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Abstract: The dramatic increase in sewage sludge production requires researchers to develop and
explore more commercially viable ways for alleviating current environmental and socioeconomic
challenges connected with its routine management. It has been established that sewage sludge can be
processed to fabricate various valuable products or as fuels for electricity generation. In this research,
kaolin (calcined from coal gangue) and sewage sludge were successfully used to prepare porous
ceramic bricks without any additives. The effect of sewage sludge on the microstructure, phase
composition, and mechanical properties of kaolin-sewage sludge ceramic bricks was investigated.
The results show that the kaolin-sewage sludge ceramic bricks are mainly composed of mullite
(3Al2O3·2SiO2), sillimanite (Al2SiO5), aluminum phosphate (AlPO4), hematite (Fe2O3) as well as
a small amount of quartz (SiO2). The ceramic bricks present a typical porous structure, and the
number and size of micropores increases noticeably with the increase of sewage sludge content. The
sintering shrinkage rate and porosity of ceramic bricks increased significantly with the increase of
sewage sludge content, which is mainly attributed to the increase of liquid phase proportion and
high temperature volatilization. Sewage sludge can significantly improve the mechanical properties
of kaolin-sewage sludge ceramic bricks. When the sewage sludge content is 30 wt.%, the ceramic
bricks present the maximum compressive strength and flexural strength and high porosity (32.74%).
The maximum sintering shrinkage rate and porosity are 12.17% and 40.51%, respectively.

Keywords: sewage sludge; ceramic bricks; microstructure; mechanical properties; porosity; shrinkage

1. Introduction

With the development of urbanization and rapid population growth, over 60 million
tons of sewage sludge are produced every year in the world. Furthermore, a large amount of
sewage sludge is stockpiled and landfilled, resulting in serious waste of land resources and
environmental pollution [1–3]. Previous studies have pointed out that the main components
of sewage sludge are Al2O3, SiO2, P2O5, and Fe2O3, and the trace elements such as Pb, Cr,
and Ni all exceed the limit of environmental requirements [4–7]. Comprehensive utilization
of solid waste from sewage sludge is an effective way to avoid secondary pollution [8,9].

At present, sewage sludge is mainly used as agricultural fertilizer (phosphate fertilizer)
or soil remediation, as fuel for power plants, and as raw materials for the preparation
of building materials and ceramic materials [10–14]. It is worth noting that the direct
incineration of sewage sludge will cause serious corrosion to the equipment, and especially
the incineration of high-water sludge will consume a lot of energy [15–17]. In addition,
sludge incineration will also cause the enrichment of heavy metals in dust and secondary
pollution, and the sludge residue of combustion is directly accumulated or buried, which
seriously pollutes the surrounding soil [18,19]. However, the content of Al2O3 and SiO2 in
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sewage sludge and its calcination residue is high, which can be used as additives for ceramic
materials [20–23]. Therefore, sewage sludge can be used to produce clay bricks, refractory
materials, foam ceramics, glass ceramics, etc. [24–27]. Hegazy et al. [28] considered that
the mineral composition of sewage sludge and clay was similar and prepared clay bricks
with good performance by using 50% sewage sludge, 25% rice husk, and 25% silica ash.
Qi et al. [29] prepared a kind of porous ceramic with a sewage sludge content of 50 wt.% by
using coal gangue and sewage sludge. Sewage sludge has good sintering and pore-forming
function, which significantly improves the sintering characteristics of coal gangue.

Moreover, ceramics, bricks, or ceramsites prepared from sludge have great application
potential in the field of water treatment due to its high porosity and good mechanical
properties [30–33], which can be used as building thermal insulation materials, refractories,
and water treatment materials [34–36]. For example, Tian et al. [30] used sewage sludge to
prepare novel glass-ceramics through the microwave heating method, which can not only
reduce energy consumption, but also significantly improve the structure and performance
of ceramics. Zhou et al. [19] proposed a production method of porous thermal insulation
bricks based on municipal sewage sludge to implement the reuse of solid waste and found
that excessive municipal sewage sludge would result in the deterioration of brick strength.
Chen et al. [17] developed porous ceramsites with good adsorption performance for Pb (II)
by using co-combustion ash of various solid wastes containing sewage sludge, which could
effectively treat Pb (II) polluted wastewater. Therefore, the utility value of urban sludge is
high, which has important social and economic benefits for the comprehensive utilization
and application of sewage sludge [37,38].

