
Based On

Microstructure
Simulation

Integration
with ML Advantages Shortcomings

GDL

Two-dimensional two-phase
model [21]; Two-phase flow

model [28]
No No Simple modeling and less

calculation

Lack of GDL
material

microstructure
characterization

Two-phase flow model [30] Yes No
Convenient to study the

influence of material
structure on its performance

Complex modeling

A process-based algorithm
[32]; a stochastic model [35] Yes No

Could investigate the
microscopic properties of

materials

Multiple
integrating models

required to
complete

CL

A two-dimensional
model [37] No No

Easy to determine the
optimal catalyst loading

distribution

Microstructure of
CL material is not

considered.

A multi-physical model [39] Yes No Could be used to design the
structural heterogeneity

High modeling
complexity

A physical model with
ANN [49] Yes Yes Can be predicted the CCL

performance

Multidisciplinary
knowledge

involved

PEM

Molecular dynamics
models [93,94] Yes No To study details of its

morphology, structure, etc.

Complex modeling
and long

calculation time

Multiphysics
simulation [99] No No

To obtain different
membrane geometries on

the performance of PEMFCs

Lack of research on
material

microstructure

Multiphysics simulation
with ML [104] Yes Yes Suitable for predicting fuel

cell performance

Interdisciplinary
knowledge

required
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5.1. Similarity

The three simulation models of the GDL, CL and PEM are all based on the respective
mechanisms of the core component MEAs to study the multiphase material transfer and
electrochemical reaction of electrons, protons, reaction gases and product water, so as to
optimize the material structure of MEAs, and obtain a high-performance, long-life and
low-cost MEA. Another similarity is that these three models are mainly three-dimensional
models, especially for modeling the microstructure of materials, which is more conducive
to performance prediction. It is worth noting that hybrid modeling is also a future devel-
opment trend in these three types of models [55,93]. For example, for GDL simulation
modeling, the integration of the FEM model and the VOF model is used to predict the
wettability distribution. In CL simulation modeling, the prediction of PEMFC performance
can be achieved through the fusion of a CL physical model with an ML model. Similarly,
the computation time of the PEM simulation model can be reduced by the fusion of DBN
and 3D numerical models.

5.2. Individuality

Naturally, there are obvious differences in the three simulation models established
for GDL, CL and PEM due to different research objects. For example, for the GDL model,
more attention is paid to the coupling relationship between the material structure and the
permeability and drainage, so as to realize gas transfer and drainage of the reaction product
water. The best way to simulate CL operation is to perform directly through multiphysics
modeling based on the actual microscopic material structure, such as studying CL layer
thickness, catalyst location, pore morphology and load distribution, and clarifying the
mechanism of gas and ion transport in CL, such as electrochemical reactions. Since fast
proton conduction properties within the MEA and the high catalytic activity of the catalyst
are necessary conditions for obtaining high-performance PEMFCs, the existing models
mainly address membrane material design, geometry optimization, etc., through MD and
multiphysics models, and ML methods.

5.3. Complementarity

The current MEA electrodes still have problems, such as high cost and poor durability,
and these must be addressed. The existing mainstream methods are mainly based on the
modeling of a single GDL, CL and PEM core component to solve its local problems. Since
the MEA electrode is the site of reaction, multiphase mass transfer and energy conversion
in the fuel cell and water electrolysis, it involves a three-phase interface reaction and a
complex mass and heat transfer process [16]. It is difficult to solve the global material
structure optimization problem of the MEA electrode only through local simulation by a
single model. This may require integrating the respective advantages of GDL, CL and PEM
models to establish a higher-level integration model.

6. Outlook

As the core component of a fuel cell, the MEA is of great significance in improving
fuel cell performance and life, and reducing cost; this would accelerate the large-scale
commercialization process of PEMFCs. A core problem for the MEA is the optimal design
of materials and structures. The mechanism of multiphase material transport and electro-
chemical reaction can be clarified through simulation calculation, thereby accelerating the
research progress. Therefore, with the help of a simulation model, developing an MEA with
a simpler preparation process, more stable performance and lower cost is an important
development direction for the future. Based on the literature review in this study, future
development directions for the modeling and simulation of material structures for PEMFCs
is as follows.

(1) For the modeling of membrane electrode material structure optimization, existing
models are mainly constructed for GDL, CL or PEM single components. In the future,
a hybrid model could be built; this would integrate the simulation model of the three
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components mentioned above to realize the overall modeling of MEAs. In addition,
most of the existing simulation models involve single-scale modeling [30,53,93], either
macro scale or micro material structure models. If a cross-scale hybrid model is
established, it may be more beneficial for solving the existing difficulties.

(2) To obtain a low-cost and long-life PEMFC, it is necessary to find a suitable and cheaper
preparation method for the MEA microstructure. In addition to traditional preparation
methods, non-traditional machining methods, such as laser machining [122,123],
electrical discharge machining [124,125] and electrochemical machining [126,127],
also made good progress in the preparation of microstructures. This means that
a future 3D digital simulation MEA model must also consider the influence of the
preparation process on the microstructure, so as to establish a more accurate model.
In addition, reliability design, which can prolong the in-service time of equipment,
is widely used in the engineering field [128,129]. When dealing with MEA material
structure optimization modeling in the future, reliability design should be integrated
into the simulation process to improve the life of PEMFCs.

(3) With the rapid development of computer technology, ML technology is widely used
in the fields of industrial inspection and measurement [130–132], medical diagno-
sis [133,134], life sciences [135,136] and so on. For example, AlphaFold2 constructed a
protein structure prediction model through ML; it was able to predict the properties of
proteins from gene sequences, obtaining 98.5% of the human protein structure [135].
Therefore, the combination of the ML method and an MEA simulation model to realize
autonomous prediction (with preliminary artificial intelligence) may be the focus of
research in the future.
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