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Abstract: Nowadays, high-entropy alloys (HEAs) have become a hot research topic in the field
of coating materials. However, HEAs have a large wide range of compositional systems, and the
differences in their composition inevitably lead to the significant variations in the matching process
parameters of laser cladding and post-treatment methods, which in turn give the coatings a broad
range of microstructures and protective properties. Therefore, it is crucial to review and summarize
the research progresses on laser cladding HEA coatings to provide a reference for obtaining high-
performance HEA coatings and further expand the application of HEA coatings. This work describes
the working mechanism of laser cladding and illustrates the advantages and drawbacks of laser
cladding in detail. The effects of the addition of alloying elements, process parameters and post-
treatment techniques on the microstructures and properties of the coatings are thoroughly reviewed
and analyzed. In addition, the correlations between the chemical compositions of HEAs, process
parameters of laser cladding, post-treatment techniques and the microstructure and protective
properties of the coatings are investigated and summarized. On this basis, the future development
direction of HEA coatings is outlined.

Keywords: high entropy alloy coating; preparation process; research progress; microstructure; performance

1. Introduction

In 2004, Professor B. Cantor of Cambridge University and Professor J. W. Yeh of
Tsinghua University in Taiwan reported a new approach for multiple principal component
alloy design and opened up the development route of high entropy alloys (HEAs) with
multiple principal elements [1,2]. HEAs generally have five or more components, and the
atomic fraction of each component ranges from 5 to 35%. After solidification, HEAs
do not represent a large number of intermetallic compounds but take their shape in a
structure dominated by simple BCC, FCC, or HCP solid solutions [3–6]. The subversive
design strategy of HEAs has greatly broadened the field of alloy design and aroused
considerable attention from scholars, scientific research institutions, and business circles.
The mixing entropy effect of HEAs is different from that of traditional alloys, such as having
high a entropy effect, hysteresis diffusion, lattice distortion and “cocktail” effect [7–9].
In addition, the random distribution of multi-component solid solution elements and the
addition of easily passivated elements, wear-resistant elements, and oxidation-resistant
elements render it better than the traditional metal coating materials in terms of corrosion
resistance [10–14], wear resistance [15–18], and oxidation resistance [19–21].

Due to the element content of HEA being much higher than that of traditional engi-
neering alloys, block HEAs have not been applied on a large scale in the industrial field
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due to cost constraints. As a coating material, HEAs not only offer advantages of excellent
corrosion resistance [22–24], wear resistance [25,26], and oxidation resistance [27], but also
overcome the disadvantages of high engineering application costs, which is the primary
direction of the development of HEAs. In addition, HEAs have certain requirements for
the cooling speed and undercooling degree in the preparation process, and the coating
has the characteristics of fast cooling due to the small forming scale, which can effectively
inhibit the generation of intermetallic compounds during the forming [28–32]. At present,
the main methods of preparing HEAs coatings is laser cladding [33–35].

So far, most of the researches on the preparation process of HEAs coating are focused
on the optimization of process parameters, and there is no summary of the correlations
between process parameters, microstructure and properties. Meanwhile, the induction
of composition regulation and heat treatment modification of HEA coatings are still in-
sufficient. In this review, we attempt to summarize the recent research progress on HEA
coatings, introduce the working principle of each preparation process in detail, and focus on
the influences of composition control, process parameters, and heat treatment methods on
the microstructure and properties of the coatings, in order to obtain high-performance HEA
coatings and provide a reference base for broadening the applications of HEA coatings.
In addition, the correlations between the chemical compositions of HEAs, process param-
eters of laser cladding, post-treatment techniques and the microstructure and protective
properties of the coatings were investigated and summarized. On this basis, the future
development direction of HEA coatings are prospected.

2. Laser Cladding HEAs Coatings

Nowadays, there are many techniques to prepare HEA coatings, which can be clas-
sified into hot forming processes and cold forming processes according to the working
temperature. Generally, the typical hot forming process are laser cladding and thermal
spraying while the common cold forming techniques are electric spark deposition and
magnetron sputtering. The coating prepared by cold forming techniques has high a forming
quality, high bonding strength, and a uniform coating structure, but it has strict require-
ments for working conditions (needs a vacuum system), cannot be realized on-site, and the
thickness of the prepared coating is limited to a certain extent. For hot forming techniques,
prefabricated HEA powder is heated and melted on the substrate and then cooled quickly
to form the coating. Laser cladding is used to melt the cladding powder material by laser
heating to form the cladding layer. This kind of process is simple to operate and can use
on-site preparation, but it has high requirements for powder particle size, and a large
amount of protective gas is required in the preparation process to prevent particles from
being heated and oxidized.

