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Abstract: Spherical zinc is well known as an effective pigment for the corrosion protection of carbon
steel. However, a high proportion of spherical Zn in a coating leads to difficulties in fabricating the
coating solution and increased cost. In this work, the influence of flake ZnAl alloy in silicate coatings
on the corrosion protection properties of steel substrates was investigated. The electrochemical
behaviour of coatings containing different flake ZnAl alloy content immersed in NaCl solution
(3.5 wt%) was evaluated using an electrochemical impedance spectroscopy (EIS) method. A salt
spray test was performed to evaluate corrosion on the coating surface. Pull-off tests of the coatings
before and after the salt spray process were performed, and the surface morphology was analysed to
determine the degradation of corrosion resistance. The results show that silicate coating containing
flake ZnAl alloy (25 wt%) possesses the highest total resistance (1417 Ω) and the longest time to
the appearance of white rust (720 h). The surface morphology of the coating containing 25 wt%
flake ZnAl alloy was found to include corrosion products with the most compacted surface, which
effectively prevents the penetration of electrolytes to the interface between the coating and the steel.

Keywords: flake ZnAl pigment; corrosion protection; steel; inorganic coating; silicate coating

1. Introduction

Surface coating using metals is an effective method for protecting carbon steel against
corrosion. Zn-rich coatings are widely used and are considered to be effective as protec-
tive coatings for steel surfaces because of their negative standard corrosion potential [1].
Zn-rich coatings may be organic or inorganic [2]. Organic Zn-rich coatings include volatile
organic compounds (VOCs), e.g., benzene and ethanol, which are harmful to human
health and the environment, whereas inorganic coatings often use nontoxic water-based
solvents [3]. Thus, researchers aim to develop water-based Zn-rich coatings for environ-
mentally friendly paints.

Currently, spherical Zn is used in the application of water-based inorganic Zn-rich
coatings for the corrosion protection of carbon steel. To ensure that a coating has the
required electrochemical protection properties, the level of Zn must be sufficient, usually at
least 80% [2]. However, with a high concentration of spherical Zn, the coating solution is
heterogeneous due to a low ratio of surface area to weight. As a result, such a solution can
contain serious defects in the coating [4]. To overcome this drawback, flake zinc powder has
been used as an effective alternative. Kalendova et al. [5] showed that the presence of flake
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Zn pigment in an organic coating could improve corrosion protection in comparison to
spherical Zn due to its superior properties. More importantly, flake Zn has a higher surface-
area-to-weight ratio, leading to better electrical contact between Zn particles and lower
current density in the Zn-rich coating due to good suspension in the paint solution [6–8].
Furthermore, the low quantity of flake Zn in the coating can significantly reduce the cost.

Although Zn-rich coating provides effective electrochemical protection of the base
metals, the stability of Zn, a strongly chemically active metal, is not high in aggressive
environments. In order to enhance the corrosion resistance of Zn-rich coatings, many
studies have used film-forming or pigment-modifying additives. Combination of Al and
Zn pigments in the coating could significantly improve the corrosion protection of Zn-rich
coatings [9,10]. Zn-rich coatings with Al content exhibit better cathodic protection on steel
substrates, preventing oxidative processes of zinc particles [11–13]. In addition, silicate
coatings containing Al powder not only provide a cathodic protection property but also
react with alkali metal silicates to produce insoluble silicates and form a thick film [14].

The use of ZnAl alloy pigment can increase the coating stability due to the passivation
of Al, and the colour of this pigment is also more distinctive. On the other hand, due to the
ductile characteristic of the ZnAl alloy, its flake powder is easily fabricated in nanometre
thickness, which can improve the dispersibility and the corrosion protection and reduce
the required amount of zinc [15,16].

In our recent study [17], the corrosion protection of carbon steel was found to be
significantly improved when some of the spherical Zn was replaced by a combination of
Zr conversion and flake ZnAl alloys in the silicate coatings. To the best of our knowledge,
the effect of flake ZnAl alloy pigment in a silicate coating on the corrosion protection
of metals has not been studied. In this work, the influence of ZnAl alloy content on the
corrosion protection properties of silicate coatings on steel substrates was evaluated. Silicate
coatings containing different concentrations of flake ZnAl alloy were explored, and the
anticorrosive properties and morphology were evaluated to demonstrate the performance
of the protective coatings.

