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Abstract: The effects of edible chitosan coating (0.1%, 0.3%, 0.5% and 0.75% w/v) on the changes
in the quality, respiration rate, total phenolic content and anthocyanin of postharvest sweet cherry
(Prunus avium L.) at 10 ◦C were investigated. The activities of superoxide dismutase (SOD), catalase
(CAT) and ascorbate peroxidase (APX) were also determined. The result showed that the treatments
of chitosan edible coating were effective at delaying the evolution of the parameters related to
postharvest ripening, such as color and firmness, and respiration rate. The edible coatings also
showed that the lower total phenolics and total antioxidant activity were maintained compared to
that in the control associated with the overripening. It was suggested that the optimal quality and
enhanced antioxidant enzymatic activities of postharvest cherry fruits were obtained by an edible
coating of chitosan 0.5% up to 24 days at 10 ◦C. The chitosan edible coating could be favorable for
extending shelf-life, maintaining the quality of sweet cherries.

Keywords: sweet cherry; edible coating; quality; antioxidant enzymatic activities

1. Introduction

Sweet cherries (Prunus avium L.) are more and more popular fruits due to their color,
nutritional value and taste. Sweet cherries have been such an attractive fruit crop for
consumption due to their precocity and excellent quality. Recent attention on the health
benefits of cherries has further helped boost their consumption. Sweet cherries, in partic-
ular, have been found to offer a good source of phenolic compounds that boost the fruit
antioxidant activity including fiber, carotenoids, vitamin C and anthocyanins [1].

Fruit size, bright red color, firmness and flavor are major postharvest sweet cherry
quality attributes [2]. The quality of cherries deteriorates rapidly after harvest. The main
cause is their relatively high metabolic activity, which leads to loss of weight, changes
of chroma, surface pitting, stem browning, softening and loss of acidity [3,4]. The food
industry is constantly searching for effective and safe means to control these problems.
Of the various preservation techniques, sweet cherry stored at low temperatures is the most
preferred by the consumers. The preservation method reduces water loss rate and inhibits
pathogen growth and maintains the freshness of sweet cherry. However, biochemical
reactions of the quality deterioration of sweet cherry is not inhibited completely at low
temperatures. Moreover, temperature-sensitive fruits such as sweet cherries need to be
stored at an appropriate temperature to prevent cold damage [4]. The application of fruit
edible coatings is another new trend in sweet cherry preservation. Edible coatings including
various polysaccharides, proteins, lipids composite coatings have certain advantages in
maintaining quality attributes. The edible coating has been widely used in recent years
to maintain quality of fruit [5]. It leads to reductions in respiration rate and transpiration

Coatings 2022, 12, 581. https://doi.org/10.3390/coatings12050581 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12050581
https://doi.org/10.3390/coatings12050581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings12050581
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12050581?type=check_update&version=2


Coatings 2022, 12, 581 2 of 10

and to slowing the ripening process by decreasing permeability to O2, CO2, and water
vapor [6–8].

Chitosan has received a great deal of attention from the food industries. This derivative
of chitin is a copolymer of N-acetylglucosamine and glucosamine residues linked by
β-1,4-glycosidic bonds and is insoluble in dilute acids. Chitosan has been proven one
of the best edible and biologically safe preservative coatings for different types of fruits
and vegetables because of its film forming properties, antimicrobial actions, nontoxic,
biodegradability and biocompatible properties [9]. Chitosan edible coatings can modify
the internal atmosphere, decrease transpiration loss, and delay the ripening of fruits and
vegetables due to its ability to form a semipermeable film that is durable and flexible. All
these properties provide advantages to chitosan compared to other edible coatings [10].
Several studies have indicated that chitosan has the beneficial effects for food preservation
in recent years [8–11]. A study showed chitosan treatment significantly inhibited the
bacterial growth on the surface of Indian oil sardines and reduced the formation of volatile
bases and oxidation products [12]. Another study demonstrated that the combination of
lemon essential oil and chitosan induces a beneficial preservation of strawberries with
fungal decay [13].

It is worth noting that when chitosan comes into contact with plant tissue, it is as-
sociated with the antioxidant capability of the fruit and the control of oxidative stress
in fresh fruit [14]. In general, enzymatic and non-enzymatic systems are two types of
antioxidant defense systems. Superoxide dismutases (SOD), ascorbate per-oxidases (APX)
and catalases (CAT) are major enzymatic antioxidants. These enzymes are effective in
scavenging reactive oxygen species (ROS). Although some reports showed the impact of
the application of several edible coatings on the quality of food, no information was shown
on the effect of chitosan coating on sweet cherry in terms of antioxidant capacity. Thus, the
aim of this study was to analyze the effect of chitosan, applied as an edible coating at four
concentrations (0.1%, 0.3%, 0.5% and 0.75% w/v), on the quality, antioxidant activity and
bioactive compounds of sweet cherry cultivar during storage time.

