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Abstract: As biodegradable medical implants, magnesium alloys have attracted great concerns due
to their desirable biological and mechanical performances. Nevertheless, the overfast degradation
rate of magnesium alloys makes it difficult to make full use of their potential in medical sciences.
Therefore, it is a hot issue to control the degradation rate and functionalize the magnesium alloys
via surface modifications. Herein, methacrylate gelatin (GelMA) hydrogel was adopted as coatings
on the surface of WE43 magnesium alloys to control the degradation behaviors of magnesium
alloys. Inspired by mussels, dopamine (DOPA) hydrochloride was adopted to modify GelMA to
further functionalize the coatings. The compositions, swelling properties, degradation behaviors,
and morphologies of samples were characterized by UV-Vis spectrophotometer, nuclear magnetic
resonance (NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope
(SEM), and immersion test. It was shown that GelMA-DOPA composites could be obtained and
the swelling and degradation behaviors of magnesium alloys could be controlled by adjusting the
compositions of GelMA and DOPA. Furthermore, the GelMA-DOPA hydrogel coatings can be tightly
bonded to the Mg alloys.

Keywords: composite coatings; gelma hydrogel; magnesium alloys; surface modifications

1. Introduction

Nowadays, magnesium (Mg) alloys have attracted considerable attention and become
one of the most promising candidates as bone implants due to their excellent biocompati-
bility, biodegradability, mechanical compatibility, osteogenesis inductivity, antibacterial
ability, etc. [1–5]. The clinical development of Mg alloys, however, is hindered owing to
their overfast degradation rate [6]. As a result, Mg alloys cannot stably provide mechanical
support and perform the biological functions to repair large bone defects (e.g., large jaw
defects) [7]. Furthermore, a large amount of Mg2+ ions and excess hydrogen gas released
during the corrosion of Mg alloys could result in biological problems such as cytotoxicity
and delay of bone formation [8,9]. As a solution, surface modification is considered a
feasible way to control the degradation rate and improve the corrosion resistance of Mg
alloys [10,11].

To date, various surface modification techniques, i.e., micro-arc oxidation (MAO) [12,13],
electrochemical deposition [14,15], chemical conversion [16,17], dip-coating [18], etc., have
been devised and applied to treat bare Mg alloys to control the degradation rate and
functionalize the surface of Mg alloys. However, there is a lack of an “ideal” one-step
technique to achieve the goals of degradation control and functionalization [10]. For
instance, the MAO technique has been widely applied and considered to be one of the most
effective ways to reduce the corrosion rate of Mg alloys [19,20], because the MAO coatings
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fabricated on the surface of Mg alloys have strong adhesion [21] and wear resistance [22].
However, as a ceramic layer, MAO coatings are inert and are not conducive to cell adhesion
and growth. In addition, micro-pores and micro-cracks are unavoidable in the MAO
coatings, which is harmful for the protection of Mg alloys [23]. Accordingly, a post-
treatment of MAO is necessary to enhance the biocompatibility as well as to seal the
pores/cracks of MAO coatings [24,25].

Fabricating composite coatings based on the MAO technique is one of the most
attractive post-treatment strategies [26,27]. Especially, coatings with various functions (such
as bioactivities) are favorable to endow Mg alloys with tunable properties [28]. Recently, as
an extracellular matrix (ECM) mimicking material, gelatin methacrylate (GelMA) hydrogel
is remarkable [29]. GelMA hydrogel [30,31] is a kind of photocrosslinked hydrogel, which
can be formed by free radical polymerization under the condition of photoinitiation. It
has aroused considerable interest due to its tunable physicochemical properties, excellent
compatibilities, and bioactivities. In a previous study, we deposited GelMA hydrogel
coatings with varying thicknesses on the surface of MAO-coated Mg alloys via a dip-
coating method [32], and both the corrosion resistance and the compatibility improved
compared with those without the GelMA coatings. However, as biodegradable implants,
the debris of MAO coating formed during the degradation process of Mg alloys may
have potential biosafety issues since the MAO coating is nondegradable. In addition, the
adhesion between GelMA hydrogel coating and MAO coating is weak, which may cause
the GelMA hydrogel coating to peel off. Also, two steps, i.e., MAO process and dip-coating
process, were adopted to prepare the hydrogel/MAO composite coatings, which increases
the complexity and difficulties of the experiment. As an alternative, it is favorable to
deposit GelMA hydrogel coatings directly on the surface of Mg alloys from the perspective
of biocompatibility of implants as well as the operability of the experiment. However, the
adhesion between GelMA hydrogel and Mg alloys is also weak due to the great difference
between the mentioned two types of materials [33].