In this work, kaolin (calcined from coal gangue) and sewage sludge were successfully
used to prepare kaolin-sewage sludge ceramic bricks by sintering at 1250 ◦C. The effect of
sewage sludge content on the microstructure and phase composition were investigated. In
addition, the effects of sludge content and microstructure on the sintering characteristics,
porosity, and mechanical properties of ceramic bricks were also discussed. It should be
noted that the content of sewage sludge in this study was controlled at 10–40 wt.%, namely,
the performance and structure of sludge-free samples were not analyzed because they were
almost unconsolidated or developed due to the high melting point of kaolin when sintered
at 1250 ◦C.

2. Experimental Procedure
2.1. Materials

The raw materials used in the experiment were kaolin and sewage sludge. Sewage
sludge came from the No. 1 sewage treatment plant in Yangquan, Shanxi, China. It had
a high water content, and the weight loss rate after drying was 63%. Kaolin with fire
resistance of 1750 ◦C was calcined from the coal gangue of Shanxi Huayang New Material
Group (No. 2 Coal Mine). Raw materials were dried by a drying oven at 120 ◦C for 10 h
and then were milled by a high-energy ball mill (YXQM-4L) at the speed of 1500 r·min−1

for 2 h. The chemical compositions of sewage sludge and kaolin were determined by X-ray
fluorescence (XRF) and are presented in Table 1. It can be seen that the main composition
of sewage sludge was Al2O3 (15.42 wt.%), SiO2 (34.84 wt.%), Fe2O3 (12.37 wt.%), and
P2O5 (18.65 wt.%). It has been established that SiO2 in sewage sludge mostly exists in
the amorphous form because of low crystallinity, which is beneficial to the insulation
performance of ceramic bricks. Furthermore, the main composition of kaolin was Al2O3
(41.53 wt.%) and SiO2 (53.82 wt.%). In addition, there were small amounts of toxic and
harmful substances in sewage sludge, such as Cr2O3 (0.21 wt.%) and ZnO (0.25 wt.%). It
can also be seen from Table 1 that the loss on ignition (LOI) of sewage sludge and kaolin
was 37.64% and 15.21%, respectively, revealing that the content of organic components was
high, which is conducive to the formation of pores in ceramic bricks.
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Table 1. Chemical compositions of sewage sludge and kaolin determined by XRF (wt.%).

Material Al2O3 SiO2 Fe2O3 P2O5 CaO MgO K2O Na2O TiO2 Cr2O3 ZnO Other LOI

Sewage sludge 16.42 34.84 12.37 18.65 4.26 2.07 2.75 1.61 0.47 0.21 0.25 6.56 37.64
Kaolin 42.53 53.82 0.73 - - - - - 1.24 - - 1.68 15.21

2.2. Preparation of Ceramic Bricks

The raw materials were weighed by an electronic balance with an accuracy of 10−4 g,
the specific proportion of sludge and kaolin was evenly mixed, and the methylcellulose
solution with a concentration of 5 wt.% was used as the binder. It is worth mentioning
that the methylcellulose is easily decomposed to produce gas at high temperature, which
also contributes to the formation of pores in sintered ceramic bricks. In this work, the
additional proportions of sludge were 10, 20, 30, and 40 wt.%, respectively. Furthermore,
the proportion of the mixture is shown in Table 2. The prepared mixture was pressed into
a rectangular green brick of 50 × 15 × 8 mm3 by an isostatic pressing molding machine
under the pressure of 20 MPa and then dried by a drying oven at 120 ◦C for 10 h. Finally,
the ceramic bricks were sintered through a high-temperature muffle furnace at 1250 ◦C for
40 min and then cooled to room temperature with the furnace. Note that the high sintering
temperature was due to the very high melting point of kaolin, which was also conducive to
saving sintering time.

Table 2. Designed proportions of kaolin-sewage sludge ceramic bricks (wt.%).