2. Materials and Methods
2.1. Fruit Materials and Treatments

The sweet cherry (Prunus avium L. cv. Summit) used in this study was obtained
from Yingyuan farm near Jinzhou, Dalian, Liaoning, China. Sweet cherries with the same
size and color were selected and randomized for the experiments. The quality of sweet
cherry involving chroma, firmness, total phenols and total anthocyanins were analyzed.
Chitosan film-forming solution was prepared according to the procedure of Petriccione
et al., (2015) [15]. Chitosan (Solarbio, Beijing, China) was dissolved in an aqueous solution
including acetic acid (0.5% v/v). The solution was heated and stirred at 45 ◦C to dissolve the
chitosan. The pH was adjusted to 5.6 with 1.0 mol/L NaOH, and Tween-80 (0.05 g/100 mL)
for all solutions. Sweet cherries were soaked and coated with different concentrations
of 0.1%, 0.3%, 0.5% and 0.75% w/v chitosan in this study. The treatments consisted of
immersing the sweet cherry sample for 5 min at 20 ◦C in: (a) 0.1% w/v chitosan; (b) 0.3% w/v
chitosan; (c) 0.5% w/v chitosan; and (d) 0.75% w/v chitosan. The uncoated sweet cherry
was the control. The treated and control samples were air-dried for 2 h at 20 ◦C, then
packaged into plastic polyethylene bags at 10 ◦C.

2.2. Extraction

Sweet cherry (100 g) was soaked in liquid nitrogen and ground using a blender.
Samples were mixed with an extraction solution of 10mL including acetic acid 2%, water
28%, and acetone 70%. Cherry tissues were centrifuged for 15 min at 10,000× g in a
Multifuge 3S-R (Kendro, Hanau, Germany). The extract of cherry was made up to 25 mL
with acidified water (0.01% HCl [v/v] in deionized, distilled water) and stored at −80 ◦C
until subsequent analyses.
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2.3. Determination of Fruit Colour

Surface color (L*, a* and b* values) was detected using a colorimeter (Minolta, Model
CR-400, Osaka, Japan). L* represents color lightness, 0 is black and 100 is white. The
color of each sample was detected at 0, 6, 12, 18, 24 days. Chroma was calculated as
C* = (a*2 + b*2)1/2 for color change measurements in the fruit [16]. The measurements were
performed at the same marked sample zone of each sweet cherry. A high chroma value
represents a highly saturated and intense color while a low value stands for dull colors.

2.4. Determination of Fruit Firmness

The firmness of the sweet cherries was determined using the texture analyzer (model
TA.XT2; Stable Micro Systems Texture Technologies, Scarsdale, NY, USA). Firmness was
measured using a 3 mm-diameter flat-plate probe. The maximum force (N) generated
during probe travel was used for data analysis. Results were expressed as the slope of the
curve in N cm−2.

2.5. Determination of Respiration Rate

The respiration rate was measured with a CO2 Gas Detector (Alnor Compu-flow,
Model 8650, Alnor USA, Los Angeles, CA, USA). For 20 min, 200 g of sweet cherries
were enclosed in tightly-sealed hermetic flasks. The sensor was used to measure CO2 and
calculate the respiration rate. Results were expressed as milligrams CO2 per kilogram
per hour.

2.6. Determination of Antioxidant Contents
2.6.1. Total Phenol (TP) Content

Chitosan coating samples (100 g) were mixed with 400 mL of 80% ethanol and homog-
enized until reaching a uniform consistency using a digital homogenizer (T25, Guangzhou
Guangpeng, Guangzhou, China) to obtain 0.25 g mL−1 ethanol extract. The obtained
mixtures were preserved in covered centrifuge tubes for ultrasound extraction for 40 min
in darkness at 40 ◦C and were subsequently centrifuged at 12,000× g for 20 min and the TP
Content of the supernatant was determined using a modification of the Folin–Ciocalteu
method [17]. One milliliter of 0.25 g mL−1 supernatant was added to 1 mL of Folin–
Ciocalteu reagent. After that, 10 mL of 7.5% (w/v) Na2CO3 solution and 13 mL of distilled
water was added, and the mixtures were incubated at 25 ◦C for 90 min before measuring at
765 nm. TP content was expressed as mg kg−1 of gallic acid equivalent on a fresh weight
tissue basis, based on a standard curve (Y = 0.0051 X + 0.0178, R2 = 0.99) prepared with a
standard gallic acid solution.