Herein, we tried to further optimize the GelMA hydrogel as coatings for Mg alloys.
The mussel-inspired hydrogel was devised and proposed to modify GelMA hydrogel with
dopamine (DOPA) hydrochloride, and the GelMA-DOPA hydrogel coatings were deposited
on the surface of Mg alloys directly via a dip-coating technique. The GelMA-DOPA has
catechol groups that can form coordination bonds with metal ions, which may provide a
promising way to enhance the bonding ability between hydrogels and Mg alloys and is
expected to further functionalize the Mg alloys. This strategy can provide novel insights
into the surface modifications and applications of Mg alloys.

2. Materials and Methods
2.1. Materials

Mg alloys (WE43, Mg-4% Y-3.3% RE (Nd, Gd)-0.5% Zr) were purchased from Wuxi
Taicheng Metal Material Products Co. Ltd. (Shenzhen, China), and these materials were
cut into pellets with Φ10 mm, followed by polishing with abrasive papers and washing
with ethanol (99.7%) ultrasonically. Gelatin and photoinitiator (Irgacure 2959, 98%) were
purchased from Shanghai Yuanye Biotechnology Co. (Shanghai, China ), Methacrylic Anhy-
dride (MA, 94%) was purchased from Sigma-Aldrich (St. Louis, MO, USA), Succinic anhy-
dride (98%), triethylamine (99%), dimethyl sulfoxide (99%), 2-Morpholinoethanesulphonic
acid (MES) buffer (pH = 5.5), dopamine hydrochloride (98%), N-Hydroxysuccinimide
(NHS, 98%) and N(3-dimethylaminopropyl)-n1-Ethylcarbodiimide hydrochloride (EDC,
98%) were purchased from Macklin Inc., China (Shanghai, China). Phosphate buffered
solution (PBS) was purchased from Hyclone (Logan, UT, USA), and Collagenase Type II
(Collagenase) was purchased from Beijing Solaibao Technology Co., Ltd. (Beijing, China).
Dialysis tube (10K MWCO, 22 mm) was purchased from Thermo Fisher Scientific (Rockford,
IL, USA).
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2.2. Methods

The schematic flowchart for the preparation of the GelMA-DOPA coated Mg alloy
composites and the relative mechanisms to synthesize GelMA and GelMA-DOPA hydrogels
is shown in Figure 1.
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Figure 1. Schematic flow chart of the process and mechanisms of preparing GelMA-DOPA hydro-
gel/Mg alloy composites.

2.2.1. Synthesis of GelMA Prepolymer

The synthesis method of GelMA prepolymer was described previously [34]. Briefly,
10 g of gelatin was dissolved into 200 mL of PBS. Afterwards, 16 mL of MA was added drop-
wise to the gelatin solution using a micro syringe pump at a rate of 0.2 mL/min, followed
by reacting for 2 h by stirring at 50 ◦C. Then the mixed solution was diluted by 200 mL
of PBS and dialyzed in deionized water for 10 days. Subsequently, 400 mL of deionized
water was added into the dialytic solution and stirred for 15 min. Finally, the solution was
packed in centrifuge tubes, and lyophilized for 4 days to obtain GelMA prepolymer.

2.2.2. Synthesis of GelMA-COOH Prepolymer

2 g of the GelMA prepolymer was dissolved in 20 mL of PBS, stirring at 50 ◦C to
obtain a homogeneous solution. A total of 1 mL of triethylamine, 1 g of succinic anhydride
and 20 mL of dimethyl sulfoxide were added into the solution, and then stirred for 12 h
at 50 ◦C, followed by diluting with 100 mL of PBS solution. The excess triethylamine
was neutralized with 0.1 M hydrochloric acid solution. Finally, the solution was dialyzed
with deionized water for 1 week at room temperature using a dialysis tube in order to
remove impurities in the solution. The dialyzed solution was placed in a centrifuge tube
and frozen in a refrigerator at −80 ◦C for two days, and then freeze-dried for 4 days to
obtain GelMA-COOH prepolymer.

