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Abstract: The fabrication of superhydrophobic coatings on mild steel has attracted considerable
attention. However, some methods are cumbersome and unsuitable for large-scale preparation,
limiting industrial applications. Furthermore, the extensive use of fluorinated compounds to achieve
low surface energy is not environmentally friendly. This paper proposed a facile method based
on electrodeposition and annealing to prepare mild steel-based superhydrophobic surfaces with-
out chemical modifications. Subsequently, SEM images were analyzed, and it was observed that
the plating parameter (current and time) significantly affected surface morphology. At optimum
process parameters, a rough surface with a multi-level structure was formed on the plated surface,
contributing to superhydrophobic properties. XPS, EDS, and XRD were utilized to analyze surface
composition. The results indicated the presence of copper oxides, zinc oxides, and a large number
of hydrocarbons on the prepared superhydrophobic surface. These transition metal oxides on the
surface adsorbed hydrocarbons in the air during the annealing process, which lowered the surface
energy. Combined with the obtained multi-level morphology, a superhydrophobic surface was
achieved. Finally, the corrosion behavior was evaluated in 3.5 wt% NaCl solution by AC impedance
spectroscopy. Results showed that the obtained superhydrophobic surface, compared with the un-
treated coating and the steel substrate, showed a substantial improvement in corrosion resistance.
A mild steel-based superhydrophobic surface with a contact angle greater than 150 degrees and
excellent corrosion resistance was finally obtained. We hope this study will facilitate the industrial
preparation of superhydrophobic coatings, especially in marine engineering, since this method does
not require complex processes or expensive equipment and does not require fluorinated substances.

Keywords: mild steel substrate; superhydrophobic surface; eco-friendly; process parameters; corrosion
resistance; electrodeposition; eco-friendly

1. Introduction

Mild steel is widely used in industrial and engineering construction, especially in
marine engineering, because of its high specific strength, weldability, machinability, and
low cost [1–4]. However, mild steel is prone to corrosion when exposed to humid working
environments, resulting in substantial economic losses and safety accidents. Three means
have been developed to protect mild steel from corrosion, including cathodic protection,
anodic protection [5], and the application of barrier coatings [6]. Among all coatings, super-
hydrophobic coatings are the most effective method to prevent mild steel from contact with
corrosive environments. Moreover, the preparation of mild steel-based superhydrophobic
surfaces has become a hot research topic in recent years [7–9].
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Superhydrophobic surfaces are mainly achieved by associating micro/nanoscale rough
surfaces and low surface energy materials [10,11]. Numerous methods have been used
to prepare mild steel-based superhydrophobic surfaces, including spraying [12,13], IR
laser [14,15], etching [16–18], sol–gel [19–21], electrodeposition [22], hot-dip plating [23],
plasma sputtering [24], etc. However, considering the practical application requirements
for metal protection, some critical issues of superhydrophobic coatings still need to be
addressed. Current technologies still have several limits in the large-scale manufacture and
practical applications, such as rigorous experimental conditions and complex preparatory
procedures.

It is well known that the electrochemical deposition process is simple to implement
and does not require any special equipment or harsh conditions. This method has been fre-
quently utilized to investigate superhydrophobic coatings based on mild steel. In general,
there are two types of electrodeposition preparation methods. One is “mophology + mod-
ification”: Electrodeposition was used to create micro/nano morphology, which was
then chemically modified [25,26]. Typically, the modification is carried out in an ethano-
lic solution of tetradecanoic acid, stearic acid, or other fluorinated compounds [27,28].
Hu et al. [29] prepared a titanium dioxide and zinc composite coating (modified by stearic
acid) on the surface of carbon steel with good hydrophobicity and stability. Tian et al. [30]
prepared a novel superhydrophobic Zn-Fe alloy coating on the surface of carbon steel. The
electroplated surface was modified by tetradecanoic acid to obtain superhydrophobicity.

The other category is a one-step electrodeposition method to obtain the surface di-
rectly [31,32]. This method is usually performed in an ethanol electrolyte to deposit chemi-
cal compounds (usually formed by low surface energy substances and metal cations) onto
the cathode surface. Heidari et al. [33] prepared a superhydrophobic surface by one-step
electrodeposition on a carbon steel surface to enhance the surface’s corrosion resistance.
The superhydrophobic surface was composed of gamma-Fe2O3 and Fe(CH3(CH2)(12)COO)
compositions.