2.6.2. Total Anthocyanin Content

Anthocyanin quantification of the chitosan film samples (100 g) was performed on
a UV-visible spectrophotometer (Shimadzu UV-1601, Norcross, GA, USA) by the pH-
differential method [18]. Calculation of the anthocyanins concentration was based on
a cyanidin-3-glucoside molar extinction coefficient of 26,900 and a molecular mass of
449.2 g/mol. Measurements were replicated three times with means being reported. Re-
sults were expressed as milligrams of cyanidin-3-glucoside equivalent (CGE) per 100 g of
fresh weight.

2.7. Determination of Antioxidant Enzyme Activity

Freeze-dried samples (5 g) were homogenized with a potassium phosphate buffer
(pH 7.0) of 50 mM containing EDTA of 3 mM and polyvinyl pyrrolidone (PVP) of 0.1 g. The
mixture was centrifuged for 20 min at 15,000× g at 4 ◦C. The activity of catalase (CAT), su-
peroxide dismutase (SOD) and ascorbate peroxidases (APX) was determined immediately.

SOD activity was assayed by the method of Duan et al., (2011) [19]. One unit (U) of
SOD activity was defined as the amount of enzyme required to cause a 50% inhibition of
the reduction of nitro blue tetrazolium (NBT), as monitored at 560 nm. APX activity was
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determined spectrophotometrically at 290 nm according to the method of Karagiannis et al.,
(2018) [20]. CAT activity was measured by monitoring the disappearance of H2O2 by
recording the decrease in absorbance at 240 nm of a reaction mixture containing 50 mmol/L
sodium phosphate buffer (pH 7.0), 12.5 mmol/L H2O2, and 20 µL of enzyme extract. One
unit of CAT activity is defined as the amount of enzyme that decomposes 1 µmol of H2O2
per minute per milligram of protein under the conditions of the assay, according to the
method of Acero et al., (2019) [17]. The specific activity of the enzyme was expressed as
unit mg protein−1. The experiment was repeated three times.

2.8. Statistical Analyses

All experiments were conducted in triplicate, as independent experiments. Data
were measured using the Statistical Package for the Social Sciences (SPSS, Version 14.0,
IBM Corp., Armonk, NY, USA). The significance of the differences between variables was
tested using a one-way ANOVA (between groups) and repeated measures of ANOVA
(within group). The means were compared using Duncan’s multiple range test. Statistical
significance was determined at p < 0.05.

3. Results and Discussion
3.1. Colour and Firmness

Appearance, color and firmness are the most important quality attributes because
consumers usually judge the quality of fruits on the basis of appearance [21]. Thus, in
this study, we first investigated the effect of chitosan with different concentrations on the
appearance of sweet cherries in order to search for an effective and safe means to control
physiological problems such as browning and softening.

As shown in Figure 1A, the chroma index value at harvest was 27.46 and did not
significantly change (p > 0.05) during the first 12 days of chitosan treatment. The surface
color saturation rapidly decreased with increasing storage time. However, this change was
slowed down for sweet cherry treated with 0.5% w/v chitosan. After 18 days of storage,
the fruit coated with 0.5% w/v chitosan maintained significantly higher chroma values
(19.2 ± 0.72) than those with other chitosan concentrations and the control (10.59 ± 6.36).
The differences were even much higher between 0.5% w/v chitosan and other treatments
(p < 0.05) when observed on the 24th day. Instead, no significant difference (p > 0.05) was
observed between control and chitosan concentration-coated fruit (0.1% and 0.3% w/v).
Interestingly, the addition of 0.75% chitosan led to a greater reduction in chroma index
as compared to cherries treated with 0.5% w/v chitosan, and no significant change was
observed between cherries treated with the highest chitosan concentration and those treated
with the low concentrations (0.1% and 0.3%). The reason is probably that the chitosan with
a remarkably high concentration leads to higher intermolecular and interparticle forces,
and thereby decreases the liquidity of the films, increases their stiffness and enhances
their elongation at break, thus leading to the crack of films and disabling the anti-oxidant
protection for the sweet cherries. Therefore, we propose that chitosan with 0.5% concentra-
tion is most sufficient in controlling browning and maintaining the commercial value of
fresh products.