2.2.3. Synthesis of GelMA-DOPA Prepolymer

1 g of the as-prepared GelMA-COOH was dissolved in 10 mL of MES buffer, and it
was degassed with nitrogen for 15 min. Afterwards, 0.2 g of EDC, 0.3 g of NHS and 0.2 g
of dopamine hydrochloride were added to the solution, and then stirred at a temperature
of 25 ◦C for 12 h under nitrogen. Then, it was dialyzed for 4 days in 0.01 M hydrochloric
acid solution using a dialysis tube, followed by neutralizing to pH = 7 with 0.01 M of
sodium hydroxide. Finally, the solution was packed into centrifuge tubes and frozen in a
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refrigerator at −80 ◦C for two days, after which it was freeze-dried for four days to obtain
GelMA-DOPA prepolymers.

2.2.4. Preparation of GelMA-DOPA/Mg Composites

The GelMA-DOPA (Experimental group) and GelMA (Control group) prepolymers
were respectively dissolved in PBS at room temperature with concentrations of 5% (w/v),
10% (w/v), 15% (w/v) and 20% (w/v), and then 1% (w/v) of photoinitiator was dissolved
into the mixed solution through ultrasonic agitation. Mg alloy pellets were dipped into the
GelMA and GelMA-DOPA solutions for 1 min. Afterwards, the Mg alloys were withdrawn
at a constant speed of 1 cm/min. After cross-linking the prepolymer layer in UV (365 nm,
10 mw/cm2) for 5 min, GelMA-DOPA and GelMA hydrogel coating formed on the surface
of Mg alloys. The above dipping-coating process was repeated 3 times.

2.2.5. Characterizations

Fourier transform infrared spectroscopy (FTIR-850, Tianjin Gangdong Technology Co.,
Ltd., Tianjin, China), UV-Vis spectrophotometer (T6 New Centroy, Beijing Puxi General
Instrument Co., Ltd., Beijing, China), and nuclear magnetic resonance (NMR, Mercury-
Vx300-NMR, Varian, Palo Alto, CA, USA) were adopted to analyze the compositions,
contents and chemical groups of the samples. A scanning electron microscope (SEM,
JSM-7001F, JEOL, Tokyo, Japan) was adopted to observe the morphologies of the samples.

The swelling ratios of the samples were characterized as follows: The GelMA-DOPA
and GelMA prepolymers were dissolved in PBS containing 1% (w/v) Irgacure 2959 to
prepare solutions with concentrations of 5% (w/v), 10% (w/v), 15% (w/v) and 20% (w/v),
respectively. The solutions were added dropwise to cylindrical moulds (Φ6 mm, height:
3 mm) and irradiated under UV for 7 min to obtain cylindrical hydrogel pellets (dry weight
Wd). Then, the hydrogel pellets were immersed in PBS solution, swelling for different time
intervals (1 h, 2 h, 4 h, 8 h, 12 h, 24 h, and 48 h, respectively), and were weighed (Ws) after
the excess PBS being dried with filter paper. The swelling rates of both GelMA-DOPA and
GelMA hydrogels can be calculated according to the following equation.

Swelling ratio = (Ws − Wd)/Ws (1)

The weights of pellets were calculated at swelling equilibrium (We) in the swelling
test, and then the samples were immersed in 2 µg/mL of type II collagenase PBS at
37 ◦C. The mass of the hydrogel was recorded at a fixed time each day as Wt and the
degradation rate of the hydrogels with different concentrations was calculated according to
the following equation:

Degradation rate = (We − Wt)/We (2)

