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Abstract: The present research examines the joint influence of throughflow and Coriolis force on
the onset of double-diffusive convection with an internal heat source modelled by Darcy’s law. The
BVP4C routine in MATLAB R2020a is used to solve the eigenvalue problem numerically. Critical
Rayleigh numbers are obtained for designated values of governing parameters. The effect of the
internal heat source parameter, Taylor number, Darcy number, and Peclet number on the system’s
stability is investigated. The internal heat source parameter has a destabilizing influence on the
system, according to our findings. The reason behind this observation is that the presence of an
internal heat source in the porous medium may cause more molecular diffusion inside the medium.
The Taylor number, on the other hand, stabilizes the system for both upward and downward
throughflow because rotation introduces vorticity into the fluid. Thus, the fluid moves with higher
velocity in horizontal planes. The velocity of the fluid perpendicular to the planes reduces as a result
of this motion. Thus, the onset of convection is delayed.

Keywords: porous medium; internal heat source; throughflow; rotation

1. Introduction

Convection with an internal heat source has been of interest to many researchers, since
it has extensive applications in astrophysics [1], combustion modelling [2], geophysics [3],
the miniaturization of electronic components [4] and thermal ignition [5]. Non-linear
temperature circulation in the system is steered by the presence of an internal heat source,
and convection may occur. Tritton and Zarraga [6] conducted the first experimental
research on internally heated thermal convection, which was followed by theoretical
studies by Roberts [7] and Thirby [8]. The origins of this phenomenon were established by
Tveitereid and Palm [9]. Takashima ([10,11]) explored convection in a biased fluid layer
with internal heat. They discovered that an inner heat source has a significant impact on
the stability of the onset of convection. Natural convection affected by the heat source
with the outcome of heat source distribution was tested by Tasaka and Takeda [12]. The
analysis of free convection in a porous medium plays a substantial role in many areas, such
as geophysical systems, the Earth’s oceans, magma chambers, the petroleum industry and
many engineering applications. Nield and Bejan [13] provided a brief review of this topic.

There are many studies related to geophysical sciences and technological applications
which contain non-isothermal motion of liquids, known as throughflow. With the height of
the fluid, this flow transforms the basic state temperature equation from linear to non-linear,
altering the system’s stability. Jones and Persichetti [14] discussed the thermal instability in
packed beds with throughflow. Wooding [15] studied the Rayleigh instability of a thermal
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boundary layer flow in saturated porous medium, in which he showed that the layer is
stable provided that the Rayleigh number for the system does not exceed a critical positive
value and that the wave number of the critical neutral disturbance is finite. Homsy and
Sherwood [16] investigated the linear and energy theory on thermal instability in porous
media with throughflow. They showed that the fluid can lose stability through either a
buoyantly driven mode or through a continuous analogue of the Saffman–Taylor mode.
Sutton [17] and Shivakumara [18] explored the impact of throughflow on the onset of
convection in a horizontal porous layer.

The effect of throughflow and internal heat generation on the onset of convection in a
porous material was examined by Khalili and Shivakumara [19]. They concluded that, if the
boundaries are of the same type, throughflow destabilizes the system, but this is not true
when internal heat source is absent. In a porous material with a tilted temperature drop
and vertical throughflow, Brevdo [20] described 3D absolute and convective instability at
the onset of convection. He deduced the fact that for marginally supercritical values of the
vertical Rayleigh number, the destabilization has the character of absolute instability in all
of the cases in which the horizontal Rayleigh number is zero or the Peclet number is zero.
Shivakumara and Sureshkumar [21] investigated convective instability in non-Newtonian
fluids in vertical throughflow, and concluded that throughflow has an essential influence
depending on the nature of the borders and fluid flow directions. Yadav [22] scrutinized
the impacts of throughflow and a varied gravity field on the onset of convective flow
in a porous medium layer numerically by employing the higher order Galerkin method,
and showed that both the throughflow and gravity variation parameters postpone the
onset of convective motion. Later, many researchers such as Kiran [23], Bhadauria and
Kiran [24], Kiran [25], Shinkumara and Nanjundappa [26], Reza and Gupta [27], Nield
and Kuznetsov [28], Yadav [29] and Kiran and Bhadauria [30] investigated the effect of
throughflow with different external effects.

