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Abstract: The formation of the substrate surface potential based on the Lennard-Jones two-particle
potential is investigated in this paper. A simple atom’s square lattice on the substrate surface is
considered. The periodic potential of the substrate atoms is decomposed into a Fourier series. The
amplitude ratio for different frequencies has been examined numerically. The substrate potential
is approximated with high accuracy by the Frenkel–Kontorova potential at most parameter values.
There is a field of parameters in which the term plays a significant role, with a period half as long
as the period of the substrate atoms. The ground state of the monoatomic film is modeled on the
substrate potential. The film may be in both crystalline and amorphous phases. The transition to
the amorphous phase is associated with a change in the landscape of the substrate potential. There
are introduced order parameters for structural phase transition in the thin film. When changing the
parameters of the substrate, the order parameter experiences a jump when changing the phase of
the film.

Keywords: surface potential; Lennard-Jones two-particle potential; Frenkel–Kontorova potential;
thin film; structural phase transition

1. Introduction

The substrate potential determines the basic properties of epitaxial films. The film’s
crystal lattice is formed in the sputtering step under the influence of the substrate. The
relative arrangement of the film atoms is determined by the substrate potential. The
mechanical, thermal, magnetic, and optical properties of the epitaxial film can be altered
by acting on the substrate. Changing the size or symmetry of a substrate crystal lattice
changes its surface potential. The calculation of the substrate surface potential makes it
possible to select the sputtering mode for the epitaxial film and predict its behavior under
the external factors’ influence.

A description of the substrate surface potential is necessary for modeling the growth
of the epitaxial film. The film deposition model on the substrate [1] requires solving the
equations of motion for an atom near the surface. A system of equations based on two-
particle potentials is solved to simulate the epitaxial film growth in this model. The surface
potential model greatly facilitates this task, since it requires a description of the motion
of one particle in the outer field. Additionally, the surface potential is necessary when
describing the scattering of particles on the surface [2]. Information on the position of
maxima and minima for surface potential plays a significant role in this model.

Elastic two-dimensional atom chains are used to model thin films. There are two main
approaches for describing the interaction of such a chain with a substrate. The first approach
is based on the periodic potential of the Frenkel–Kontorova model [3]. The basic Frenkel–
Kontrova model [3] studies a one-dimensional elastic atoms chain in the substrate potential.
The cosine function specifies the periodic substrate potential. This simple approximation
reveals a wide variety of ground states for the system [4–6] and different waves in the atoms
chain [7–9]. Solitons are of the greatest interest. Calculations for the two-dimensional case
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show ordered structures in a monoatomic film [10–12]. These structures alter the magnetic
properties of the ferromagnetic film on the substrate. There are several generalizations of
the Frenkel–Kontorova model. The potentials of these models contain wide maximums
and minimums [13] and additional local minimums [14].

The second approach considers the paired interactions between atoms. The potential
energy for the interaction of the substrate with the film atoms is equal to the sum of the
substrate atom’s potential. Paired interactions use analytic functions in most cases. Some
models use discrete table values. The analytical functions of pairwise interaction contain
parameters. The selection of these parameters is based on empirical data. Potential parame-
ters vary to best reproduce experimental results. Such models require great computational
power to obtain a surface potential landscape. Therefore, this approach is used to calculate
the interaction of individual atoms with a substrate in the simulation of adsorption [15–18]
or to calculate the shape and size of nanoclusters on a substrate [19–24].

Two-particle potentials include terms for repulsion when atoms approach and terms
for the attraction when atoms are removed. The two-particle Lennard-Jones potential [25]
is the most common. Parameter values for different chemical elements are empirically
derived for this potential [26]. Morse potential uses quantum mechanical computation to
describe atomic interaction [27]. There are several model potentials that consider chem-
ical bonds: Tersoff potential [28], EDIP (Environment-Dependent Interatomic Potential)
potential [29,30], Brenner potential [31], ReaxFF potential [32]. Special model potentials
have been proposed for some chemical elements. These potentials approximate the experi-
mental relationship between interaction and distance more precisely. The Finnis–Sinclair
potential [33] simulates the interaction of metal atoms. The parameters of this potential are
calculated for most metals. Todd and Linden-Bell’s potential [34] is based on Sutton–Chen
formalism. It also simulates the interaction between metal atoms. The first principles are
also used to calculate interaction parameters for atoms of certain materials [35,36].

