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Abstract: Despite wide applications in mechanical transmission components, sparked with extraordinary
wear resistance, polymeric composites face the challenges of reinforcement agglomeration. In this work,
deformation-driven processing was proposed to prepare carbon nanotube (CNTs)-reinforced poly-ether-
ether-ketone (PEEK) matrix composites with enhancement in wear resistance. Severe plastic deformation
contributed to the homogeneous dispersion of the reinforcements without undesirable agglomeration.
Low frictional heat input ensured the structural integrity of CNTs. The coefficient of friction and wear rate
of 3.0 wt.% CNTs/PEEK were, respectively, 7.32% and 6.71% lower than those of pure PEEK. This strategy
provides a high-efficiency approach to preparing high wear-resistance polymeric composites, attributed to
its self-heating, low-cost, and high-performance characteristics.

Keywords: polymeric composites; carbon nanotubes; severe plastic deformation; wear resistance;
wear and tribology

1. Introduction

Wear and tribology are primary energy loss and failure factors in all types of mechani-
cal systems [1–4]. Polymers possess excellent wear resistance among various engineering
materials, replacing metallic materials to manufacture bearings, axles, and transmission
roller chains [5]. Nevertheless, due to the increasing requirement for wear and tribology
performances, traditional polymers cannot meet the demands of new generation devices [6].
Therefore, extensive researches were committed to improving the tribology performance via
carbonaceous nanomaterial-reinforced polymeric composites with high wear resistance [7].
However, there are still several problems remaining. For example, current methods typi-
cally require a long processing time and external heating sources to guarantee the sound
formation of the composite, such as melt blending and hot press sintering [8]. One more
serious issue is that current methods are usually not able to avoid the agglomeration of
carbonaceous nanomaterials [9]. Numerous methods such as pre-oxidating via nitric acid or
using surfactants were investigated to alleviate the agglomeration [10,11]. The dispersion
of carbonaceous nanomaterials was promoted apparently through these methods, while
the impurities were also mixed into the composites.

Deformation-driven strategy, based on the principle of sufficient mixing of the ma-
terials via severe plastic deformation and high strain, shows great potential in the fabri-
cation of metallic composites with homogeneously distributed reinforcements [12,13]. In
light of the capacity of dispersing carbonaceous nanomaterials via a deformation-driven
strategy [13–15], deformation-driven processing (DDP) was proposed as a novel method to
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prepare carbon nanotube (CNT)-reinforced poly-ether-ether-ketone (PEEK) matrix com-
posites with the features of short-time fabrication. This method utilizes severe plastic
deformation on the blended powders to obtain uniformly distributed reinforcements.
This letter was initiated to evaluate the application potential of DDP in the fabrication of
CNTs/PEEK composites, measure the tribology properties of the composites, and explain
the wear applications.

2. Experimental Procedures

PEEK powders (23 µm in average diameter) and CNTs (10~30 nm in average diameter,
5~30 nm in average length, purity ≥ 95.0%) were utilized. Various percentages of 1.0 wt.%,
3.0 wt.%, and 5.0 wt.% of CNTs were dispersed into the PEEK powders and then diluted by
anhydrous ethanol in a volume proportion of 1:5. Ultrasonic mixing was conducted for one
hour to pre-blend the powders in 2-propanol. The blended powder was subsequently put
into a mold and pressed for 60 s with 2 MPa to obtain the green compact with a diameter
of 16 mm, as shown in Figure 1a. Then, the DDP process was applied to the green compact
via a rotational processing tool rotating at 1800 rpm using the FSW-3LM-003 machine
(Beijing FSW Technology Co., Ltd., Beijing, China). The processing time and the plunge
depth were chosen as 5 s and 1.5 mm, respectively. The densified composites were obtained
by the frictional heat input and severe plastic deformation of the DDP processing.
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Figure 1. Preparation route of the CNTs/PEEK composites: (a) pre-compacting of the blended
powder and (b) DDP process.

A scanning electron microscope (SEM, Zeiss MERLIN Compact, Oberkochen, Ger-
many) at a working voltage of 20 kV was used to observe the microstructure of the com-
posites with different processing time. Fourier transform infrared spectroscopy (FT-IR,
Nicolet is50, Thermo Fisher Scientific, Waltham, MA, USA) was used to characterize the
CNTs/PEEK composites. The coefficient of friction and wear rate were evaluated and
compared with that of matrices via a pin-on-disk wear tester at a room environment. The
diameters of the silicon carbide frictional bodies were, respectively, 8 mm. The specimen
rotated at a constant sliding speed at 300 rpm, the contact load was 150 g, and the holding
time was 5 min. The wear rate was characterized by scratch depth measured by an optical
microscope (OM, Keyence VHX-7000, Osaka, Japan).