Convection driven by the internal heating of porous material was investigated by
Gasser and Kazimi [31] and Tveitereid [32]. Yadav et al. [33] performed linear analysis
and used the Galerkin method to explain the onset of convection in rotating porous media
with an inner heater. Mahabaleshwar et al. [34] analyzed the convection heat transfer in a
porous zone with modulated gravity and an inner heater. Some interesting results can be
found in [35–37].

Riahi [38] investigated nonlinear convection in a porous region with an inner heater
and discovered that the non-uniform internal heat source could reduce or enhance the
ideal Rayleigh value and cell size. In the case of linear and nonlinear stability, Rionero
and Straughan [39] derived a critical Rayleigh value. The internal heat-generating porous
medium in vertical cavities was investigated by Du and Bilgen [40]. Hewitt et al. [41]
overworked the underlying theory, mechanism, correlations and methodologies of heat
transfer. Choi et al. [42] investigated a variety of characteristics of convection flow in porous
medium caused and prolonged by a constant inner heater. Brinkman convection in a
rotating porous zone filled with a nanofluid with an inner heater was investigated by Yadav
et al. [43]. An internal heater’s influence on the onset of convection in a porous medium
filled with a nanosuspension was studied by Yadav et al. [44]. Barletta et al. [45] studied
the influence of viscous dissipation in the porous material. The stability of mixed thermal
convection in a porous zone was discussed by Sphaier et al. [46] using the generalized
integral transform technique. The effects of inner thermal production and throughflow on
convective instability in an anisotropic porous medium were studied by Vanishree [47].

The present paper aims to study the thermal convection stability with an internal
heater in porous material. The plan of this research is as follows. In Section 2, we de-
scribe the considered problem. In Section 3, we discuss the basic state. In Section 4, the
linear instability analysis is performed. The method of solution is described in Section 5.
The numerical outcomes and discussions are presented in Section 6. The research ends
with conclusions.
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2. Governing Equations

We consider heat conducting liquid in a porous zone placed between two infinitely
parallel horizontal plates at z = 0 and z = L which are set to rotate at a fixed angular velocity
Ω = Ωez. The upper and lower bounding surfaces of the layer are assumed to be stress-free.
The z-axis is oriented upward, so that g′ = −g′ez where g’ is the modulus of g’ and ez is the
unit vector along the z-direction in Figure 1. Physical properties of the fluid are assumed to
be constant, except density in the buoyancy term, so that the Boussinesq approximation is
valid. The control Oberbeck–Boussinesq equations are [48]:

∇ · u = 0 (1)

u = −∇P + Da∇2u + Raθez +
√

Ta(u× ez) (2)

∂θ

∂t
+ (u·∇)θ = ∇2θ+ Q (3)

with the following boundary conditions

u = 0, θ = 1 on z = 0
u = θ = 0 on z = 1.

(4)

where u is the velocity, t is the time, θ is the temperature, Da is the Darcy number, Ra is the
Rayleigh number, Ta is the Taylor number and Q is the parameter of inner heater, defined
as follows:

Da =
µe

µ

K
L2 , Ra =

ρ0gβ∆TL3

α · µ , Q =
Q′L2

k∆T
, Ta =

(
2ρ0Ω0K
µ ·φ

)2
, P =

K
α · µ

(
P + ρ0gz∗

)
.
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The rescaling used to obtain Equations (1)–(3) with conditions (4) is

(x, y, z) =
(

x∗

L
,

y∗

L
,

z∗

L

)
, (u, v, w) =

(
Lu∗

α
,

Lv∗

α
,

Lw∗

α

)
, t =

α

L2 A
t∗, α =

k(
ρcp

)
f
, (5)

where asterisks refer to dimensional quantities, L is the channel height, A is the ratio of
volumetric thermal capacity of liquid filled porous material to the fluid, i.e., A =

(ρc)m
(ρcp) f

, α

is the thermal diffusivity, k is the thermal conductivity, K is the permeability, ρ0 is the mean
flow density, µ is the dynamic viscosity, φ is the porosity,ω is the angular velocity, µe is the
effective viscosity, Q′ > 0 is a (fixed) inner heater and β is the thermal expansion coefficient.