Two-particle potentials are mainly used to model the thermal and mechanical proper-
ties of pure substances. The description of the interaction between two different substances
has two problems. The first problem is that it is difficult to determine the potential pa-
rameters for atoms of two different chemical elements. There are different schemes for
calculating these parameters. These schemes use parameters for pure substances [26]. The
second problem is the need to use large computing resources for calculation.

The Frenkel–Kontorova model derives general results for the behavior of epitaxial
films on a substrate. The application of these results to specific substances is challenging.
Models with two-part potential obtain results for specific coating substrate substances. The
surface potential of the substrate is modeled in this paper for an atoms array with a square
lattice on the surface. The simulation uses Lennard-Jones’s two-particle potential. The
results are compared with the Frenkel–Kontorova model. The effect of the Frenkel–Contour
potential corrections on the monoatomic film’s ground state is calculated.

2. Substrate Potential Modeling

The substrate is modeled as a two-dimensional lattice with fixed atoms. The substrate
atoms are located in the nodes of the square lattice. The one-dimensional atoms chain is
considered in the first step. Square lattice symmetry is used to generalize the results to a
two-dimensional case.

We use the two-particle Lennard-Jones potential [25] to interact with substrate and
film molecules. This potential satisfactorily describes the interaction between spherical
non-polar molecules. The Lennard-Jones ULJ(r) potential is written as two terms.

ULJ(r) = 4ε

((σ

r

)12
−
(σ

r

)6
)

(1)

r is the distance between the centers of the particles. ε is the depth of the potential hole.
σ is the distance at which the interaction energy is zero. The minimum potential is located
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at the distance r0 = σ 12
√

2. Potential describes particle repulsion at 0 < r < σ. Molecules
are attracted due to dipole–dipole interaction (van der Waals force) at r > σ.

We consider an infinite linear atoms chain with an interatomic distance b. The chain
is located along the axis OX (Figure 1). The potential is calculated at a point located at
a distance z from the atom’s chain and at a distance x along the OX axis from the atom
number n = 0.
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Relative variables are entered for ease of calculation. 

𝜎′ =
𝜎

𝑏
, 𝑥′ =

𝑥

𝑏
, 𝑧′ =

𝑧

𝑏
, 𝑈(𝑥′, 𝑧′) =

𝑈0(𝑥, 𝑧)

𝜀
 (5) 
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Figure 1. Systems geometry.

The potential at (x, z) is the sum of the potentials created by all atoms in the chain.

U0(x, z) =
+∞

∑
n=−∞

ULJ(rn) (2)

rn this is the distance from the point (x, z) to the atom of the chain with the number n.
The potential at (x, z) is written based on the Lennard-Jones Formula (1).

U0(x, z) = 4ε
+∞

∑
n=−∞

((
σ

rn

)12
−
(

σ

rn

)6
)

= 4ε
+∞

∑
i=−∞

((
σ2

r2
n

)6

−
(

σ2

r2
n

)3)
(3)

The formula for the distance is substituted into the potential U0(x, z).

U0(x, z) = 4ε
+∞

∑
n=−∞

( σ2

z2 + (nb− x)2

)6

−
(

σ2

z2 + (nb− x)2

)3
 (4)

Relative variables are entered for ease of calculation.

σ′ =
σ

b
, x′ =

x
b

, z′ =
z
b

, U
(

x′, z′
)
=

U0(x, z)
ε

(5)

We write the potential in relative variables.

U
(

x′, z′
)
= 4

+∞

∑
n=−∞

( σ′ 2

z′ 2 +(n− x′)2

)6

−
(

σ′ 2

z′ 2 +(n− x′)2

)3
 (6)

The substrate atoms chain is periodic with period b. The potential U(x′, z′) is also
periodic over the variable x′ with period 1. Therefore, the function U(x′, z′) is examined
in the interval 0 ≤ x′ ≤ 1. The function U(x′, z′) decomposes into a Fourier series over a
variable x′.