Sample S1 S2 S3 S4

Sewage sludge 10 20 30 40
Kaolin 90 80 70 60

Binder (methylcellulose solution) 10

2.3. Characterization Techniques

The phase composition was identified by X-ray diffractometry (XRD, D8-Advance,
Bruker, Germany) with Cu radiation (λ = 1.5406 Å) from 10 to 90º. The microstructure
and elemental distribution of the kaolin-sewage sludge ceramic bricks were examined by
scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS, JSM-6510LV,
JEOL, Tokyo, Japan). The compressive strength and flexural strength were measured by a
universal mechanical testing machine. Forty samples were used to measure the average
values of sintering shrinkage, compressive strength, and flexural strength of ceramic bricks.
The implementation standard of compressive strength and flexural strength were GB/T
8489-2006 and GB/T 6569-2006, respectively. The sintering shrinkage rate was calculated
by the following formula [23,32]:

Lv =
1
3

3

∑
i=1

(Li − L′ i)
Li

× 100%

where Lv is the sintering shrinkage rate (%), Li is the length before sintering (mm), and Li
′

is the sample length after sintering (mm).

3. Results and Discussion
3.1. Phase Composition of Ceramic Bricks

The effect of sewage sludge content on the phase evolution of the kaolin-sewage
sludge ceramic bricks is shown in Figure 1. It can be seen that the kaolin-sewage sludge
ceramic bricks were mainly composed of mullite (3Al2O3·2SiO2), sillimanite (Al2SiO5),
aluminum phosphate (AlPO4), and hematite (Fe2O3), as well as a small amount of quartz
(SiO2). With the increase of sewage sludge content, the diffraction peak intensity of mullite
and quartz phases decreased slightly, which was mainly due to the decrease of Al2O3
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and SiO2 content in ceramic bricks. In addition, a small amount of the Fe2O3 phase was
also observed, which mainly came from sludge. The reduction of the mullite phase was
helpful to improve the sintering performance of ceramic bricks, and the high temperature
decomposition of sewage sludge also promoted the formation of porous ceramic tiles.
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Figure 1. XRD patterns of the ceramic bricks with various sewage sludge contents sintered at 1250 ◦C
for 40 min.

3.2. Microstructure of Ceramic Bricks

Figure 2 shows the surface morphology of ceramic bricks with various sewage sludge
contents sintered at 1250 ◦C for 40 min. The elemental composition of micro-zones is
shown in Table 3. The SEM–EDS results indicated that the kaolin-sewage sludge ceramic
bricks were mainly composed of light gray mullite (3Al2O3·2SiO2), dark gray sillimanite
(Al2SiO5), white Fe2O3 phase, and black SiO2 phase, and the analysis of EDS was consistent
with the results of XRD. However, no heavy metal elements were observed in ceramic
bricks, indicating that heavy metal elements in sewage sludge were effectively diluted
and solidified. It can be seen from Figure 2a–c that when the content of sewage sludge
was 10 wt.%, the sintering performance of the kaolin-sludge ceramic bricks was extremely
poor. The surface structure of ceramic bricks was very loose, which presented an obvious
granular structure because the sewage sludge content in the S1 sample was too low to
produce a glassy liquid phase, resulting in unconsolidated or a relatively low degree
of consolidation for ceramic bricks. When the content of sewage sludge increased to
20–40 wt.%, the glassy liquid phase began to form to significantly improve the sintering
properties of ceramic bricks. As shown in Figure 2d,g,j, with the increase of sludge content,
the number and size of micropores increased noticeably, and the increase of sintering
liquid phase greatly promoted the bond between particles, as shown in Figure 2e,h,k. In
addition, some disseminated white Fe2O3 particles with sizes of 1–2 µm were also observed
when the contents of sewage sludge were 20–40 wt.%, as shown in Figure 2c,f,i,l. The
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reaction sintering and pore forming mechanism of sewage sludge can be mainly described
by Equations (1)–(4).

Organics + O2(g)→ CO2(g) + H2O(g) (1)

Al2O3 + 2SiO2 = 3Al2O3·2SiO2 (2)

Al2O3 + SiO2 = Al2O3·SiO2 (3)

Al2O3 + P2O5 = 2AlPO4 (4)Coatings 2022, 12, 944 6 of 12 
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Figure 2. Surface morphology of ceramic bricks with various sewage sludge contents sintered at
1250 ◦C for 40 min. (a–c) S1—10 wt.%; (d–f) S2—20 wt.%; (g–i) S3—30 wt.%; (j–l) S4—40 wt.%.
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Table 3. Elemental chemical composition of various points in micro-zones A–D from Figure 2.