3. Basic State

The basic steady motion of Equations (1)–(3) is defined by a uniform throughflow,

ub = 0, vb = 0, wb = Pe (6)

where b stands for the basic state, Pe = w0L
α is the Peclet number and w0 is the prescribed

vertical throughflow velocity. The Peclet number is positive for upward throughflow and
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negative for downward throughflow. By substituting Equation (6) into Equation (3), we
obtain the basic temperature profile as

θb =
ezPe − ePe

1− ePe +

(
z + ezPe − zePe − 1

)
Q

(1− ePe)Pe
(7)

4. Linear Stability Study

The perturbation of the basic state can be defined as

u = ub + εu′, θ = θb + εθ′, P = Pb + εP′. (8)

where ε� 1. By substituting Equation (8) into Equations (1)–(4) and by neglecting terms
O
(
ε2) or higher, we obtain the linearized governing equations as follows:

u′ = −∇P′ + Da∇2u′ + Raθ′ez +
√

Ta
(
u′ × ez

)
(9)

∂θ′

∂t
+ F(z)w′ + Pe

∂θ

∂z
= ∇2θ′ (10)

w′ = θ′ = 0 at z = 0, 1 (11)

where F(z) = Q
Pe +

ezPe(Pe+Q)

(1−ePe)
. By taking the third components of the curl of (9) and the

double curl of (9), we obtain (
1− Da∇2

)
ωz −

√
Ta

∂w
∂z

= 0 (12)

(
1− Da∇2

)
∇2w′ − Ra∇2

hθ
′ +
√

Ta
∂ωz

∂z
= 0 (13)

where ωz = (∇× u′)êz. By removingωz from Equations (12) and (13), one obtains

(
1− Da∇2

)2
∇2w′ − Ra

(
1− Da∇2

)
∇2

hθ
′ + Ta

∂2w′

∂z2 = 0 (14)

Normal modes can be defined by the perturbations(
w′, θ′

)
= (W(z), θ(z))ei(mx+ly)+σt (15)

where q = (m, l, 0) is the wave vector, with q =
√

m2 + l2 expressing the wave number,
and σ is a complex characteristic, where its real part, σr, is the raising rate of instability
and its imaginary part, σi, is the angular frequency. Substituting the above expression into
Equations (10) and (14), we obtain:(

1− Da
(

D2 − q2
))2(

D2 − q2
)

W + Ra
(

1− Da
(

D2 − q2
))

q2θ+ Ta · D2W = 0 (16)(
D2 − q2 − PeD− iω

)
θ−W · F(z) = 0 (17)

W = D2W = D4W = θ = 0 on z = 0, 1. (18)

The principle of exchange of stabilities is used. In other words, the marginal stability
condition can be found for stationary modes. Hence, Equations (16)–(18) become(

1− Da
(

D2 − q2
))2(

D2 − q2
)

W + Ra
(

1− Da
(

D2 − q2
))

q2θ+ Ta · D2W = 0 (19)(
D2 − q2 − PeD

)
θ−W · F(z) = 0 (20)
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W = D2W = D4W = θ = 0 on z = 0, 1. (21)

5. Solution Methodology

The eigenvalue problem, defined by Equations (19)–(21), is worked out by employing
the BVP4C routine in MATLAB R2020a. To achieve a non-trivial solution to the eigenvalue
problem, the normalizing condition w′(0) = 1 is considered. We compute the eigenvalue Ra
using this normalization condition. The critical Rayleigh and wave numbers are acquired
by using index-linked instruction in MATLAB R2020a. The comparative and conclusive
patience were taken as 10−6 and 10−10 independently to achieve higher-order exactness.