3. Results and Discussion

Figure 2 shows the SEM images of the green compacts and the composites prepared by
DDP. Holes and cracks can be clearly seen on the surface of the green compacts, whereas no
obvious similar defects can be observed on the surface of the DDP composites, proving that
the denser composites via DDP were obtained. Since the consolidation of the polymeric
composites was mainly induced by the severe plastic deformation and the frictional heat
input, the viscosity of the composites should be strictly controlled to ensure the sufficient
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material flow for the sound formation. The defects which were not found in the composites
with 1.0 wt.% CNTs and 3.0 wt.% CNTs were seen in other composites with 5.0 wt.% CNTs,
indicating that these defects can be attributed to the excessive increase in the viscosity
induced by the agglomeration of CNTs with too high weight fraction. In other words, the
homogeneous dispersion of the carbonaceous nanomaterials can be obtained with 1.0 wt.%
CNTs and 3.0 wt.% CNTs due to the appropriate viscosity of the composites.

Figure 3 shows the FT-IR of CNTs/PEEK composites. In the composites with different
weight fractions of CNTs, there are vibration absorption peaks at corresponding wavebands:
the absorption peaks near 700–800 cm−1 due to out of plane bending vibration of benzene
ring C-H bond, the absorption peak of -C-O-C- near 1250 cm−1, the absorption peak of
C=C around 1500 cm−1, and the absorption peak corresponding to the stretching vibration
of C=O around 1700 cm−1. The position of these peaks with different weight fractions of
CNTs was not changed significantly, and the infrared peak of the functional groups still
exists. No new-formed chemical bond was found between CNTs and PEEK, indicating that
the DDP process did not destroy PEEK and CNTs. This phenomenon proved that CNTs
were distributed in CNTs/PEEK composites without damage to structural integrity.

As shown in Figure 4, the coefficients of friction of PEEK, 1.0 wt.% CNTs/PEEK,
3.0 wt.% CNTs/PEEK, and 5.0 wt.% CNTs/PEEK were 0.41, 0.39, 0.38, and 0.42, respectively.
The formation of thin carbonaceous films on the surface of composite materials plays an
important role in improving the friction and wear properties of composites [16]. It can be
explained by the fact that dispersed CNTs without severe entanglement act as third body
materials filling the gap between the polymeric matrix and the friction body, which increases
the real contact area and thus reduces the contact pressure. Moreover, the untangled CNTs
may exhibit rolling motion when subjected to shear friction on the nanometer scale [17].
The coefficient of friction of 1.0 wt.% and 3.0 wt.% CNTs/PEEK composites were reduced.
However, in the 5.0 wt.% CNTs/PEEK composites, the agglomeration of the CNTs resulted
in an increase in the coefficient of friction. CNTs agglomerated at the wear scratch hindered
the formation of the lubricating film. The agglomerated CNTs were exposed at the scratch
surface, thus damaging the wear resistance. The 3D morphology maps of samples were
measured (subplots in Figure 4). The scratch depth was calculated, taking the original
surface as the reference plane (marked as blue). The wear scratch depth of PEEK, 1.0 wt.%
CNTs/PEEK, 3.0 wt.% CNTs/PEEK and 5.0 wt.% CNTs/PEEK were 20.34 µm, 19.15 µm,
18.09 µm, and 19.39 µm, respectively, indicating that CNTs form a lubricating film during
the wear test, resulting in a lower wear rate than pure PEEK.
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4. Conclusions

In this study, CNTs/PEEK composites with enhanced anti-wear properties were
successfully fabricated by a deformation-driven processing technique. Homogeneous
dispersion and good structural integrity of the carbonaceous reinforcement were obtained.
The carbonaceous film formed by the dispersed CNTs acted as fillers to increase the
real contact area and reduce the contact pressure, which alleviated the wear rate of the
polymeric composites. The friction coefficient and wear rate of 3.0 wt.% CNTs/PEEK were,
respectively, 7.32% and 6.71% lower than those of PEEK, indicating that DDP provided
a self-heating, low-cost, and high-performance approach for CNTs/PEEK composites
compared with other processing routes, which could be widely used in the preparation of
polymeric composites.
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