Due to its high energy density and fast solidification rate, laser cladding technology
can avoid element segregation and improve the solubility limit; the prepared coating
has a fine structure, superior bonding strength with the substrate, low dilution, and a
small heat-affected zone. Therefore, it is particularly suitable for the preparation of HEA
coatings. Its working principle is illustrated in Figure 1. Laser cladding uses a high-
power density laser beam to heat and melt the surface of the material with no contact,
and then rapidly cools of the cladding material to form cladding layers with different
properties and microstructures to realize surface modification. Element types, process
parameters, heat treatment, and ultrasonic assistance play an essential role to ensure quality
of the coating.
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Figure 1. Schematic representation of laser cladding technology. 
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Figure 1. Schematic representation of laser cladding technology.

2.1. The Chemical Composition System of Laser Cladding HEA Coatings

HEA obtains the required properties by adding a group of secondary alloying elements
based on one or two main elements. Different types and contents of elements have different
effects on the properties of HEA coatings prepared by laser cladding technology. Prior
research showed that the proper addition of Si and other self-fusible non-metallic elements
has a great impact on the microstructure and properties of HEA coatings. These elements
usually have strong slagging and deoxidation abilities, which is conducive to improving
the wear resistance and processability of the coating. Bingqian Wu et al. [36] studied
the effect of Si content on the microstructure and wear resistance of FeCoCr0.5NbSi0.4
HEA coatings; the results showed that with the increase of Si content, the microstructure
of the coating changed obviously, the M2B phase decreased, the eutectic structure also
disappeared gradually, and the wear resistance of the coating at FeCoCr0.5NbSi0.4 was the
best. During wear, the phases with low hardness values are fatigued off by the cyclic action
of the WC balls, while the phases with higher hardness are not worn off, which shows
that the wear mechanism of the FeCoCr0.5 NiBSi0.4 high-entropy alloy coating is mainly
fatigue wear. Wenjun Hao et al. [37] did similar research, and the results showed that
the appropriate addition of Si can reduce the melting point of the alloy and improve the
wetting ability. Si also plays a role in grain refinement and improves the hardness and wear
resistance of the alloy. The main form of wear on the surface of CoCrFeNi high-entropy
alloy coatings is adhesive wear; with the increase of Si content, the main wear mode changes
to abrasive wear. CoCrFeNiMo HEA contains many corrosion-resistant elements, such as
Cr, Ni, and Mo; the addition of Cr and Ni can form a dense oxide film to resist corrosion,
and the addition of Mo can effectively prevent pitting corrosion. In addition, Mo can form
a hard Mo-rich phase or Mo atoms can be dissolved into the FCC matrix, so as to obtain
higher hardness and wear-resistance coatings and improve the overall properties of the
alloy. Fu Yu et al. [38] studied the microstructure, hardness, wear, corrosion, and friction
corrosion of laser cladding CoCr2FeNiMox (x = 0, 0.1, 0.2, 0.3, 0.4) coatings; the results
showed that the addition of Mo significantly improved the hardness and wear resistance
of the alloy. It can be seen from Figure 2 that the appropriate addition of Mo can promote
the formation of the passive film, delay the enlargement of corrosion pit on the alloy
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surface and improve the corrosion resistance of the alloy. The friction and corrosion of
the Mo-containing coating is due to the combined effects of adhesive wear and corrosion.
Biao Huang et al. [39] studied the effect of Cr on the microstructure and properties of
HEA coatings. CoFeNiB HEA coating is composed of an FCC solid solution + M2B phase
eutectic structure and an M2B phase; with the addition of Cr, the M2B phase decreases,
the morphology of the eutectic structure changes from a honeycomb to lamellar structure,
and the hardness decreases gradually. Adding elements with a large atomic radius can
effectively enhance the lattice distortion effect of HEA, but the effect of element content on
the properties of the alloy needs to be further explored. The addition of Al can promote
the formation of the BCC phase, to enhance the hardness and high-temperature oxidation
resistance of the alloy. Qing-Long Xu et al. [40] investigated the effect of Al content on
the high-temperature oxidation resistance of CuAlxNiCrFe HEAs, and found that with
the increase of Al content, the structure of the CuAlxNiCrFe bonding layer changed from
columnar crystal to equiaxed crystal. After 100 h of oxidation at 1100 ◦C, the CuAlxNiCrFe
coating showed a very low Al diffusion coefficient. It can be observed in Figure 3 that the
grain size of CuAlxNiCrFe increases by only about 20%. The structure and properties of
HEA can be modified by doping rare earth elements or carbides. Xulong An et al. [41]
studied the effect of WC particles on the microstructure and properties of laser cladding
HEA SiFeCoCrTi coatings, and found that after adding WC, the microstructure of the
coating changed from cellular dendrite to dense and fine dendrite, and the hardness of
the coating increased, the friction coefficient decreased and the wear resistance improved.
Alloy surface wear is a combination of abrasive wear and oxidation wear, and the wear
surface is rough. Adding ceramic reinforced particles is another strengthening method
of HEA coatings. Ceramic particles can effectively limit the grain growth and limit the
plastic deformation of the HEA matrix as a strengthening phase. In addition, during the
wear process, raised ceramic particles reduce the contact area between the HEA matrix
and friction pair. Therefore, the wear resistance is greatly improved, while the interface
between the HEA matrix and the directly added ceramic particles is poor, whereas the
ceramic phase synthesized in situ has a better interface adhesion with the HEA matrix.
Guanghua Yan et al. [42] successfully prepared in-situ HEA coatings with a functional
gradient double-layer structure on the surface of H13 steel by laser cladding technology,
which significantly improved the wear resistance of the substrate.