2. Materials and Methods
2.1. Material and Sample Preparation

An aqueous potassium silicate solution was obtained from Xingtai Ocean Chemi-
cal Company. A 30 wt% nano-silica solution (particle size range of 9–10 nm) was pro-
vided by Vietnam Investment Casting Ltd. Co and was added into the potassium sil-
icate solution to produce a binder (SiO2:K2O = 5, mol/mol) in an inorganic coating.
Flake Zn-Al alloy (size of 5–7 µm, Zn:Al = 80:20) was purchased from Hunan Jinhao
New Material Technology Co. (Changsha, China), and two additives, Silquest A187
(Momentive Performance Materials Inc., New York, NY, USA) as a dispersing agent and
tributyl phosphate (Xilong Scientific Co., Santou, China) as an antifoaming agent,
were used.

2.2. Preparation of Coatings

Carbon steel samples with a size of 10 cm × 15 cm × 0.2 cm were used as metallic
substrates, ground with 600–1200 grade SiC papers, and then degreased in methanol
solutions under ultrasonic irradiation. The steel samples were rinsed with the water and
dried at room temperature. Silicate solution was produced from potassium silicate solution
with a binder, additives, and various pigments to form the silicate coatings with different
coating formulations of flake ZnAl alloys (FZnAl20 (20 wt%); FZnAl25 (25 wt%); FZnAl30
(30 wt%)). The carbon steel samples were prepared using a spray-coating method with a
coating thickness (100 ± 10 µm) determined after drying at room temperature for 7 days.



Coatings 2022, 12, 1046 3 of 10

2.3. Methods
2.3.1. Electrochemical Measurements

Electrochemical investigation was carried out on coated and bare samples using a
three-electrode cell device (Autolab PGSTAT 204N, Ionenstrasse, Herisau, Switzerland).
The system was assembled with the auxiliary platinum electrode, the test sample used
as the working electrode, and a reference Ag/AgCl electrode. DC polarization was used
to measure the parameters of the coated samples, including corrosion current density
(icorr) and corrosion potential (Ecorr). Polarization resistance (RP) was estimated via the
Stern–Geary Equation (1) [16]:

Rp =
βaβc

2.303(βa + βc)icorr
(1)

where βa and βc are anodic and cathodic Tafel constants (V/decade), respectively.
The voltages were scanned at ±150 mV with respect to open-circuit potential (OCP) at

a scan rate of 0.01 V/s. The icorr values were obtained using Tafel extrapolation at ±50 mV
with respect to the OCP. Electrochemical impedance spectroscopy (EIS) investigation was
performed on an area of 3.46 cm2 for the silicate coatings in NaCl solution (3.5%, w/w) at
the frequency range from 100 kHz to 0.01 Hz. The amplitude of the alternating potentials
was applied in the range from 10 mV to 0 with respect to OCP. The tests were performed at
least three times for each sample, and the data were analysed by Nova 2.0 software.

2.3.2. Pull-Off Test

The pull-off adhesion strength of the silicate coatings was assessed on a Defelsko
Positest AT (ASTM-D4541, DeFelsko Co., New York, NY, USA). Dollies (diameter of 20 mm)
were fixed to the coated samples by a two-part Araldite 2015 adhesive (Huntsman Co.,
osnabrück, Germany). The sample was dried under room temperature until the glue
was fully cured (about 24 h). Then, a slot around the dollies was made and pulled at a
speed of 10 mm min−1 on the coating surface until the coatings were detached from the
substrates. All tests were performed at least three times. The decrease in adhesion strength
was calculated using Equation (2):

Adhesion loss (%) =
Adhesion before salt spray test − adhesion after salt spray test

Adhesion before test
× 100% (2)

2.3.3. Salt Spray Test

Salt spray tests were evaluated in a salt spray box (Q-FOG CCT600, Q-lab Co.,
Cleveland, OH, USA) according to JIS 8502:1999. The rest of the coating surface was
protected using a waterproofing mixture of beeswax–colophony (3:1). All tests were per-
formed at least three times. Elemental composition and morphology analysis of the samples
was carried out using field emission scanning electron microscope (FESEM, JEOL, Tokyo,
Japan) combined with energy-dispersive X-ray spectroscopy (EDS) (Jeol 6490 JED 2300).

3. Results and Discussion

Zn-rich inorganic coatings have good electrical conductivity, weather resistance, and
solvent resistance properties [18]. However, due to the high Zn content in the coating, these
coatings have many disadvantages, including surface voids, poor insulation performance,
and brittleness [19–21]. To reduce the Zn content in the coating, a flake ZnAl alloy pigment
was investigated. Furthermore, wetting agents were added to the pigment powder for
improvement of the dispersion and the ability to grind the pigment powder to prepare the
flake ZnAl alloy [1], with a low critical wetting surface tension of the lamellar pigments.
The flake ZnAl alloy content should be less than 30 wt% in the silicate coating to ensure
dispersion and uniformity. The anticorrosion behaviour and adhesion of the coatings with
different ZnAl alloy contents were studied via EIS measurement and salt spray test. SEM
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images were analysed to investigate the morphology of the coatings before and after the
salt spray test.