3. Results
3.1. Chemical groups of samples

Figure 2A shows the IR spectra of GelMA, GelMA-COOH and GelMA-DOPA. A
typical IR spectrum of GelMA can be identified: the peaks around 3300 cm−1 represent
the stretching vibration of –OH groups and N–H groups, while peaks around 1500 cm−1

are due to the bending vibration of N–H groups. The peaks around 2900 and 1400 cm−1

can be attributed to the stretching vibration and bending vibration of C–H, respectively.
The strong absorption peak observed at 1650 cm−1 was due to the stretching vibration
C=O. In addition, there is no noticeable difference among different samples, which may
hint that there are no new functional groups that have characteristic IR absorption peaks.
In Figure 2B, the UV curve of GelMA-DOPA has an absorption peak at 280 nm compared
to that of GelMA, which may be due to the presence of the catechol groups. To further
confirm the presence of the catechol groups, NMR detection was subsequently carried out,
as shown in Figure 3.
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Overall, the hydrogen spectra of GelMA, GelMA-COOH, and GelMA-DOPA were
highly similar except for the peak at chemical shift values of 6–7 ppm. Compared with
GelMA and GelMA-COOH, GelMA-DOPA shows a unique peak, which is characteristic of
the hydrogen atom in the catechol group in dopamine hydrochloride. Therefore, it was
proved that the catechol-modified photo-cross-linkable GelMA-DOPA polymer had been
successfully synthesized.

In order to determine the contents of catechol groups in the as-synthesized GelMA-
DOPA prepolymers, dopamine hydrochloride solutions with different concentrations, i.e.,
0.1, 0.2, 0.3, 0.4 and 0.5 mM, were prepared as standard solutions. UV spectra of the
solutions were obtained to compare the absorbance value of GelMA-DOPA prepolymers
and standard solutions, as shown in Figure 4A. The linearity between concentration and
absorbance was established from the measured absorbance values, as shown in Figure 4B.
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From Figure 4B the function of the fitted straight line is y = 2.772x − 0.075 and
R2 = 0.9907. Substituting the absorbance value (y) of GelMA-DOPA measured in Figure 2B,
it can be obtained that x = 0.38. Accordingly, the concentration of catechol groups in the
prepared GelMA-DOPA is 0.38 mM.

3.2. Swelling Performances of GelMA and GelMA-DOPA Hydrogels

Hydrogels with 4 different concentrations (5% (w/v), 10% (w/v), 15% (w/v), and
20% (w/v)) were placed in PBS solution at 37 ◦C, and all of the hydrogels were able to
swell rapidly from 0–1 h, and the swelling equilibrium was reached at 8 h, as shown in
Figure 5. Comparing the two types of hydrogels, i.e., GelMA hydrogels and GelMA-DOPA
hydrogels, the swelling performances of GelMA-DOPA hydrogels with 10% (w/v), 15%
(w/v), and 20% (w/v) concentrations were better than those of GelMA hydrogels with the
same concentrations. However, some GelMA-DOPA hydrogels broke up after a prolonged
time of immersion. The hydrogels were intact within 12 h of immersion, but started to
break. Especially after 24 h of immersion, the GelMA-DOPA hydrogels broke severely
with concentrations of 5% (w/v) and 10% (w/v). In contrast, GelMA-DOPA hydrogels with
20% (w/v) were intact in appearance even after 96 h of immersion. Also, the equilibrium
swelling rate of 20% (w/v) GelMA-DOPA hydrogels was high, reaching 505.10 ± 21.30%.
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3.3. Degradation Performances of GelMA and GelMA-DOPA Hydrogels

As shown in Figure 6, all of the hydrogel samples were placed in a solution of colla-
genase at 37 ◦C, and the degradation rates of the GelMA and GelMA-DOPA hydrogels
can be controlled by varying the concentration of the hydrogels. The time required for
hydrogel degradation increased with the increase of the concentrations. On the 2nd day
of the degradation experiment, both two types of hydrogels with a concentration of 5%
(w/v) degraded completely. On the 3rd day of the experiment, both hydrogels with concen-
trations of 10% (w/v) and 15% (w/v) began to degrade noticeably and debris of hydrogel
appeared. Only the hydrogel whose concentration was 20% (w/v) remained intact in shape.
It was found that the degradation rate of GelMA-DOPA hydrogels was higher than that of
GelMA hydrogels. All of the GelMA-DOPA hydrogels were completely degraded by 5 days
of immersion, while the complete degradation time for 20% (w/v) GelMA hydrogels was
10 days. It can be speculated that DOPA is more hydrophilic and can accelerate the degrada-
tion process of GelMA-DOPA hydrogels. From this perspective, the degradation behaviors
of GelMA-DOPA hydrogels can be modified with further regulation of concentration of
DOPA groups.
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3.4. Morphologies of GelMA and GelMA-DOPA Hydrogel Coated Mg Alloys

