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The corrosion and degradation of materials, i.e., deteriorating materials via chemical/
electro-chemical reactions with their surrounding environments, is extremely common and
costly. The global cost of corrosion is estimated to be 3%–5% of the global gross domestic
product (GDP), not including individual safety or environmental consequences. To reduce
the corrosion cost and to avoid catastrophic corrosion consequences, abundant corrosion
studies [1–23] have been performed and effective corrosion control practices [18–22] have
been used to understand the corrosion fundamentals, to inspect the corrosion performance of
structural components or materials, to evaluate the safety issues, to analyze and report the
corrosion failure, and to develop advanced corrosion control techniques. This benefits the
selection and design of the corrosion-resistant materials used in modern society, and their
safety assessment. It can not only facilitate the development of new corrosion mechanisms of
the materials in service, but can also improve the integrity and longevity of the materials and
eventually decrease corrosion loss.

This Special Issue of Coatings, entitled “Corrosion and Degradation of Materials”,
was intended to consolidate recent findings related to the corrosion and degradation of
materials and to provide an opportunity for researchers to publish the latest results, reviews,
methodology, and failure case reports to understand or solve material corrosion issues.

With the great efforts of the Guest Editor team, the enthusiastic support of the Editorial
Board and the valuable contribution of the participates, this Special Issue has reached a
milestone, successfully publishing 31 peer-reviewed papers. It covers a series of research
areas ranging from the microstructure characterization of the studied materials which
has a great impact on their corrosion performance [11,12], the corrosion behaviors and
mechanisms of the structural or novel-designed materials in potential service environ-
ments [13–17], the development of new coatings acting as corrosion barriers to protect the
materials [18–22], the corrosion model built to predict the corrosion progress of the material
investigated [23], and other related areas [24–27].
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