6. Results and Discussion

This section contains the numerical results and discussions. A numerical study of the
eigenvalue problem corresponding to a convection problem with the uniform internal heat
source and throughflow was performed in this paper. The non-dimensional parameters
governing the onset of convection are the Rayleigh number, Ra, inner heater parameter, Q,
Taylor number, Ta, Darcy number, Da, and Peclet number, Pe. The BVP4C routine in Matlab
R2020a is used to work out the eigenvalue problem for linear stability analysis.

We verified our results with those found in the literature to validate our analysis
method. In the absence of throughflow and rotation, the current problem reduces to
that of Gasser and Kazimi [31] for Darcy porous media. Table 1 demonstrates that our
numerical results are really close to Gasser and Kazimi’s critical external Rayleigh number.
Furthermore, the current numerical results are validated by comparing them to those found
by Barletta et al. [48] for Q = 0, Ta = 0 and Da = 0 (see Table 2).

Table 1. Critical Rayleigh number values for Ta = 0; Da = 0 and Pe = 0 compared with [31].

Q Gasser and Kazimi [31] Present Study

0 39.48 39.4788
5 34.59 34.5953
10 27.02 27.0162
15 21.45 21.4436
20 17.63 17.6267
25 14.92 14.9165
30 12.91 12.9117
40 10.16 10.1606
50 8.37 8.3690
60 7.11 7.1121
80 5.47 5.4670

100 4.44 4.4391

Table 3 illustrates the Rayleigh number critical values for various Q and Pe, for constant
Da = 0.01, Da = 0.1, and Ta = 50. A graphical representation of these values is given in
Figure 2. The results for upward throughflow are shown in Figure 2. The Rac reduces
with a growth of Q in this figure, suggesting that the internal heat source parameter has
a destabilizing influence on the system. The reason behind this observation is that the
presence of an internal heat source in the porous medium may cause more molecular
diffusion inside the medium.

Table 4 shows the Rac for different Q and Pe, along with fixed Da = 0.01, Da = 0.1 and
Ta = 50. Figure 3 illustrates a visual behavior of these values. The results for downward
throughflow are shown in Figure 3. As can be seen in this figure, the critical Rayleigh
number reduces as Q increases, implying that Q has a destabilizing influence on the system.
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Table 2. Critical Rayleigh number values for Q = 0; Ta = 0 and Da = 0 compared with [48].

Pe Barletta et al.
[48]

Present
Study Pe Barletta et al.

[48]
Present
Study

−0.001 39.4784 39.47842 0.001 39.4784 39.47842
−0.01 39.4786 39.47856 0.01 39.4786 39.47856
−0.1 39.4924 39.49237 0.1 39.4924 39.49237
−1 40.8751 40.87507 1 40.8751 40.87507
−2 45.0776 45.07761 2 45.0776 45.07761
−3 52.0684 52.06842 3 52.0684 52.06842
−4 61.6664 61.66642 4 61.6664 61.66642
−5 73.4146 73.41456 5 73.4146 73.41456
−6 86.6192 86.61920 6 86.6192 86.61920
−7 100.581 100.58085 7 100.581 100.58085
−8 114.833 114.83260 8 114.833 114.83260
−9 129.167 129.16685 9 129.167 129.16685
−10 143.518 143.51849 10 143.518 143.51849
−15 215.283 215.28280 15 215.283 215.28280

Table 3. Critical Rayleigh number for upward throughflow fixed at Ta = 50.