GelMA and GelMA-DOPA hydrogels with different concentrations, i.e., 5% (w/v),
10% (w/v), 15% (w/v), and 20% (w/v), were coated on the surface of Mg alloys, and
the morphologies of the surface and cross-sections of samples were observed by SEM.
Figure 7A–H show surface morphologies of coatings for the two types of hydrogels, and
Figure 7A–D and Figure 7E–H are SEM images of GelMA hydrogel-coated Mg alloys and
GelMA-DOPA hydrogel-coated samples, respectively, and Figure 7I shows SEM image of
bare Mg alloys pellets. There is no significant difference between the surface morphologies
of the two types of hydrogel coatings with different concentrations. Overall, the surface
of the hydrogel coating is smooth, and there are few pores or cracks in the coatings. No
noticeable difference in cracks was observed between the two types of hydrogel coatings.

SEM images of the cross-section of the two types of hydrogel-coated Mg alloys are
shown in Figure 8. Coatings in Figure 8A–D and Figure 8E–H are GelMA hydrogel and
GelMA-DOPA hydrogel with different concentrations, respectively. There is no obvious
difference in thickness and uniformity between the two types of hydrogel coatings, e.g.,
the thickness of the coatings is not significantly related to the types and concentrations
of the hydrogel. Besides, both of the hydrogel coatings are tightly bonded to the Mg
alloys and the thicknesses of all the hydrogel coatings are 9.62 ± 1.7 µm. Therefore, it is
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feasible to prepare GelMA-DOPA hydrogel coatings on the surface of Mg alloys from the
perspective of morphologies, and other works on mechanical properties, biocompatibility,
and bioactivities of the GelMA-DOPA hydrogel/Mg alloy composites are in progress.
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(w/v) GelMA-DOPA; (H): 20% (w/v) GelMA-DOPA; (I): bare WE43 Mg alloy.
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Figure 8. SEM images of cross-sections of GelMA and GelMA-DOPA hydrogel coatings on magne-
sium alloys: (A): 5% (w/v) GelMA/Magnesium Alloy; (B): 10% (w/v) GelMA/Magnesium Alloy;
(C): 15% (w/v) GelMA/Magnesium Alloy; (D): 20% (w/v) GelMA/Magnesium Alloy; (E): 5% (w/v)
GelMA-DOPA/Magnesium Alloy; (F): 10% (w/v) GelMA-DOPA/Magnesium Alloy; (G): 15% (w/v)
GelMA-DOPA/Magnesium Alloy; (H): 20% (w/v) GelMA-DOPA/Magnesium Alloy.

4. Conclusions

Mussel-inspired modified GelMA hydrogels were prepared and deposited on the sur-
face of WE43 magnesium alloy directly via a dip-coating technique. The chemical groups,
swelling properties, and degradation properties of GelMA-DOPA and the morphologies
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of the coatings have been investigated. The content of the catechol groups in the GelMA-
DOPA hydrogel was deduced to be 0.38 mM based on the calibration method developed.
The 5% (w/v) hydrogel has the maximum swelling rate, whereas GelMA has a swelling rate
of (597.99 ± 22.27%) and GelMA-DOPA has a swelling rate of (511.23 ± 146.44%). Overall,
hydrogels with a concentration of 20% (w/v) of GelMA-DOPA to PBS have better perfor-
mance in immersion tests. Generally, GelMA-DOPA coatings are smooth and the thickness
of coatings is 9.62 ± 1.7 µm with three times of coating. More systematic experiments
are encouraged to be carried out to investigate the mechanical properties and biological
performance of the novel GelMA-DOPA/Mg composites.
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