U
(
x′, z′

)
=

∞

∑
k=0

Ak
(
z′, σ′

)
cos
(
2πkx′

)
(7)
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The coefficients Ak(z′, σ′) are numerically determined. The dependence of amplitudes
Ak(z′, σ′) on the parameter σ′ at z′ = 1 is shown in Figure 2. Calculations were made for a
chain of N = 201 atoms.
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Figure 2. The dependence of amplitudes Ak(z′, σ′) on the parameter σ′ at z′ = 1.

The amplitude A1 modulus is significantly higher than those of the remaining am-
plitudes Ak (k = 2, 3, . . .) at almost values σ′. The exception is the small area around the
point σ0 (A1 (z′, σ0) = 0). Such a point exists at all values z′. The position of the point σ0
depends on z′. The range of possible σ′ values for different substances is calculated based
on the Lennard-Jones potential parameters [37] and crystal lattice periods. This range is
0.8 ≤ σ′ ≤ 1.2 for metals. The first two terms dominate the rest in the Fourier series for
potential (7) at σ′ > 0.9. The potential is approximated by a simple formula in this case.

U
(
x′, z′

)
=

∞

∑
k=0

Ak
(
z′, σ′

)
cos
(
2πkx′

)
(8)

The difference between this potential and the exact value (7) does not exceed 1.5%.
Potential (8) coincides with Frenkel–Kontorova potential up to the constant and linear
transformation of coordinates x′′ = x′ + 1/2.

U1
(

x′′ , z′
)
= A0

(
z′, σ′

)
− A1

(
z′, σ′

)
+ A1

(
z′, σ′

)
(1− cos(2πx′′ )) (9)

The Frenkel–Kontorova model is applicable with high accuracy in σ′ > 0.9.
The range of values near the σ0 point is very interesting. Plots for A1(z′, σ′) and

A2(z′, σ′) versus σ′ near σ0 are shown in Figure 3.
As can be seen from Figure 3, the point for which A2(z′, σ′) does not match the

σ0. Therefore, there is a range of values (z′, σ′) in which A1(z′, σ′) and A2(z′, σ′) are
commensurate in magnitude or A2(z′, σ′) dominate A1(z′, σ′). The plot of the ratio
A2(z′, σ′)/A1(z′, σ′) coefficients to σ′ at z′ = 1 is shown in Figure 4.
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Figure 4. The plot of the ratio A2(z′, σ′)/A1(z′, σ′) coefficients to σ′ at z′ = 1.

The effect of the coefficient A2(z′, σ′) on the potential value becomes more significant
when approaching the point σ0. Therefore, the question about the position of the points for
which A1(z′, σ′) = 0 is important. The plot of the parameter σ0 dependence on the distance
to the film z′ is shown in Figure 5.

The value σ0 increases monotonously as the distance from the substrate atoms in-
creases. The potential of the atom’s chain is approximated by the formula with two terms
at the point σ0.

U2
(

x′, z′
)
= A0

(
z′, σ0

)
+ A2

(
z′, σ0

)
cos
(
4πx′

)
(10)

This expression also boils down to the Frenkel–Kontorova potential. The potential
U2(x′, z′) has a period of two times less than that for the substrate atoms. The three terms
in potential are considered in near the point σ0.

U3
(

x′, z′
)
= A0

(
z′, σ′

)
+ A1

(
z′, σ′

)
cos
(
2πx′

)
+ A2

(
z′, σ′

)
cos
(
4πx′

)
(11)

We use coordinate shift x′′ = x′ + 1/2.
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U3
(

x′′ , z′
)
= A0

(
z′, σ′

)
− A1

(
z′, σ′

)
+ A1

(
z′, σ′

)(
1− cos(2πx′′ ) + B

(
z′, σ′

)
cos(4πx′′ )

)
(12)

where B(z′, σ′) = A2(z′, σ′)/A1(z′, σ′). The potential U3(x′′ , z′) has global and local min-
ima. The potential period U3(x′′ , z′) coincides with the period of the substrate atoms.
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We investigate the dependence of simulation results on the number of atoms in the
chain. The dependence of the coefficient B(1, 1) on the number of atoms in the chain is
shown in Figure 6.
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Figure 6. The dependence of the coefficient B(1, 1) on the number of atoms in the chain.