No.
Element Composition (wt.%)

Mineral Phases
O Al Si Ca Mg Ti Fe Zr P Na K

1 68.85 19.73 16.06 - - - 0.56 0.79 - - - Mullite (3Al2O3·2SiO2) + Quartz (SiO2)
2 63.34 14.38 14.16 - - - 1.38 - 1.05 - - Mullite (3Al2O3·2SiO2) + Quartz (SiO2)
3 45.26 9.38 8.29 0.64 - 0.47 34.30 1.65 - - - Hematite (Fe2O3)
4 63.34 11.24 18.12 1.40 0.45 - 1.76 - 1.84 0.91 0.93 Sillimanite (Al2SiO5) + Quartz (SiO2)
5 69.56 13.37 12.28 0.57 0.44 - 1.19 0.74 0.60 0.88 0.37 Mullite (3Al2O3·2SiO2) + Quartz (SiO2)
6 46.31 9.43 8.21 0.72 - 0.45 34.35 1.63 - - - Hematite (Fe2O3)
7 46.51 21.09 24.38 0.97 - 5.14 1.90 - - - Sillimanite (Al2SiO5) + Quartz (SiO2)
8 42.83 8.81 8.19 - - 1.54 36.42 2.20 - - - Hematite (Fe2O3)
9 53.37 21.45 18.27 1.30 0.43 - 1.73 - 1.81 0.80 0.63 Mullite (3Al2O3·2SiO2) + Quartz (SiO2)

Chen et al. [39] reported that the organic materials in sewage sludge are mainly
composed of carbohydrates, proteins, and lignin. It can be seen that the combustion of
organic matter not only provided additional heat for the sintering reaction but also was the
main reason for the formation of the porous structure. In addition, the high content of SiO2
and P2O5 in sewage sludge promoted the formation of silimanite (Al2SiO5) and aluminum
phosphate (AlPO4) phases. As is well-known, the physical and chemical properties of
sillimanite ceramics are noticeably better than mullite ceramics. Moreover, aluminum
phosphate is also an efficient fluxing agent, which can significantly improve the sintering
properties of ceramic materials [40,41].

Figure 3 shows the cross sectional LSCM images of ceramic bricks with various sewage
sludge contents. Laser color images show that the color of ceramic tiles gradually changed
from white to yellow with the increase of sludge content, and the area with high sludge
content was obviously black, as shown in Figure 3a–d. The LSCM intensity images showed
that with the increase of the sewage sludge content, the number and size of cross section
micropores increased significantly, as shown in Figure 3e–h. LSCM 3D images showed that
the cross-sectional morphology was very flat when the sewage sludge content was 10 wt.%,
and the values of Ra, Rq, and Rz were only 3.269, 3.956, and 43.341 µm, respectively.
This was mainly due to the brittle fracture of ceramic brick. As shown in Figure 3j–l, the
height fluctuation of cross-sectional morphologies increased noticeably, and the roughness
values also increased noticeably. The maximum roughness value was observed when the
sewage sludge content was 40 wt.%, and the values of Ra, Rq, and Rz were 9.305, 11.525,
and 123.284 µm, respectively. This was mainly due to the increase of flexural strength
and porosity.

3.3. Mechanical Properties of Ceramic Bricks

Figures 4–6 present the apparent density, sintering shrinkage rate, and porosity of
the ceramic bricks with various sewage sludge contents. It can be seen that the density of
ceramic bricks before and after sintering had the same change trend with the increase of
sewage sludge content; that is, it first increased by about 15%–20% and then decreased
slightly, which is related to the microstructure of ceramic bricks and the volatilization of
sewage sludge. Moreover, with the increase of sludge content, the sintering shrinkage
and porosity of ceramic bricks increased significantly, as shown in Figures 5 and 6. The
maximum sintering shrinkage rate and porosity were observed when the sewage sludge
content was 40 wt.%, and the maximum sintering shrinkage rate and porosity were 12.17%
and 40.51%, respectively. The high temperature volatilization of sewage sludge and the
increase of liquid phase proportion were the main reasons for the increase of sintering
shrinkage rate and porosity. Furthermore, the extremely high porosity would destroy the
microstructure of the ceramic bricks, resulting in a decrease in the strength of the S4 sample.
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Figure 5. Sintering shrinkage rate of the ceramic bricks with various sewage sludge contents.
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Figure 6. Porosity of the ceramic bricks with various sewage sludge contents.