Laser cladding can improve the surface properties of the material without changing
the shape and inherent properties of the substrate material, and even repairs the damaged
surface. The cladding layer can have a strong metallurgical bonding with the substrate
surface with a very shallow heat-affected zone on the substrate. This surface modification
technology has the advantages of environmental protection, simplicity, flexibility, being
time-saving, and saving materials. Therefore, the research on laser cladding HEA coat-
ing has increased rapidly in recent years. A lot of research work has been done on the
microstructure, mechanical properties, wear resistance, and corrosion resistance of HEA
coatings with different components.

Adding some self-fusible non-metallic elements and elements with a large radius have
a significant impact on the microstructure and properties of HEA coatings. In addition,
doping rare earth elements or ceramic particles also plays a certain role in improving the
properties of HEA coatings. Different types of elements or altered contents of the same
element have different effects on HEA coatings. Therefore, to achieve higher quality HEA
coatings, we should further explore the influence of elements on the coating properties and
find out the optimal element combination and content.
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(the typical corrosion morphologies are highlighted in the green circles). The compositions of the 
corrosion region and matrix of the coatings are inserted in the corresponding images. (f) Potentiody-
namic polarization curves of coatings on 2605 N stainless steel in 3.5% NaCl solution (pH = 2). Cor-
rosion morphology and pitting morphology of coatings on 2605 N stainless steel at 3.0 °C (g) 2605 
N stainless (h) Mo0 coating (i) Mo0.1 coating (g) Mo0.2 coating (k) Mo0.3 coating (l) Mo0.4 coating (Re-
printed with permission from ref. [38]. Copyright 2021 Elsevier). 

Figure 2. The local corrosion morphology of CoCr2FeNiMox (x = 0, 0.1, 0.2, 0.3, 0.4) HEA coatings
after immersion in 10 wt.% FeCl3 solution for 10 days, (a) Mo0, (b) Mo0.1, (c) Mo0.2, (d) Mo0.3,
(e) Mo0.4 (the typical corrosion morphologies are highlighted in the green circles). The composi-
tions of the corrosion region and matrix of the coatings are inserted in the corresponding images.
(f) Potentiodynamic polarization curves of coatings on 2605 N stainless steel in 3.5% NaCl solution
(pH = 2). Corrosion morphology and pitting morphology of coatings on 2605 N stainless steel at
3.0 ◦C (g) 2605 N stainless (h) Mo0 coating (i) Mo0.1 coating (j) Mo0.2 coating (k) Mo0.3 coating
(l) Mo0.4 coating (Reprinted with permission from ref. [38]. Copyright 2021 Elsevier).