Calculations show the invariability of the value B (1, 1) with an increase in the number
of atoms more than seven (N > 7). The same result is observed for other values z′ and σ′.
A plot for the potential U(x′, z′) versus x′ at z′ = 1, σ′ = 1, and ε = 1 for different numbers
of atoms in the chain N is shown in Figure 7.
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3. Ground State of Monoatomic Film

We consider the effect of substrate parameters on the ground state of the monolayer
film on its surface. The substrate atoms form a square lattice on its surface in modeling.
The substrate potential is written as a product of two factors similar to the potential U3,
considering the symmetry of the atom’s arrangement.

V(x, y) = A(1− cos(2πx) + B cos(4πx))(1− cos(2πy) + B cos(4πy)) (13)

The constant term is not considered in this formula. The potential energy is determined
up to a constant. The substrate potential amplitude A = εA2

1(z
′, σ′) and the multiplier

B = A2(z′, σ′)/A1(z′, σ′) depend on the type of substrate atoms and film atoms. This
relationship is determined by the Lennard-Jones potential parameters and lattice period
b. The potential amplitude A and the multiplier B change under substrate deformations.
Strains are caused by mechanical compression or stretching, heating, or electric field in the
case of ferroelectrics.

The interaction between the film atoms is elastic.

Uint =
g
2 ∑

n,m

(
(xn+1,m − xn,m − a)2 + (yn,m+1 − yn,m − a)2

)
(14)

g is the modulus of elasticity, (xn,m, yn,m) are the coordinates of the film atom in the
node. a is the crystal lattice period for the monolayer film. The film atoms are located in
the nodes of the square lattice in an undisturbed state. Distances are measured in terms of
lattice period b. We consider the case of equality in lattice and film periods (a/b = 1). The
interaction energy of the film atoms is written as

Uint =
g
2 ∑

n,m

(
(xn+1,m − xn,m − 1)2 + (yn,m+1 − yn,m − 1)2

)
(15)

The total potential energy of the film atoms in the substrate potential field is calculated
as the total energy.

E = g
2 ∑

n,m

(
(xn+1,m − xn,m − 1)2 + (yn,m+1 − yn,m − 1)2

)
+A ∑

n,m
(1− cos(2πxn,m) + B cos(4πxn,m))(1− cos(2πyn,m) + B cos(4πyn,m))

(16)
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The ground state minimizes total energy.

E→ min. (17)

This condition determines the coordinates of atoms (xn,m, yn,m). Minimization was
performed in a computer experiment. The film atoms are in the nodes of the square lattice
in the initial state. The sequential iteration method is used to find the ground state. Each
atom is shifted to a random vector at each iteration. If the new position of the atom reduces
the energy of the system, then it is received, otherwise, the atom returns to its original state.
The studies are performed for different values of parameter B. The arrangement of film
atoms for elasticity modulus equal to substrate amplitude (g/A = 1) and different values
of parameter B are shown in Figure 8.
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Increasing the parameter B disrupts the arrangement of the film atoms. Atoms are
located in the nodes of the square lattice at small values of parameter B. This state
corresponds to the crystalline phase. The displacement of atoms occurs when the parameter
B increases. The film enters the amorphous phase. The far order is absent in this phase, but
the near order is present. The change in the atom’s location is caused by the change of a
substrate potential landscape. Substrate potential surfaces for different values of parameter
B are shown in Figure 9.
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(c) B = 1.0, (d) B = 2.

Additional local highs and lows appear in the potential landscape as parameter B
increases. The periodicity of the substrate potential ceases to coincide with the period of
the film, which leads to the displacement of its atoms.
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4. Structural Phase Transition

The change in the geometry of the epitaxial film atoms when the parameter B changes
is a structural phase transition induced by the substrate. This phase transition occurs only
near the point σ0. Certain values of the lattice period for the substrate and the distance
from the substrate atoms to the film atoms are necessary to observe the phase transition.