When applied to large-area superhydrophobic surface preparation, these two methods
are problematic. In the “morphology + modification” method, surface chemical modifi-
cation requires large amounts of anhydrous ethanol, stearic acid, and even fluorinated
compounds. For the preparation of large areas, this method is not controllable, has poor
safety, and is not environmentally friendly. In the “One Step” method, ethanol electrolyte
was utilized in the electrodeposition process, which is uncontrollable and poorly secured,
considering that large plates require large amounts of anhydrous ethanol. In addition to
these, nanoparticles are added to the plating solution in some studies [34]. In order to
maintain a uniform dispersion of nanoparticles and avoid agglomeration, large stirring
devices (such as ultrasonic generators) and significant additions of surfactants are required.
Therefore, the development of simple, safe, fluorine-free, no-particles, and eco-friendly mild
steel-based superhydrophobic coatings is of particular interest for industrial applications.

Previous reports mentioned metals such as copper and zinc that adsorb hydrocarbons
in the air to lower surface energy and create a superhydrophobic surface [35–37]. However,
few studies report this application on mild steel surfaces. Therefore, this study proposes
a method based on the Cu-Zn composite electrodeposition and annealing processes to
prepare mild steel-based superhydrophobic surfaces. The electrodeposition process is
carried out at room temperature and does not require nanoparticles, anhydrous ethanol,
various types of compounds used for surface modification or any fluorine-containing
compounds. There are only two steps in the surface preparation process: one to obtain
a specific roughness by electrodeposition and one to anneal the surface. Subsequently,
the effect of plating parameters on surface morphology and wettability was investigated.
The causes of surface hydrophobicity were also analyzed and combined with surface
composition testing. Finally, the corrosion resistance of the surface was investigated by
comparing the coating to the mild steel substrate.
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2. Materials and Methods
2.1. Materials

Chemical reagents were of analytical grade. The mild steel plates and copper plate
were obtained from Quanfu Metal Co., Ltd. (Shenzhen City, China). CuSO4·5H2O and
ZnSO4·7H2O were bought from Tianli Co., Ltd. (Tianjin City, China). NaOH was purchased
from Bodi Co., Ltd. (Tianjin City, China), and C4O6H4KNa·4H2O was purchased from
Guangfu Technology Development Co., Ltd. (Tianjin City, China).

2.2. Preparation Process

Plating conditions and specific processing parameters are listed in Table 1, and the
schematic diagram of the preparation process is shown in Figure 1. In the experiment, the
copper plate (60 mm × 80 mm × 5 mm) was used as the anode, and the actual immersed
area was about 60 mm × 60 mm. A Q235 carbon steel (primary composition carbon
C: ≤0.22%; silicon Si: ≤0.35%; manganese Mn: ≤1.4%; sulfur S: ≤0.050%; phosphorus
p: ≤0.045%) sheet was used as the cathode electrode (40 mm × 60 mm × 1 mm), and
the actual immersed area of the cathode is 40 mm × 40 mm. The Q235 steel plates were
polished using 800, 1200, and 2000 grift size SiC sandpaper. The polished Q235 plate’s
contact angle is 67◦. The polished plate was then pickled with acid to remove rust spots,
followed by hot alkali degreasing and weak acid activation. Steel plates must be thoroughly
cleaned with deionized water between all pre-treatment steps. After completing the above
steps, the surface was cleaned for the last time and prepared for plating.

Table 1. Plating conditions and specific processing parameters.

Item Parameter Unit

Anode (Copper) 60 × 80 × 5 mm
Cathode (Mild steel) 40 × 60 × 1 mm

Current density 3, 4, 5, 6 A/dm2

Time 30, 60, 90 min
Power supply mode Constant current
Plating temperature Ambient temperature

Annealing temperature 200 ◦C
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Figure 1. Mild steel-based superhydrophobic surface preparation process diagram.

The bath composition included copper sulfate pentahydrate (20 g/L), zinc sulfate
heptahydrate (23 g/L), potassium sodium tartrate tetrahydrate (100 g/L), and sodium
hydroxide (50 g/L) [37]. The deposition process was performed in a two-electrode cell
using a digital regulated DC (direct current) power supply at ambient temperature. In
order to determine the range of experimental parameters, a preliminary test was conducted.
According to the test, the current density ranged from 3 A/dm2 to 6 A/dm2 (0.48 A~0.96 A),
and the deposition time ranged from 30 min to 90 min. After the electrodeposition process,
the prepared steel plates were cleaned with flowing distilled water several times and
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dried with a hairdryer. These samples were then annealed in an electric oven preheated to
200 degrees C and annealed for a specified period. Afterward, the samples were stored in a
closed dry sample box for one day.