3.1. Corrosion Rate of Silicate Coating

To study the corrosion resistance of the silicate coatings containing different pigments
contents, measurement of the polarization curves was performed with the samples im-
mersed in NaCl solution (3.5 wt%), as shown in Figure 1. The polarization parameters
extrapolated from the Tafel chart are given in Table 1.
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Figure 1. DC polarization curves for silicate coating containing different ZnAl alloy concentrations
after immersion in NaCl (3.5 wt%) for 48 h.

Table 1. Data obtained from DC polarization curves for silicate coating containing different ZnAl
alloy concentrations after immersion in NaCl (3.5 wt%) for 48 h.

Samples Ecorr (mV) icorr (µA/cm2) βa (mV/dec) −βc (mV/dec) RP (Ω.cm2)

FZnAl20 −549.41 12.77 105.52 192.99 2319.30
FZnAl25 −587.53 7.48 69.73 160.99 2823.67
FZnAl30 −579.33 9.65 60.35 160.69 1974.55

The results show that the potential of the samples coated with FZnAl20, FZnAl25,
and FZnAl30 strongly shifts to more positive positions than the reference potential of
Ag/AgCl (−735 mV), demonstrating that Zn-rich coatings act primarily as cathodic pro-
tection mechanisms [22]. It indicates that the flake ZnAl pigments do not protect the steel
substrate against corrosion by a sacrificial anodic mechanism but mainly by a barrier mech-
anism. As can be seen in Table 1, the effect of the flake ZnAl pigment content of the silicate
coating is evident in both parameters icorr (7.48 to 12.77 µA/cm2) and Ecorr (−549.41 to
−587.53 mV). The lowest value of icorr is found in the samples coated with the FZnAl25
pigment. Thus, the appropriate content of the flake ZnAl pigment can significantly improve
the barrier properties by filling the pores on the surface, thereby preventing the penetration
of electrolytes and reducing the oxidation rate of Zn particles [17].

3.2. Electrochemical Impedance Spectroscopy Measurement

EIS measurements were used to evaluate the corrosion resistance of coatings with
different flake ZnAl pigment contents. The Nyquist and Bode plots of silicate coatings with
various pigments immersed in NaCl solution (3.5%, w/w) for 60 days are illustrated in
Figure 2.
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Figure 2. Nyquist (series 1) and Bode (series 2 and 3) plots with different pigments of silicate coating
(series (a): FZnAl20; series (b): FZnAl25; series (c): FZnAl30) at various immersion times of 2 days,
30 days, and 60 days in 3.5 wt% NaCl.

The Nyquist plots of the three samples containing flake ZnAl pigment (FZnAl20,
FZnAl25, and FZnAl30) appear as straight lines with a slope of 45◦ in the low-frequency
range (Figure 2a–c). This result shows that the samples with flake ZnAl pigment coatings
have increasing amounts of corrosion products diffused to the microporous channel of the
coating after 2 days of soaking. Therefore, Warburg impedance can be used to describe
the diffusion process that can prevent electrolyte penetration by corrosion products [23].
The results also show that the impedance of the coatings containing the flake ZnAl alloy
pigments increases in the low-frequency region with a long soak time. This result is
likely due to both the barrier protection effect and the electrochemical activity of Al [24].
Moreover, the samples with FZnAl20 and FZnAl25 coatings have lower impedance values
than the FZnAl30 coatings, indicating that a low concentration of flake ZnAl alloy pigment
can reduce the electrolyte diffusion to the substrate. Thus, the oxidation rate of Zn particles
is significantly reduced and leads to a decrease in the quantity of corrosion products in the
pores of the coating [25].

