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The production of composite thin films/coatings with desired properties is currently
an important scientific and technical area [1–3]. Here, there are broad prospects for com-
posite electrochemical coatings (CEC), which are obtained from electrolyte suspensions
containing a different dispersed phase. CEC deposition not only saves non-ferrous met-
als, but also makes it possible to significantly improve the performance characteristics
of metal surfaces (hardness, wear resistance, corrosion resistance, etc.), as well as impart
new qualities to them (for example, anti-friction properties). Therefore, CECs are used in
various industries (chemical, engineering, oil and gas, etc.). The properties of composite
coatings are largely determined by the dispersed phase. In this regard, various carbon
materials (carbides, nanodiamonds, carbon nanotubes, graphene, etc.) are of great interest
to researchers. Carbon and carbon-based composite thin films/coatings are currently being
actively researched.

It was shown in [4–7] that the addition of silicon carbide particles into the nickel–metal
matrix leads to a noticeable increase in the physical, mechanical (microhardness and wear
resistance) and corrosion properties of the resulting coatings. In particular, the wear rate of
nickel–SiC composite coatings decreases by more than two-fold, and the microhardness
increases by 50%–70% compared to pure nickel [7]. The main wear mechanism is tribooxi-
dation accompanied by abrasion. This is due to grain refinement and the formation of dense
finely crystalline nickel–SiC CEC deposits. In this case, the best effect is achieved by using
non-stationary (pulsed and reversible) electrolysis [5–7]. The use of non-stationary currents
contributes to a significant increase in the content of the dispersed phase in the metal matrix
and its uniform distribution over the thickness of the electrochemical deposit. Moreover,
the advantage of these modes is the ability to control a greater number of parameters of the
electrochemical deposition of coatings.

The use of ultrafine diamonds (nanodiamonds) also has a positive effect on the per-
formance properties of carbon-based composite thin films/coatings [8,9]. Nanodiamond
particles have an oval or spherical shape without sharp edges and a large specific surface
area (up to 450 m2). They are a diamond core in the shell of amorphous carbon structures
with oxygen-containing functional groups. The addition of only 5 × 10–2 g/dm3 nanodia-
monds into nickel-plating sulfate electrolyte makes it possible to obtain composite coatings
with increased microhardness and wear resistance [9]. The addition of nanodiamonds into
a nickel matrix leads to the formation of a coarse-grained surface and an increase in its
roughness. However, in this case, a decrease in the coefficient of sliding friction of the
CEC deposits is observed. Due to their unique structure and high-performance properties,
composite thin films/coatings modified with nanodiamonds can be used to increase the
service life of various cutting tools [8].

Another type of carbon material used to produce composite thin films/coatings are
carbon nanotubes [10–13] and fullerenes [14–16]. Carbon nanotubes (CNTs) are graphite
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planes (graphenes) rolled into cylinders with a diameter of one to several tens of nanometers.
CNTs can be either single or multilayer. At the same time, CNTs have unique physical and
mechanical characteristics, in particular, high tensile strength and high modulus of elasticity.
The wear rate of the nickel-CNT CEC deposited from the Watts electrolyte decreases by
1.40 times compared to nickel coatings without a dispersed phase. The addition of particles
of multiwalled CNTs into a nickel matrix decreases the friction coefficient more than
twice [12]. This result is due to the graphitization and self-lubrication effect of CNTs. A
significant decrease in the coefficient of sliding friction also takes place when CNTs are
added into the composition of electrochemical zinc deposits. In this case, the corrosion
resistance of zinc-CNTs composite coatings increases [10,11]. The best effect, as in the case
of other carbon materials, is achieved by using non-stationary electrolysis modes. It should
be noted that the addition of fullerene C60 dispersion into a sulfate–chloride nickel-plating
electrolyte also leads to the formation of composite coatings with improved tribological
and corrosion properties [16].

Perhaps one of the most studied carbon materials at present is graphene and its
derivatives (in particular, graphene oxide). The interest in graphene is due to its remarkable
performance properties: high thermal and electrical conductivity, mechanical strength, etc.
Graphene and graphene oxide, which are synthesized via the chemical or electrochemical
oxidation of graphite, are used to obtain composite thin films/coatings based on metals
and alloys [17–21].

When graphene oxide is added into the sulfate–chloride nickel-plating electrolyte, the
microhardness and wear resistance increase, and the friction coefficient of the deposited
composite coatings decreases. This is due to the fact that graphene has not only mechanical
strength, but also a lubricating effect [17–19]. The corrosion resistance of nickel–graphene
CEC and nickel–graphene oxide also increases in comparison with pure deposits of elec-
trochemical nickel, which is explained by the uniform distribution of the dispersed phase
in the composite coating. In turn, this contributes to the uniform distribution of corro-
sion currents over the surface [22]. With an increase in the content of graphene oxide in
the nickel-plating electrolyte, a gradual increase in the corrosion resistance of CEC takes
place, due to the induced growth of the coating along relatively low-energy planes and the
impermeability of graphene particles for aggressive media [21].

Thus, carbon materials significantly improve the performance properties of composite
thin films/coatings, and further research based on them is an important and promising task.
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