In addition, firmness is the parameter of greatest concern in sweet cherry storage
and marketing, because flesh softening is associated with senescence and fruit injuries.
the firmness of control and chitosan-treated (0.1% w/v) sweet cherries exhibited similar
trends of softening, and decreased during the first 6 days of storage, showing that such low
concentrations of chitosan could not protect sweet cherries from oxidant effects (Figure 1B).
On the other hand, chitosan with high concentrations (0.5% and 0.75% w/v) efficiently delay
softening trends. However, the firmness values of fruit treated at the two concentrations
diverged markedly after 12 days. The final values were 25.63 ± 0.57 N/cm2 for 0.5% w/v
and 11.83 ± 0.76 N/cm2 for 0.75% w/v at 24 days. This result indicates that the highest
concentration is not the most efficient concentration, probably because it induces the crisp
of the film. Since firmness at 25 N/cm2 or higher is an indication of fruit not softening
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fully [22], it is reasonable to indicate that 0.5% chitosan markedly slows down fruit soft-
ening, and thus is suitable for maintaining the firmness of sweet cherries during storage.
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Figure 1. Change of chroma (A) and firmness (B) in sweet cherry stored at 10 ◦C during storage time.
The data are the means ± standard-deviation (SD).

3.2. Respiration Rate

Respiration rate is a critical index for evaluating the storability of fruit, and it increases
with tissue damage and aging [23]. Changes of respiration and storability (delay respiration
and consume nutrition) happen during the metamorphic process [24]. In this study, the
respiration rate of sweet cherry increases during storage and chitosan treatment can delay
the increase to some extent (Figure 2). The respiration rate of high concentrations (0.5%
and 0.75% w/v) of chitosan-treated sweet cherries had significant decreases compared with
the control and low concentrations (0.1% and 0.3% w/v) of chitosan-treated fruit during
the storage (p < 0.05), which is consistent with the results of Dong et al. [25]. From the 12th
day of storage, the respiration rate of sweet cherry in the 0.5% chitosan treatment group
increased more slowly than that in the 0.75% chitosan group. The results clearly indicate
that 0.5% w/v chitosan exhibits the maximal response in the inhibition of respiratory
intensity in sweet cherries.
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3.3. Effect on Phenolic and Anthocyanin Compounds

Phenolic compounds can improve fruit quality and nutritional value by improving
fruit color, taste, aroma and flavor. Anthocyanins are responsible for the red, blue and
orange colors of fruits [26,27]. Anthocyanins and phenolics compounds have attracted
much attention as food ingredients [28,29]. Hence it is necessary to screen the phenolic
properties of sweet cherry to further evaluate the coating efficiency of chitosan [30,31].
As for phenolic compounds, the content of phenolic compounds was established at harvest
(70.2 mg100 g−1) in uncoated fruits until day 12 of storage, then decreased significantly
until the end of storage (52.00 mg 100 g−1) (Figure 3A). However, total phenolics increased
continuously in sweet cherries treated with the chitosan coating. Different concentrations
have different effects on the total phenols of sweet cherry. The sweet cherry in a 0.3%
chitosan coating showed the highest phenolic compounds with 66.50 ± 2.37 mg 100 g−1 at
24 days. Hence, the quality of sweet cherries coated with chitosan was better than that of
uncoated sweet cherries [28]. The main phenolic compounds of sweet cherry are hydroxyl-
cinnamic acids caffeoyl tartaric acid and 3-p-coumaroyl-quinic acid, which contribute to the
flavor quality of sweet cherry [32]. Chitosan can form a transparent coating on the surface
of the fruit; this coating allows the passage of O2, not CO2 and H2O. Thereby, this high CO2
low O2 environment can inhibit the respiration of strawberries and delay the degradation
of respiratory substrate, thus delaying the accumulation of secondary metabolites, such as
anthocyanins and phenolic substances, to achieve the purpose of keeping fresh.
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Anthocyanin content is easily affected and degraded by light and temperature in
fruit. Genotype characteristics, irrigation, plant density and fertilization also affect antho-
cyanin content in fruits. In this study, the anthocyanin amount of sweet cherry treated
with chitosan edible coating is lower than that of the control. The concentration increased
during the storage period (Figure 3B), and this increase was delayed in sweet cherry coated
with chitosan in a concentration-dependent manner. In the fruits treated with chitosan
at 0.75%, anthocyanin concentration was 39.00 mg 100 g−1 after 24 days, while these
values were significant different with 58.00 mg 100 g−1, 49.00 mg 100 g−1 and 45.00 mg
100 g−1 for fruits coated with chitosan at 0.1%, 0.3% and 0.5% w/v at day 24, respectively
(p < 0.05). Some studies have also demonstrated that the chitosan edible coating decelerated
anthocyanin synthesis in treated strawberries and the effects increased with higher chi-
tosan concentration [33,34]. Anthocyanin concentration can increase after harvest during
cold storage in pomegranate, sweet cherry, strawberry and raspberry [35–39]. In addi-
tion, Kim et al. have reported that anthocyanin contents ranged from 1–432 mg 100g−1 in
different sweet cherry genotypes [1], showing the reliability of our data.