2.2. The Process Parameters for the Preparation of Laser Cladding HEAs Coatings

In an engineering phenomenon, the accurate control of process parameters is a nec-
essary condition for obtaining a high performance. Similarly, different laser processing
parameters in laser cladding technology will affect the characteristics of the cladding layer.
The main parameters influencing the performance of the cladding layer include laser power,
laser spot size, scanning speed, and powder feeding speed. In addition, the laser beam
wavelength, beam profile, defocus distance, and polarization also affect the quality of the
cladding layer.
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Figure 3. Grain orientation and grain boundaries obtained from EBSD analysis of a cross-section
of CuAlxNiCrFe HEA coatings and a nickel-based superalloy substrate before and after 100 h of
oxidation at 1100 ◦C. (a–c) CuAlxNiCrFe HEA coatings, (d–f) Nickel-based superalloy substrate
(Reprinted with permission from ref. [40]. Copyright 2021 Elsevier).

Different laser process parameters will affect the crack, surface roughness, dilution
ratio, and surface macro morphology of HEA coatings. It is reported that if the laser power
is too low, the coating will contain unfused powder and pores. If the laser power is too
high, the coating will produce microcracks, and the dilution rate will increase, resulting
in the weakening of the strengthening effect of the coating on the substrate. Therefore,
the generation of defects in the cladding layer can be reduced only under appropriate laser
power. The laser beam scanning speed also plays a vital role in forming the quality of the
cladding layer. If the scanning speed is too high, it will lead to the incomplete melting of
the powder and matrix. If the scanning speed is too low, it will lead to the overheating of
the laser cladding layer. Therefore, the analysis and adjustment of the laser beam scanning
speed is vitally important to ensure the coating quality. Haijiang Wang et al. [43] studied
the effects of the laser power, scanning speed, and diamond content on the microstructure
and wear resistance of FeCoCrNi–Mo composite coatings. It was found that the laser
cladding process parameters have a significant impact on the dilution ratio, graphitization,
and wear resistance of the composite coating. As the laser power decreases, the wear area
increases and the plough marks on the wear surface of Si3N4 balls increase. When the
laser power was 3000 W, the wear area and the number of plough teeth increased sharply,
and the wear mechanism changed from adhesive wear to abrasive wear with the best wear
resistance of the coating. When the laser power was 3000 W and the scanning speed is
50 mm/s, the composite coating had a uniform microstructure, the lowest dilution ratio,
and the best wear resistance. It exhibited a mixed wear mechanism of adhesive wear and
abrasive wear. Yaxiong Guo et al. [44] studied the effects of laser power and scanning
speed on the surface morphology, hardness, and wear resistance of MoFeCrTiWAlNb HEA
coatings. Figure 4 shows the SEM diagram of the cross-section morphology of the coatings
with different scanning rate ranges. It can be seen that the coating, fabricated at a scanning
rate of 3 mm/s, possesses irregular cellular dendrites and granular carbide particles. With
the scanning rate increasing, the dendrites become more regular and uniform in size.
When compared with those coatings fabricated at various scanning rates, the HEA coating
(p = 3.0 kW and v = 4 mm/s) exhibited a more homogeneous and denser microstructure
with no obvious microcracks. It shows that slow scanning speeds reduced the content of
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W-rich particles and restrained the crack initiation while large scanning rates exhibited
large numbers of cracks and W-rich particles because of the relatively lower laser energy.
Cong Ni et al. [45] studied the effect of laser beam scanning speed on Al0.5FeCu0.7NiCoCr
HEA coatings. It was found that when the laser power was 1100 W and the scanning speed
was 630 mm/min, the adhesion between the coating and the substrate was the highest,
and a defect-free coating with ultra-fine structure was obtained. Fengyuan Shu et al. [46]
prepared CoCrBFeNiSi HEA coatings with different levels of laser power. It was found that
the coating can be divided into three layers: the bottom dendrite layer, upper amorphous
layer, and transition layer. The laser power affects the dilution rate and actual cooling
rate of the coating by changing the heat input, to affect the amorphous content in the
coating. With the increase of laser power, the amorphous content gradually decreases and
the microhardness of the coating decreases. With the increase of laser power, the deeper the
groove of the coating, the more serious the adhesive wear and oxidation wear, the larger
the cross-sectional area of the wear track, the higher the wear weight loss rate, and the
worse the wear resistance of the coating is.
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regions in HEA coatings fabricated by laser cladding with laser power of 3 kW and scanning rate
ranging from 3 to 5 mm/s. (Reprinted with permission from ref. [44]. Copyright 2018 Elsevier).