The EIS data are fitted by the equivalent circuit model, as illustrated in Figure 3. The
parameters of the ESI measurements (Rs, Rc, Rct, Cc, and Cdl) allow the electrochemical
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properties of the samples to be determined. Double-layer capacitance (Cdl) and charge
transfer resistance (Rct) were used to characterize the solubility of the pigments. The War-
burg impedance W was used to describe the diffusion process that prevents electrolyte
penetration by corrosion products. A constant phase element (CPE) was used as an ideal ca-
pacitor to evaluate the influence of the pigments on the roughness of the coatings due to the
random distribution of the pigments and inhomogeneity in composition and structure [26].
The total resistance of the silicate coatings was determined via the impedance modulus
against immersion time at low frequency (10 mHz), which facilitates understanding of the
corrosion behaviour of the silicate coatings [27]. As can be seen in Figure 4a, the samples
coated with FZnAl20 and FZnAl25 pigments have lower impedance than the FZnAl30
sample after immersion in an electrolyte solution for 60 days. The increased impedance of
the sample with the FZnAl30 coating may be due to a barrier effect of the corrosion products
in the pores of the coating [24]. Thus, the flake ZnAl pigment increases the effectiveness of
anticorrosion protection and achieves the best protection performance with a flake ZnAl
pigment content of less than 30 wt% in the silicate coating.
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Figure 4b shows the plots of the phase angle at high frequency (100 kHz) versus
immersion time derived from the Bode plots, indicating the protective performance of the
coatings. The result shows that the phase angle of the samples using FZnAl25 pigments
is higher (shifted to the negative side) than the sample using FZnAl20 and FZnAl30
up to 60 days of immersion. This result indicates the high resistance to the electrolyte
diffusion into the coating containing FZnAl25 pigments in comparison with the others [24].
However, these samples, especially sample FZnAl20, show gradually decreasing phase
angles (shifting to the positive side) after 42 days immersed in the electrolyte solution.
This result indicates that the electrolyte penetrates through the coating and reaches the
interface between the coating and the steel. In other words, the barrier mechanism of the
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coatings using the flake ZnAl pigments is degraded after 42 days of immersion in the
electrolyte solution.

3.3. Salt Spray Test

The anticorrosive properties of the silicate coatings were evaluated using a salt spray
test. The surface images after 1000 h of salt spray test are shown in Figure 5. No white rust
appeared on the scratches after 360 h of the salt spray test, suggesting that the flake ZnAl
pigment protects against corrosion via a barrier mechanism. However, red rust appeared on
the scratch of the samples at different times, with the appearance of red rust on the sample
with FZnAl25 pigment taking longer (720 h) than FZnAl20 (72 h) and FZnAl30 (24 h). In
other words, the sample FZnAl25 containing the appropriate amount of flake ZnAl pigment
reacts favourably with the binder to form a bonding matrix in the silicate coatings [28] and
reduces electrolyte diffusion towards the interface between the coating and the substrate.
Moreover, there was more red rust on the FZnAL30 sample than on the other samples,
indicating that excessive ZnAl content causes a reduction in bond formation in the silicate
coatings to create subtle holes and cracks in the coatings [28]. This is likely because a
great amount of the silicate binder is consumed, leading to a lack of binding ability of the
coatings [14]. As a sequence, the ZnAl pigments are arranged unevenly in the coating
matrix, limiting the barrier properties of the flake ZnAl pigments; this excessive content
degrades the barrier protection mechanism and increases the diffusion of the electrolyte,
leading to reduced anticorrosion performance.
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3.4. Surface Morphology of Silicate Coating

The surface morphology of the silicate coatings was investigated using SEM mea-
surement before and after the salt spray testing (1000 h), as shown in Figure 6. The result
indicates that the coating surfaces provide corrosion barrier protection, produced by the
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overlap arrangement of the flake-shaped ZnAl alloy. After the salt spray test, sample
FZnAl25 had a more compacted surface, indicating that an appropriate ratio of flake ZnAl
pigment to silicate binder can lead to the formation of an effective coating to prevent
the penetration of electrolytes into the coating cavity, thereby prolonging the corrosion
protection time.
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3.5. Pull-Off Adhesion Tests

The surface images of the silicate coatings and the adhesion strength of the silicate
coatings before and after 1000 h of the salt spray are shown in Figure 7. The result shows
that all the samples coated with the flake ZnAl alloy pigment exhibited red rust under the
coating surface after the salt spray, although the sample using the FZnAl25 coating had
very little red rust in comparison with the samples coated with the FZnAl20 and FZnAl30
pigments. This result is consistent with the adhesion loss of the corresponding samples,
where the FZnAl25 sample had the lowest degradation of adhesion (37.95%). This result
demonstrates that a flake ZnAl alloy content of 25 wt% in the silicate coating forms an
effective coating that prevents penetration of the electrolyte into the interface between the
coating and the substrate.
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4. Conclusions

The influence of flake ZnAl alloy concentration in coatings was investigated. Excessive
content of ZnAl alloy in the silicate coating causes a decrease in the bonding formation in
the coatings and reduces their corrosion protection performance. The salt spray test showed
that the time to appearance of rust on the scratch surface in the sample with flake ZnAl
25 wt% in silicate coating was longer than that of the others. The use of a suitable content
of flake ZnAl alloy (25 wt%) not only improves corrosion protection but also prevents
corrosion products from forming in the silicate coating via a barrier protection mechanism
compared to 20 wt% and 30 wt% flake ZnAl alloys. Thus, this work demonstrated good
corrosion protection performance of flake ZnAl alloy pigments in the silicate coatings
of steel. The advantages of flake ZnAl alloy pigments in water-based inorganic silicate
coatings may inspire us to seek and design new materials to achieve coatings with better
corrosion protection properties.
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