Q
Da = 0.01 Da = 0.1

Pe = 0.001 Pe = 0.01 Pe = 0.1 Pe = 0.001 Pe = 0.01 Pe = 0.1

1 470.7949 470.8283 471.2445 360.2181 360.2767 360.9591
2 456.8040 456.8651 457.5531 353.1931 353.3036 354.5031
3 436.5979 436.6802 437.5732 342.6116 342.7646 344.3875
4 413.2066 413.3041 414.3438 329.7012 329.8865 331.8297
5 389.0000 389.1083 390.2508 315.5820 315.7903 317.9600
6 365.4518 365.5675 366.7803 301.1062 301.3299 303.6501
7 343.3180 343.4387 344.6974 286.8434 287.0766 289.4889
8 322.8993 323.0231 324.3092 273.1351 273.3735 275.8350
9 304.2439 304.3692 305.6686 260.1618 260.4023 262.8818

10 287.2738 287.3996 288.7016 247.9998 248.2401 250.7157
11 271.8562 271.9817 273.2784 236.6618 236.9005 239.3566
12 257.8414 257.9660 259.2515 226.1242 226.3602 228.7861
13 245.0812 245.2044 246.4745 216.3440 216.5764 218.9648
14 233.4375 233.5590 234.8107 207.2690 207.4974 209.8434
15 222.7858 222.9053 224.1365 198.8445 199.0685 201.3693
16 213.0155 213.1329 214.3422 191.0165 191.2360 193.4896
17 204.0293 204.1446 205.3312 183.7335 183.9484 186.1542
18 195.7422 195.8553 197.0187 176.9479 177.1581 179.3200
19 188.0798 188.1907 189.3307 170.6157 170.8213 172.9315
20 180.9771 181.0857 182.2025 164.6970 164.8982 166.9615

The behavior of Rac versus the Taylor number is shown in Table 5 and Figure 4.
Figure 4 shows that as the Taylor number rises, the critical Rayleigh number rises as well,
indicating the stabilizing impact of the Taylor number. This can be explained as follows:
rotation introduces vorticity into the fluid. Thus the fluid moves in horizontal planes with
higher velocity. On account of this motion, the velocity of the fluid perpendicular to the
planes reduces. Thus, the onset of convection is delayed.
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Table 4. Critical Rayleigh number for downward throughflow fixed at Ta = 50.

Q
Da = 0.01 Da = 0.1

Pe = −0.001 Pe = −0.01 Pe = −0.1 Pe = −0.001 Pe = −0.01 Pe = −0.1

1 470.7877 470.7561 470.5231 360.2053 360.1488 359.6803
2 456.7906 456.7312 456.2149 353.1688 353.0604 352.0715
3 436.5798 436.4992 435.7636 342.5778 342.4269 341.0094
4 413.1850 413.0890 412.1932 329.6602 329.4769 327.7328
5 388.9761 388.8691 387.8591 315.5359 315.3296 313.3517
6 365.4262 365.3117 364.2219 301.0567 300.8349 298.6994
7 343.2913 343.1717 342.0281 286.7918 286.5603 284.3257
8 322.8720 322.7493 321.5716 273.0823 272.8456 270.5550
9 304.2162 304.0919 302.8952 260.1085 259.8696 257.5545

10 287.2460 287.1211 285.9168 247.9465 247.7077 245.3905
11 271.8285 271.7039 270.5004 236.6089 236.3718 234.0684
12 257.8139 257.6902 256.4938 226.0720 225.8375 223.5590
13 245.0539 244.9316 243.7470 216.2925 216.0615 213.8155
14 233.4106 233.2900 232.1205 207.2184 206.9914 204.7831
15 222.7593 222.6405 221.4885 198.7949 198.5722 196.4048
16 212.9894 212.8727 211.7397 190.9678 190.7496 188.6251
17 204.0038 203.8892 202.7763 183.6859 183.4722 181.3917
18 195.7171 195.6047 194.5126 176.9012 176.6922 174.6559
19 188.0552 187.9450 186.8739 170.5701 170.3656 168.3734
20 180.9530 180.8450 179.7950 164.6525 164.4525 162.5039

Table 5. Critical Rayleigh number for upward throughflow fixed at Q = 2.