The quality of laser cladding HEA coating is not just affected by laser power and
scanning speed; other parameters are also critical to obtain good quality HEA coatings.
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Qi Chao et al. [47] studied the effect of powder feeding rate on AlxCoCrFeNi HEA coat-
ings, and the results demonstrated that the thickness of the cladding layer decreased with
the increase of the powder feeding rate. In addition, the height, width, depth, and in-
terdiffusion thickness of the cladding layer increased with the increase of laser power.
Xiao Zhao et al. [48] studied the combination of scanning speed, laser power, and powder
feeding rate in the process of laser cladding, and obtained the optimal parameter combination.

Different process parameters will affect the surface morphology, microstructure, me-
chanical properties, wear resistance, and corrosion resistance of laser cladding HEA coat-
ings. When a parameter is improperly selected, the coating will produce defects, including
unmelted particles, discontinuous and uneven cladding layer geometry, pores, and mi-
crocracks. When the laser power is low or the feeding rate is fast, unmelted particles will
appear. When the scanning speed is too fast, discontinuous and uneven cladding geometry,
pores and microcracks will be produced. Therefore, to achieve high-quality HEA coatings,
various laser processing parameters and their interaction must be considered.

2.3. The Post-Treatment of the Heat Treatment and Ultrasonic Assistance

The microstructure evolution and solid phase transformation of HEA coating during
high-temperature heating have a great impact on the material properties. Therefore, it is
necessary to study the phase stability and property changes of HEA under different heating
temperatures, to provide a clearer basis for the application of HEA on high-temperature
applications. Hao Liu et al. [49] studied the effect of heat treatment on the phase stability
and wear properties of laser cladding AlCoCrFeNiTi0.8 HEA coatings. As can be seen from
XRD, SEM, and TEM analyses of the coating in Figure 5, the coating is composed of an FeCr
solid solution phase with a BCC lattice and an AlNi precipitate phase with a B2 lattice. It was
found that there is no obvious change in the structure below 700 ◦C; after heat treatment
at 900 ◦C, the coarsening phenomenon of AlNi precipitates could be observed. After heat
treatment at 1200 ◦C, the Ostwald ripening phenomenon of precipitates could be observed.
Coarsening of precipitates further leads to the decline of the wear resistance of the material.
Due to the high heat generated by laser cladding, the temperature gradient between the
substrate and the cladding layer is large, resulting in large residual stress and cracks in the
cladding layer. When compared with the substrate material, the cladding material generally
has a lower coefficient of thermal expansion. Reducing the temperature gradient between
the substrate and the cladding layer by preheating the substrate can effectively avoid cracks.
Can Huang et al. [50] studied the dry sliding wear behavior of laser cladding TiVCrAlSi
HEA coatings on a Ti-6Al-4V substrate. To avoid cracking, the substrate was preheated at
450 ◦C. The results showed that there are only a few microcracks and pores in the coating
section, and the coating has a good metallurgical bonding ability. The Ti-6Al-4V substrate
underwent severe abrasive wear and adhesive wear. The wear surface morphology of the
TiVCrAlSi high-entropy alloy coating indicates that the tests occur in a light wear state,
with the main material loss mechanisms being oxidation, minor adhesive material transfer,
and fragmentation and spalling of the adhesive material (including oxides).

The forming quality of HEA coatings can be improved to a certain extent through cer-
tain heat treatments. However, element segregation, inclusion, and structural ripples could
be improved with the help of an external field. Ultrasonic cavitation, acoustic flow, and ul-
trasonic vibration can promote the full mixing, diffusion, and mixing of elements in HEA
coatings, therefore, one should significantly avoid stress concentration and homogenize
the stress field. The schematic diagram of ultrasonic impact treatment is shown in Figure 6.
Meiyan Li et al. [51] studied the effect of ultrasonic shock treatment on the microstructure
and properties of laser cladding Al0.5CoCrFeMnNi HEA coatings. The results showed
that ultrasonic impact did not change the phase structure of the coating, and there was
an obvious solidification boundary in the cladding layer. After one impact, a thin plastic
deformation layer was formed. With the increase of impact times, obvious impact marks
appeared on the surface. In addition, the original precipitates at the solidification boundary
were broken into smaller precipitates, and the particles inside the brain also had cracks.
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The minimum surface roughness and maximum surface hardness of the ultrasonic impact
layer can be obtained by one impact, and the corrosion resistance of the impact layer was
good. Corrosion morphologies showed that typical intergranular corrosion occurred on the
surfaces of both kinds of layers while extensive corrosion pits appeared on the cladding
coating surfaces. Xin Wen et al. [52] successfully prepared FeCrCoAlMn0.5Mo0.1 HEA coat-
ings on the surface of 316 L stainless steel by ultrasonic-assisted laser cladding technology
and obtained a coating with no defects, good friction resistance, and corrosion resistance.
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The residual stress can be effectively eliminated and cracks can be avoided by pre-heat
treatment or post-heat treatment of the coating. In addition, preheating the substrate can
reduce the temperature gradient between the substrate and the coating, which is conducive
to obtaining a defect-free coating. To further improve the surface properties, the subsequent
surface treatment methods are very promising. For example, the elements in the HEA
coating were fully stirred, diffused, and mixed by ultrasonic assistance, to significantly
avoid stress concentration, homogenize the stress field and improve the forming quality of
HEA coating.