We enter the order parameter ϕ to describe the phase transition. The order parameter
is one (ϕ = 1) in a fully ordered phase (two-dimensional crystal lattice) and is zero (ϕ = 0)
in a completely disordered phase (chaotic arrangement of atoms). The atoms are placed
in the nodes of the square lattice in a fully ordered phase. The coordinates of the atom
number (n, m) are determined based on the basis vectors

→
e x,
→
e y.

→
r n,m = n

→
e x + m

→
e y (18)

The position of the atom number (n, m) in the fully ordered phase is
→
r
(0)
n,m. 〈δr〉 this is

the average deviation from the equilibrium position by one atom.

〈δr〉 = lim
N→∞

1
N

N

∑
k=1
|→r n,m −

→
r
(0)
n,m| (19)

N is the number of atoms. The mean deviation from the equilibrium position is
zero 〈δr〉 = 0 in a fully ordered phase. The atoms are randomly located in a com-
pletely disordered phase. The average density of atoms in a completely disordered
phase is equal to the density of atoms in a completely ordered phase. One crystal lat-
tice node in an ordered phase corresponds to one atom. We calculate the mean deviation
〈δr〉rand for a completely disordered phase. Each atom is randomly located in the region:
−a/2 < x− x0 < a/2;−a/2 < y− y0 < a/2. The 〈δr〉rand tends to a constant value when
N → ∞ .

〈δr〉rand =
1
a2

a/2x

−a/2

√
x2 + y2dxdy ≈ 0.3826a. (20)

The order parameter is determined based on the mean deviation for a fully ordered
phase and a completely disordered phase.

ϕ = 1− 〈δr〉
〈δr〉rand

(21)

This determination of the order parameter satisfies the requirements for its values
in the ordered phase and the disordered phase. The plot for the dependence of the order
parameter ϕ on the parameter B is shown in Figure 10.

Numerical calculations were carried out for a lattice with 200 × 200 atoms. The order
parameter is one (ϕ = 1) when B ≤ 0.275. The film is in a fully ordered phase. The
order parameter jumps in the range 0.275 ≤ B ≤ 0.276. The transition to the unordered
phase occurs in this interval. The order parameter decreases monotonously, aiming for
an asymptotic value ϕ ≈ 0.3466 at B ≥ 0.276. The system does not enter a completely
disordered phase. There is a near order in the arrangement of atoms, but there is no far
order. This state corresponds to the amorphous phase in the film.
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5. Discussion

The transition from a two-particle potential to a collective potential depends on the
kind of atoms and their mutual location. The potential period coincides with the substrate
atom’s period in most cases. The potential coincides with the Frenkel–Kontorova potential.
In this case, the thin film atoms are located at the minimum potential. The film is in the
crystalline phase. There is a narrow range of system parameter values near which the
potential has a more complex landscape. Additional highs and lows are present in this area.
Changing the substrate potential affects the thin film state. The destruction of the far order
occurs in the film. The film enters the amorphous phase.

The effect of the substrate state on the crystallinity of thin films has been observed in
various experimental works. Films Ge8Sb92 transition from the amorphous phase to the
crystalline phase when the substrate is heated [37]. The crystallinity of the thermoelectric
thin film Ag-Sb-Te at room temperature depends on the state of the substrate [38]. The crys-
talline silicon thin film is a two-phase structure of the amorphous phase and the crystalline
phase [39]. The transition temperature from the amorphous phase to the crystalline phase
shifts under the influence of the substrate.

The proposed model describes only pure materials for the substrate and epitaxial
film. The film and substrate are multi-component systems in many real experiments. The
description of such systems requires an extension of the proposed model. The multi-
component system model includes several embedded crystal lattices in the description
of the substrate. The difference in the elasticity coefficients for different atom pairs and
the parameters of the different interactions with the substrate must be considered when
describing multicomponent films. Some researchers have obtained experimental results for
the microstructure and mechanical properties of pure films on the substrate [40–42]. These
results show that changing the surface potential by introducing additional components
increases the resistance of the coatings.
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