Ta
Da = 0.01 Da = 0.1

Pe = 0.001 Pe = 0.01 Pe = 0.1 Pe = 0.001 Pe = 0.01 Pe = 0.1

5 111.6703 111.7037 112.0815 148.2322 148.3047 149.0853
10 162.3775 162.4197 162.8861 180.1151 180.1960 181.0679
15 207.2615 207.3097 207.8364 207.7227 207.8099 208.7501
20 248.5374 248.5894 249.1605 232.6185 232.7106 233.7058
25 287.2261 287.2787 287.8852 255.5851 255.6815 256.7225
30 323.9144 323.9714 324.6015 277.0832 277.1830 278.2636
35 358.9829 359.0413 359.6915 297.4115 297.5145 298.6298
40 392.6975 392.7571 393.4230 316.7779 316.8836 318.0299
45 425.2544 425.3149 425.9932 335.3336 335.4418 336.6159
50 456.8040 456.8651 457.5531 353.1931 353.3036 354.5031
55 487.4646 487.5261 488.2217 370.4458 370.5583 371.7811
60 517.3322 517.3939 518.0952 387.1627 387.2771 388.5215
65 546.4853 546.5471 547.2528 403.4019 403.5180 404.7824
70 574.9901 575.0518 575.7605 419.2113 419.3290 420.6121
75 602.9020 602.9637 603.6743 434.6310 434.7502 436.0508
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Table 6 and Figure 5 show the dependence of Rac on Ta for various Pe. Only the results
for downward throughflow are shown in this part. The critical Rayleigh number rises
with the increase in Ta, as shown in Figure 5, indicating that the Taylor number has a
stabilizing impact.
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Table 6. Critical Rayleigh number for downward throughflow fixed at Q = 2.

Ta
Da = 0.01 Da = 0.1

Pe = −0.001 Pe = −0.01 Pe = −0.1 Pe = −0.001 Pe = −0.01 Pe = −0.1

5 111.6629 111.6289 111.3183 148.2162 148.1449 147.4869
10 162.3681 162.3262 161.9452 180.0972 180.0177 179.2843
15 207.2509 207.2037 206.7770 207.7035 207.6178 206.8289
20 248.5259 248.4750 248.0171 232.5982 232.5076 231.6749
25 287.2114 287.1590 286.6808 255.5639 255.4693 254.6004
30 323.9019 323.8463 323.3516 277.0612 276.9631 276.0635
35 358.9700 358.9130 358.4081 297.3889 297.2878 296.3616
40 392.6844 392.6263 392.1149 316.7546 316.6508 315.7013
45 425.2412 425.1823 424.6673 335.3097 335.2036 334.2333
50 456.7906 456.7312 456.2149 353.1688 353.0604 352.0715
55 487.4512 487.3915 486.8757 370.4210 370.3107 369.3048
60 517.3187 517.2588 516.7450 387.1375 387.0254 386.0041
65 546.4718 546.4120 545.9013 403.3764 403.2626 402.2272
70 574.9766 574.9167 574.4103 419.1854 419.0700 418.0217
75 602.8885 602.8289 602.3276 434.6048 434.4880 433.4276
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Figure 5. Dependence of Rac on Ta for (a) Da = 0.01 and (b) Da = 0.1.

7. Conclusions

This study has examined the linear instability of rotation convection in a porous
zone with an inner heater. The behavior of various parameters such as the inner heater
coefficient Q, critical Rayleigh number Rac, Peclet number Pe, Taylor number Ta, and Darcy
number Da has been analyzed. The following are the most important findings from the
linear instability:

- In the absence of throughflow and rotation, the Rac and the wave number for the Darcy
porous medium match with those found in the literature and reported by Gasser and
Kazimi [31].

- In the absence of an inner heater and rotation, the critical values of Ra for the Darcy
porous medium are identical to those discovered by Barletta et al. [48].

- The system is destabilized by the internal heat source parameter.
- The Taylor number has a stabilizing impact on the considered unit for both upward

and downward throughflows.
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