3. Discussion

Based on the above discussions on the influences of process parameters and HEA
compositions on the microstructures and major properties, we summarize the reported
data and provide a clear comparison for the laser cladding technology and their achieved
properties in Table 1.

Table 1. Overview of process parameters, HEA compositions, microstructures and major properties.

Process
Parameters HEAs Substrate

Materials
Phase

(Minor-Major)

All Possible
Strengthening

Mechanism

Optimal
Performance Ref.

LP 2000 W
SR 4 mm/s

OR 50%
FeCoCr0.5NiBSix 45 steel FCC, M2B Fine grain

strengthening H = 820 HV [36]

LP 800 W
SR 8 mm/s

OR 50%
SD 2 mm

CoCrFeNiSix 45 steel

FCC at x = 0;
FCC + BCC at
x = 0.5, 1.0, 1.5,
BCC at x = 2.0

Fine grain
strengthening

H = 586.5 HV
FC = 0.49 [37]

LP 700 W
SR 7.5 mm/s

OR 40 %
SD 1 mm

CoCr2FeNiMox Q235
FCC at x = 0, 0.1;
FCC + σ-CrMo at

x = 0.3, 0.4

Solid solution
strengthening +

precipitation
strengthening

H = 724.2 HV
FC = 0.42

CP = 29.6 µA/cm2
[38]
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Table 1. Cont.

Process
Parameters HEAs Substrate

Materials
Phase

(Minor-Major)

All Possible
Strengthening

Mechanism

Optimal
Performance Ref.

LP 1200 W
SR 3 mm/s

OR 50%
SD 2.5 mm

FeCoCrxNiB 45 steel FCC+ M2B Solid solution
strengthening H = 860 HV [39]

LP 2500 W
SR 4 mm/s

PFR 24 g/min
OR 80%

CuAlxNiCrFe Nickel-based
superalloy

FCC at x = 0.5,1.0;
FCC + BCC at

x = 1.5, 2.0

Fine grain
strengthening

Excellent oxidation
resistance [40]

LP 3800 W
SR 4 mm/s

OR 30%
SD 3 mm

SiFeCoCrTiWCx Q235

BCC +
Co1.07Fe18.93 at

WC = 0;
BCC + TiCo3,

Co1.07Fe18.93 at
WC = 0.2

Solid solution
strengthening +

fine grain
strengthening

H = 578.6 HV
FC = 0.357

WR = 0.08 mg/min
[41]

LP 3000~5 000 W
SR

30~60 mm/min
SD 4.6 mm

FeCoCrNi-Mo and
diamond 42CrMo steel Solid solution

strengthening
H = 602 HV

FC = 0.41 [43]

LP
2400 W~3200 W
SR 3~5 mm/s
SD 10 × 2 mm

MoFeCrTiWAlNb M2 tool steel FCC + (Nb, Ti)C
carbides+Fe2Nb

H = 1050 HV
FC = 0.55 [44]

LP 1100 W
SR

270~630 mm/min
SD 2 mm

Al0.5FeCu0.7NiCoCr 5083 aluminum FCC + BCC H = 750 HV [45]

Laser power
233~700 W CoCrBFeNiSi H13 steel FeNi3 + β(Co) +

Co2B
H = 1192.5 HV

FC = 0.14 [46]

LP 3100 W
SR 5 mm/s

SD 10 × 2 mm

CrFeNiSiAl0.5 +
chromite powder 40Cr

BCC at chromite
powder = 0;

BCC + FCC at
chromite

powder = 10%, 15%

Dispersion
strengthening +
solid solution

strengthening +
fine grain

strengthening

H = 838.1 HV
WR = 0.14 mg/min [53]