Figure 7 shows the compressive strength and flexural strength of the ceramic bricks
with various sewage sludge contents. It can be seen that the compressive strength of the
kaolin-sewage sludge ceramic bricks presented a kind of gradually increasing trend with
the increase of sewage sludge content. However, the flexural strength showed a law of
an increase first and then a decrease. When the sewage sludge content was 10 wt.%, the
compressive strength and flexural strength of ceramic bricks were only 5.12 and 3.21 MPa,
respectively. As shown in Figure 2b,c and Figure 3a,e, when the sludge content was 10 wt.%,
the surface and cross-section microstructure of ceramic bricks were very loose and mainly
composed of granular structures, which led to the low compressive strength and flexural
strength of ceramic bricks. When the sewage sludge content increased to 20 wt.%, the
compressive strength and flexural strength of ceramic bricks increased significantly. The
compressive strength of ceramic bricks was similar when the sewage sludge content was
30 and 40 wt.%. The maximum compressive strength and flexural strength was observed
when the sewage sludge content was 30 wt.%. The formation of silimanite (Al2SiO5) and
aluminum phosphate (AlPO4) phases was the main reason for the improvement of sintering
and mechanical properties of porous ceramics with high sludge contents. However, the
flexural strength of ceramic tile decreased significantly when the sludge content was
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40 wt.%, and the significant increase of the number and size of micropores was the main
reason for the sharp decrease of flexural strength. Therefore, increasing the sludge content
can significantly improve the sintering properties and porosity of kaolin ceramics and
effectively improve its mechanical properties.
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Figure 7. Compressive strength and flexural strength of the ceramic bricks with various sewage
sludge contents. (a) Compressive strength; (b) flexural strength.

Table 4 shows the comparison of this work with other studies. The listed bricks include
clay bricks, thermal insulation bricks, and ceramic bricks. The developed ceramic bricks
presented excellent compressive strength characteristics compared with other sludge-based
sintered bricks. Moreover, the porosity and density of the sintered ceramic bricks in this
work exhibited tremendous competitiveness in comparison with those from previous stud-
ies. Although the shrinkage performance of ceramic bricks needs to be further suppressed,
it has a great potential for application in the construction field. In addition, all the raw
materials of sintered ceramic bricks are derived from waste, so the production cost is low.

Table 4. Product properties of various sintered sludge-based bricks.

Waste Raw Materials Product Density
(mg/cm3)

Shrinkage
(%)

Porosity
(%)

Compressive
Strength (MPa) Ref.

Sewage sludge; pure clay body Clay bricks - 0.88–1.07 - 6.20–17.85 [3]
Sewage sludge; oven slag; fly ash Clay bricks 2.14–3.38 2.82–10.98 11.87–44.68 2.26–31.67 [13]
Municipal sewage sludge; clay;

rice husk ash; Na2CO3

Thermal
insulation bricks 1.25–1.55 - 36.19–44.31 4.71–13.59 [18]

Municipal sewage sludge; clay;
silica fume; fly ash

Thermal
insulation bricks 1.34–1.55 - 34.20–41.45 5.90–23.50 [19]

Sewage sludge; kaolin Ceramic bricks 1.32–1.63 2.44–12.17 13.27–40.51 5.12–35.89 This work

4. Conclusions

In this work, kaolin and sewage sludge were successfully used to prepare porous
ceramic bricks without any additives. The effect of sewage sludge on the microstructure,
phase composition, and mechanical properties of kaolin-sewage sludge ceramic bricks were
investigated. The detailed experimental conclusions are as follows:

(1) The kaolin-sewage sludge ceramic bricks are mainly composed of mullite (3Al2O3·2SiO2),
sillimanite (Al2SiO5), aluminum phosphate (AlPO4), and hematite (Fe2O3), as well as
a small amount of quartz (SiO2). The ceramic bricks present a typical porous structure,
and the number and size of micropores increase noticeably with the increase of sewage
sludge content.
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(2) The sintering shrinkage rate and porosity of ceramic bricks increase significantly with
the increase of sewage sludge content, which is mainly attributed to the increase of
the liquid phase proportion and high temperature volatilization.

(3) Sewage sludge can significantly improve the mechanical properties of kaolin-sewage
sludge ceramic bricks. When the sewage sludge content is 30 wt.%, the ceramic bricks
present the maximum compressive strength and flexural strength with a porosity
of 32.74%. The maximum sintering shrinkage rate and porosity are 12.17% and
40.51%, respectively.

(4) The formation of silimanite (Al2SiO5) and aluminum phosphate (AlPO4) phases is the
main reason for the improvement of the sintering and mechanical properties of porous
ceramics with high sludge content. Increasing the sludge content can significantly
improve the porosity and mechanical properties of ceramic bricks.
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