2.3. Characterization
2.3.1. Morphological Characterization

A scanning electron microscope (SEM, FEI QUANTA 45003040702) was used to exam-
ine the morphologies of electroplated coatings. Samples were cut into 40 mm × 20 mm for
characterization. All samples were characterized on the same scale.

2.3.2. Surface Composition Characterization

X-ray diffraction (XRD, D/Max 240003030502) was used to investigate crystal structure.
Energy-disperse spectroscopy (EDS, FEI QUANTA 45003040702) and X-ray photoelectron
spectroscopy (XPS, Escalab 250Xi, Thermo) were used to confirm the type and form of the
coating’s elements.

2.3.3. Wettability Characterization

The contact angle was measured using contact angle measurement. This contact angle
measuring instrument includes a high-speed camera, liquid inlet tube, etc. The experimen-
tal droplet size is five microliters. It is necessary to wait for 2 min after droplet formation to
ensure a stable droplet shape before measurement. The contact angle was measured and
calculated by the goniometric method. The average value of all the measuring points for
each specimen was utilized as the final contact angle.

2.3.4. Electrochemical Analysis

The electrochemical corrosion behavior was measured at 3.5 wt. % aqueous sodium
chloride solution at room temperature using an electronic electrochemical workstation
(CHI 660E, CH Instruments Inc., Bee Cave, TX, USA). The workstation was equipped with
a standard three-electrode system. A platinum electrode was used as a counter electrode,
a saturated calomel electrode (SCE), and the prepared sample was used as a reference
electrode and the working electrode, respectively. In electrochemical experiments, the
exposed surface of the sample in NaCl solution is a 1 cm circle in diameter. Before the
electrochemical experiments, the samples’ exposed areas were immersed in NaCl solution
for 1000 s to achieve a stable open circuit potential (OCP). Electrochemical impedance
spectroscopy (EIS) measurements were performed in the frequency range of 100 kHz–
0.01 Hz with a voltage amplitude of 0.005 V.

3. Results and Discussion
3.1. To Determine the Annealing Time Parameters

In this study, annealing is an important reason for the formation of superhydropho-
bicity in a limited time. To determine the appropriate time for annealing, we selected
electroplated samples under 60 min and the current densities of 3–6 A/dm2. These samples
were annealed at a series of time parameters, respectively, and then stored hermetically at
room temperature. The results obtained are shown in Figure 2. For samples prepared at
different current densities, the surface contact angle increased with increasing heating time.

From Figure 2, the increasing rates of contact angles were found to decrease with
increasing time. Furthermore, the magnitude of the contact angle change with increasing
annealing time varied between samples prepared with different parameters. This is because,
for a sample, even if the contact angle increases due to the decrease in surface energy, it is
necessarily limited by surface morphology (the analysis of morphology will be discussed
in the next section).

For the present process, 200 degrees Celsius for 8 h is optimal for achieving superhy-
drophobic properties.
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3.2. Morphology Analysis

In comparison to other process methods, electrodeposition provides a viable method to
manipulate the growth of the microstructure simply by varying electrochemical parameters
such as deposition time and current density [38]. Furthermore, surface morphology is one
of the two critical causes of the superhydrophobic phenomenon. In this study, the plating
process was carried out under a set of current density and time parameters. In order to
investigate the effect of plating parameters on surface morphology, SEM was utilized, as
shown in Figure 3.
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Figure 3 shows SEM pictures of the prepared surface, which appears to be organized
by multiple micro/nanoscale protrusions. However, the arrangement is not same. Under
the same current density, the individual size of the protrusions grows with time, indicating
increased “crowding.” Under the same time parameter, the number of protrusions per
unit area increases, implying that an increase in current densities leads to an increase in
protrusion distribution density.

These morphology changes were primarily caused by electrochemical reactions be-
tween the solution and the cathode plate. The number of free Zn2+ and Cu2+ was re-
duced due to the complexes formed by Zn2+ /NaOH and Cu2+/C4O6H4KNa (as shown
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in Figure 4). Therefore, displacement reactions in the solution prior to the plating process
were avoided. However, this increases the difficulty of reducing these two ions on the
cathode surface, especially at high plating currents, which may trigger side reactions, such
as the hydrogen precipitation reaction. H+ is reduced on the cathode surface and forms
OH− nearby, which reacts with free Cu2+ and Zn2+ to produce a loose porous deposit
consisting of Zn(OH)2 and Cu(OH)2. On the one hand, this non-conductive loose porous
deposit increases the polarization of the steel plate; on the other hand, these microparticles
of hydroxide are deposited on the cathode’s surface with the reduced metal cations [39].
Both can lead to the creation of this rough surface.