LP 1700 W
SR 6 mm/s

OR 25%
SD 4 mm

FeCoCrNiBx Q235
FCC at x = 0.5,

0.75;FCC + M3B at
x = 1.0, 1.25

Dispersion
strengthening

H = 865.3 HV
WR = 0.09 mg/min [54]

LP 1500 W
SR 5 mm/s

PFD 3 g/min
OR 60%

SD 2.5 mm

CoCrFeMnNiTix 45 steel FCC + TiC

Solid solution
strengthening +
second phase
strengthening

H = 364.5 HV
FC = 0.72

CP = 4.60 × 10−6

A·cm−2

[55]

LP 3700 W
SR 10 mm/s AlTiVMoNb TC4 BCC H = 885.5 HV [56]

LP 600 W
SR 2 mm/s

PFD 3.5 g/min
SD 1.44 mm

TiZrAlNbCo TC4 FCC + BCC
H = 689.4 HV

CP = 3.66 × 10−9

A/cm2
[57]
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Table 1. Cont.

Process
Parameters HEAs Substrate

Materials
Phase

(Minor-Major)

All Possible
Strengthening

Mechanism

Optimal
Performance Ref.

LP 3600 W
SR 3 mm/s

OR 50%
CoCrNiTi Pure Ti

sheet BCC + Laves
H = 762 HV;

WR = 1.7 × 10−5

mm3·N−1·m−1
[58]

LP 3000 W
SR 5 mm/s

OR 50%
SD 6 mm

AlNbTaZrx Ti6Al4V BCC + HCP Fine grain
strengthening

H = 650 HV
FC = 0.8 [59]

LP 3000 W
SR 4 mm/s

OR 30%
SD 1 mm

CoCrFeNiTi 304 FCC + Laves CoCrFeNiTi H =
568 HV [60]

Remarks: Laser power (LP); Scanning rate (SR); Overlap rate (OR); Spot diameter (SD); Hardness (H); Friction
coefficient (FC); Wear rate (WR); Corrosion performance (CP).

Most of the studies on HEA coating mainly focus on hardness and wear resistance,
Figure 7 shows the hardness and friction coefficient of HEA coating prepared by laser
cladding technology. As can be seen from the figure, the hardness of HEA coatings
prepared by different processes is mainly concentrated around 500–900 HV, and the friction
coefficient is between 0.3 and 0.6.
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Laser cladding can avoid element segregation and improve the solubility limit because
of its high energy density and fast solidification rate. At the same time, the coating prepared
by laser cladding has a fine microstructure, high bonding strength with the substrate, a low
dilution rate and a small heat-affected zone. However, because of high heat input, laser
cladding easily produces micro-cracks, pores and other defects. In addition, the technology
requires a high particle size, and the preparation process requires a large amount of
protective gas to prevent the particles from thermal oxidation.

Different kinds and contents of elements have different effects on the properties of
HEA coatings. The addition of some self-fluxing non-metallic elements or elements with
large radii has a great influence on the microstructure and properties of HEA coatings.
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In addition, doping rare earth elements or ceramic particles also plays a certain role in
improving the properties of HAE coatings. Different process parameters a have great
influence on the properties of HEA coatings, among which laser power, scanning speed
and powder feeding rate are the three most important factors affecting the performance
of laser cladding HEA coatings. Low laser power will cause the non-melting of powder
particles, discontinuous forming of cladding layer, inclusion, non-fusion and other defects.
High laser power will lead to high heat input, high heat in the molten pool and increased
dilution rate, and the cladding layer is prone to a cracking phenomenon when the laser
power is too high. A small scanning speed will lead to high heat input of the molten pool,
increased metal melting amount on both sides of the molten pool, larger melting width,
larger dilution rate of the cladding layer, as well as a larger size of the cladding layer,
which are more likely to cause cracks and other defects. When the scanning speed is larger,
the amount of powder feeding and heat input per unit time is reduced, the cladding is high,
the melting depth is smaller, the interfacial bonding strength is lower and the strengthening
effect on the substrate is weakened. The powder feeding speed is a key factor to determine
the thickness of the coating; too high a speed is likely to cause discontinuity in the formation
of the coating and a smaller thickness, and too slow a speed will lead to increased heat
input per unit of time and the coating being too thick, increasing the tendency of the
coating to cracking. Therefore, reasonable selection of each process parameter is the key
to obtain high-quality coatings, and the study of the interaction mechanism between each
parameter is also of great significance to obtain higher quality HEA coatings. Through
the heat treatment of the coating, the residual stress can be effectively eliminated and
cracks can be avoided. In addition, the temperature gradient between the substrate and
the coating can be reduced by preheating the substrate, which is beneficial to obtain the
defect-free coating. In order to further improve the surface properties, the subsequent
surface treatment methods are very promising. For example, the elements in the HEA
coating are fully stirred, diffused and mixed by ultrasonic assistance, so as to significantly
avoid stress concentration, homogenize the stress field and improve the forming quality of
the HEA coating.