3.4. Antioxidant Enzymes

In plants, antioxidant enzymes, mainly including SOD, CAT and APX, catalyze reac-
tions to neutralize free radicals and ROS, thereby forming the body’s endogenous defense
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mechanisms to help protect against free radical-induced cell damage [40]. In this study,
SOD, CAT and APX were detected in sweet cherries to further estimate the effect of chitosan
film on antioxidant enzymatic activities.

SOD as a major antioxidant enzyme in cells catalyzes the breakdown of such an
anion into oxygen and hydrogen peroxide [41,42]. As shown in Figure 4A, 0.3%, 0.5%
and 0.75% chitosan treatment have an obvious enhancement of SOD activity in sweet
cherry after 12 days of storage (p < 0.05). However, the effect of chitosan on SOD activity
after 12 days of storage was significantly, obviously higher than before 12 days of storage.
This result indicated that the effect of chitosan film on SOD activity was significantly
influenced by storage time, probably because the superoxide anion content at a later
storage was higher and then stimulated the SOD activity [19]. In addition, the result
showed that the SOD activity of sweet cherry treated with chitosan edible coating (0.5%)
is higher than those in chitosan edible coating (0.75%). This might be because the higher
concentration chitosan edible coating (0.75%) prevents more oxygen transmittance and
inhibits the production of reactive oxygen species (ROS) on the surface microenvironment
of sweet cherry. Some studies have demonstrated that lower ROS do not effectively regulate
SOD enzyme activities by activating the signal molecules of a plant [43,44]. Therefore, the
SOD and APX activities of sweet cherry treated with chitosan coating (0.75%) were lower
than those in the 0.5% treatment group. The chitosan coating treatment could be an effective
method for enhancing SOD activity in postharvest fruits and vegetables and the influence
of chitosan on SOD activity is comparable to other treatments such as methyl-jasmonate
and 1-MCP [45,46]. The increase of SOD may reduce free radical accumulation on fruit
peel after chitosan treatment, thus leading to increased dismutation of radicals to hydrogen
peroxide [47].
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CAT is a common enzyme found in nearly all living organisms that are exposed to
oxygen, where it functions to catalyze the decomposition of hydrogen peroxide to water
and oxygen in order to maintain H2O2 homeostasis in cells. As shown in Figure 4B,
CAT activity sharply decreased after the 12th day in the control; however, 0.3%, 0.5%
and 0.75% w/v chitosan coating retarded this reduction. Chitosan coating treatment has
enhanced CAT activity, which only occurred after 18 days storage. Probably because the
enhancement of SOD activity leads to H2O2 accumulation and then reduces CAT activity.
The results show that 0.5% chitosan is most efficient in maintaining high CAT activity
in sweet cherry (p < 0.05), which may be important in the defense mechanisms against
oxidative stress. Except for CAT, APX is another efficient method for reducing power for
H2O2 detoxification [48].

For APX, this type of enzyme uses ascorbate as a specific electron donor to catalyze the
conversion of H2O2 into H2O, and thereby detoxifies ROS in the ascorbate—glutathione
cycle in plant cells [49]. In this study, APX activity in the control and 0.1% chitosan sweet
cherry increased rapidly and then decreased significantly from the 6th to the 24th day of
storage (from 0.59 to 0.40 µmol/mg/min). Exposure to 0.3%, 0.5% and 0.75% chitosan
retard the reduction of APX activity, with the latest peak (0.54 ± 0.04 µmol/mg/min) found
in the 0.5% w/v treatment at the 18th day. As shown in Figure 4C, the APX activity in
0.3%, 0.5% and 0.75% chitosan treatment groups increased significantly compared with
the control; this result was similar to the change trend of SOD. An enhancement in APX
activity observed in chitosan coating could be due to the availability of ascorbic acid in
sweet cherry during storage [15]. These results suggested that chitosan coating has an
obvious improvement on antioxidant enzymatic activity in postharvest sweet cherry during
10 ◦C storage.

4. Conclusions

The edible chitosan coating treatment is an effective method for delaying the posthar-
vest ripening process of sweet cherry, which is manifested by reduced color changes,
firmness losses and respiration rate, as well as a positive effect in maintaining higher
concentrations of total phenolics and anthocyanins, and in delaying the increases of CAT,
SOD and APX activities. Overall, it is suggested that the 0.5% chitosan coating is the most
effective factor in storing the sweet cherries for 24 days at 10 ◦C.
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