In addition, large current densities cause electrochemical polarization on the cathode’s
surface. The increased current density promotes polarization and leads to more growth
points on the surface, increasing the number of protrusions per unit area [40]. In terms of
the time parameter, as deposition time increases, more metal cations are deposited on the
cathode surface after a reduction at the growth points, resulting in larger protrusions [40].
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Figure 4. The free Cu2+ and Zn2+ in the solution form a complex with NaOH and C4O6H4KNa,
resulting in fewer metal cations discharging at the cathode and increasing cathodic polarization.

3.3. Surface Wettability Analysis

Figure 5 depicts the variation of the contact angle (CA) of the plated surface at various
deposition times. The curves illustrate that as deposition time increases, various trends
emerge at varying current densities. Samples under 3 A/dm2 exhibit a declining and then
increasing trend; samples under 4 A/dm2 exhibit a gradually growing trend; samples under
5 A/dm2 exhibit a steady decrease, and samples under 6 A/dm2 exhibit an increasing and
then decreasing trend. When combined with the above morphological analysis, we discover
that the surface contact angle does not increase with protrusion growth; and different
current densities result in varied protrusion distributions. The impact of increasing the size
of individual protrusions varies with protrusion distribution density. Therefore, the time
parameter must be matched with the current density in order to obtain proper morphology.
Figure 6 depicts the variation of the contact angle (CA) corresponding to different deposit
current densities. The curves show that the CA (contact angle) values tend to increase as the
deposition current density increases. We discussed in the previous morphological analysis
how high current densities promote electrochemical polarisation, resulting in increased
protrusion distribution density. The increased protrusion densities provide more surface
support points and prevent water droplets from penetrating recesses.
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The effects of time and current density seem to be intricate. Here, taking a 6 A/dm2

sample as an example, increasing deposition time increases the protrusion size. The
growing protrusion leads to an increase in the specific surface area at the beginning.
However, later, the increase in protrusion led to an increase in the percentage of solid–
liquid contact area.

According to the Cassie–Baxter equation [41], increased r (corresponding to the specific
surface area) leads to a large contact angle. Then, the decrease in f (corresponding to the
percentage of the solid–liquid contact area) caused a slight contact angle.

cos θ = f (r cos θ0 + 1)− 1 (1)

Therefore, the time parameter for preparing superhydrophobic morphology needs to
be coupled with the current density parameter. The above morphological and wettability
analyses indicated that the contact angle of the sample obtained at a current density of
6 A/dm2 and a time of 30 min exceeds 150◦, which is the optimal preparation parameter
for this process.
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3.4. Superhydrophobic Surface Chemical Composition Analysis

In addition to surface morphology, chemical composition plays an important role in
superhydrophobicity. In this section, we investigate the cause of superhydrophobicity in
surface composition using a sample (60 min, 6 A/dm2).

Figure 7 depicts the XRD spectrum of the prepared superhydrophobic coating. The
spectrum reveals that the crystalline phases present in the coating are mostly CuZn and
Cu5Zn8, both of which are copper–zinc alloys. These copper–zinc alloys indicate the co-
deposition of Cu2+ and Zn2+, resulting in the formation of a new phase. The XRD results
also corroborate with the analysis of the chemical reaction process in the morphological
analysis section. The detected iron phase is from the mild steel substrate.
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Figure 7. XRD spectrum of the prepared Cu-Zn superhydrophobic surfaces.

The EDS spectrum is shown in Figure 8 and the test results are listed in Table 2. The
main elements of the coating are copper, zinc, and iron, which corroborate with the results
of the XRD spectrum. In addition, a large amount of carbon was detected on the surface.
The carbon element may come from the adsorption of hydrocarbons from the air. In order
to confirm the present form of these elements on the surface, we performed an XPS analysis.

Table 2. Mass fraction and atomic percentage of the elemental content corresponding to EDS spectrum.