So far, by optimizing the composition and parameters of HEA coatings prepared by
laser cladding, it has been possible to obtain coatings of high quality, but there are still
some challenges to be met in bringing HEA to industrial production:

The microstructure and properties of HEA coatings prepared by different processes
are very different, and each process has its own advantages and disadvantages. The com-
bination of different processes by studying the working principle of each process has a
good prospect to obtain high performance HEA coatings. For example, shot peening on the
surface of laser cladding coatings by thermal spraying can effectively improve defects such
as microcracks and pores. The kinds and contents of different elements have different ef-
fects on the HEA coating. The properties of the coating can be strengthened by adding rare
earth elements or ceramic particles, but in order to achieve a higher quality HEA coating,
we should further explore the influence of elements on the coating and find out the optimal
element combination and content. In addition, the prepared HEA coatings are mainly
concentrated in AlCrFeCoNi, AlSiCrFeCoNi, AlTiCrFeCoNi, CrFeCoNi (Mn/Nb/Mo) and
other alloy systems, and their applications are mainly concentrated in the fields of corrosion-
resistant coatings, wear-resistant coatings, high-temperature oxidation-resistant coatings
and so on. In order to broaden the application field of HEA coatings and continue the HEA
design concept, it should be a key research direction to continue to develop new spraying
materials or to realize the preparation of HEA alloy composite coatings. Process parameters
play an important role in obtaining high performance HEA coatings. While studying the in-
fluence of various parameters on the forming quality of the coating, we should also explore
the synergistic mechanism of the influence of various parameters on the microstructure
and properties of the coating. The compound effect of various parameters is reflected
by finite element analysis and simulation, so as to provide theoretical reference for the
preparation of better HEA coating. Heat treatment can effectively eliminate the residual
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stress and microcracks in the coating, but the effect of heat treatment processes on the
evolution of the microstructure of the coating is still uncertain, which should be a key
research direction. At the same time, the defects such as element segregation, inclusion
and structural ripples in the coating can be effectively improved with the help of external
field-assisted technology, of which the ultrasonic effect, cavitation effect and vibration effect
of ultrasonic-assisted deposition technology can promote the full mixing, diffusion and
mixing of various elements in HEA coating, so as to effectively avoid stress concentration,
homogenize the stress field and optimize the surface properties of the coating. In addition,
reasonable surface treatment methods still need to be further studied.

4. Conclusions and Prospect

In this paper, the status of HEA coatings prepared by laser cladding was reviewed,
the relationship between “process method–process parameters–microstructure properties”
was summarized. The following main conclusions are drawn.

(1) The main preparation method for HEA coatings is laser cladding. At present,
the research on the performance of HEA coatings is mainly focused on corrosion resistance
and wear resistance. In order to broaden the application field of HEA coatings, the con-
tinuation of the HEA design concept and the development of new coating materials or
the preparation of composite coatings of various HEA alloys should be one of the key
research directions.

(2) The type and content of HEA elements can have a significant effect on the mi-
crostructure and properties of coatings prepared by different processes. To achieve higher
quality HEA coatings, the influence of elements on the coatings should be further investi-
gated to find the optimal combination and content of elements.

(3) Different process parameters also have a significant impact on the microstructure
and properties of HEA coatings, and the research of process parameter optimization plays
an important role in improving the coating quality. The optimization of process parameters
plays an important role in improving the coating quality. By studying the working principle
of each process, the interplay between different processes is promising for obtaining high
performance HEA coatings. The finite element analysis simulations reflect the composite
effect of each parameter and provide a theoretical reference for the preparation of better
HEA coatings.

(4) Heat treatment of the coating can effectively eliminate residual stresses and avoid
the generation of defects such as cracks and porosity, which is conducive to further im-
proving the coating quality. The influence law of heat treatment process on the evolu-
tion of the internal microstructure of the coating is still uncertain and should be a key
research direction.
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