Elements Weight Atom

% %

C K 11.78 40.32
O K 1.56 4.02
Fe K 2.57 1.89
Cu K 48.10 31.13
Zn K 36.00 22.64
Total 100.00
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Figure 8. EDS spectrum of prepared Cu-Zn superhydrophobic surfaces.

The XPS spectrum (Figure 9) shows four main elements. They are Cu, Zn, O, and C and
are consistent with previous XRD and EDS results. In Figure 10, the Cu 2p1/2 at 952.5 eV
and Cu 2p3/2 peaks at 934.2 eV can be explained by the existence of Cu/Cu2O and CuO.
In Figure 11, the C 1s spectrum is disassembled into four peaks with binding energies of
284.5 eV, 286.6 eV, and 288.7 eV, 291.5 eV, and correspond to C-C/C=C, C-O, C=O, and -COO-
, respectively. The hydrocarbons (C-H, C-C, and C=C) are in the majority. Figure 12 shows
the O1s spectrum disassembled into two peaks at 531.1 eV and 532.5 eV from Cu2O/ZnO
and C-O species. In Figure 13, the Zn2p3/2 at 1021.8 eV and the Zn2p1/2 at 1044.8 eV
correspond to the existence of ZnO. The elements of the prepared superhydrophobic surface,
as well as their chemical state, were further examined by XPS. According to the chemical
composition analysis, the electrodeposition method created a Cu-Zn composite layer on
the mild steel substrate. After eight hours of heating in air at 200 degrees Celsius, the upper
surface of the Cu-Zn coating developed copper oxides and zinc oxides. In accordance with
previous research, we discovered that this transition metal oxide may spontaneously adsorb
hydrocarbons in air, lowering the surface’s energy. This conclusion was supported by the
C1 spectrum of XPS. The absorbed airborne hydrocarbons combined with the micro/nano
roughness caused the superhydrophobicity of the prepared mild steel-based Cu-Zn coating.
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3.5. Electrochemical Characterization

In order to analyze the corrosion resistance of the prepared Cu-Zn superhydrophobic
surfaces, this study conducted AC (alternating current) impedance tests on the superhy-
drophobic surfaces in a 3.5% NaCl solution using an electrochemical workstation.

This test compared the mild steel plate, untreated Cu-Zn coating, and annealed su-
perhydrophobic Cu-Zn coating. From the Nyquist plot (Figure 14a), it can be observed
that the arc diameter of the superhydrophobic surface is larger than that of the untreated
coating and the mild steel plate substrate, indicating that the prepared superhydrophobic
surface has better corrosion resistance compared to the mild steel substrate. Moreover,
this resistance improvement is not provided by the Cu-Zn coating. The Bode plots also
confirm this conclusion (Figure 14b,c). The frequency–phase angle plot shows that the su-
perhydrophobic surface corresponds to the highest phase angle, followed by the untreated
coating and the steel plate on the frequency–impedance curve. It can be observed that the
superhydrophobic surface also has the highest impedance modulus.

From the above analysis, it can be concluded that the superhydrophobic surface is
more resistant to corrosion than the untreated Cu-Zn coating and mild steel substrate.
Compared with the steel substrate, the untreated coating physically separates seawater
from the steel substrate, impeding some seawater contact with the substrate. However, the
surface voids and relatively high electrical conductivity still allow the corrosion process to
occur slowly. After the annealing treatment, the Cu-Zn coating’s contact angle increases,
forming a discontinuous layer of air on the surface and forming a natural barrier that
hinders ion transport and further retards the corrosion process [42].
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4. Conclusions

In this paper, a mild steel-based superhydrophobic coating was prepared using the
Cu-Zn electrodeposition method followed by an annealing process. SEM images revealed
numerous hierarchical micro/nanostructures on the surface. Current density values con-
trolled the distribution density of the protrusions, and the size of each protrusion was
controlled by deposition time. Both parameters contribute to the appropriate morphology
to realize superhydrophobicity. The results of XPS, EDS, and XRD indicated the formation
of copper oxide and zinc oxide. These two transition metal oxides spontaneously adsorb
airborne hydrocarbons, contributing to low surface energy. Corrosion behavior in 3.5%
NaCl solution was evaluated by EIS, which indicated improved corrosion resistance of the
superhydrophobic surface compared to the untreated Cu-Zn coating and mild steel plate.
The proposed method for preparing superhydrophobic coatings on mild steel surfaces
is eco-friendly, safe, and simple and will have promising applications in the industry,
especially in naval architecture and marine engineering.
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