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Abstract: An electro-Fe2+-activated peracetic acid (EC/Fe2+/PAA) process was established for or-
ganic dye removal in water. The operation factors such as the PAA dosage, Fe2+ amount, current
density, and pH were investigated on methylene blue (MB) removal for the synergistic EC/Fe2+/PAA
system. Efficient MB decolorization (98.97% and 0.06992 min−1) was achieved within 30 min under
5.4 mmol L−1 PAA, 30 µmol L−1 Fe2+, 15 mA cm−2 current intensity, and pH 2.9. Masking tests
affirmed that the dominating radicals were hydroxyl radicals (OH), organic radicals (CH3CO2·,
CH3CO3·), and singlet oxygen (1O2), which were generated from the activated PAA by the synergetic
effect of EC and Fe2+. The influence of inorganic ions and natural organic matter on the MB removal
was determined. Moreover, the efficacy of the EC/Fe2+/PAA was confirmed by decontaminating
other organic pollutants, such as antibiotic tetracycline and metronidazole. The studied synergy pro-
cess offers a novel, advanced oxidation method for PAA activation and organic wastewater treatment.

Keywords: peracetic acid; ferrous ions; electrolysis; synergistic effect; dye elimination

1. Introduction

The effluents discharged from industries contain large amounts of organics, which
can degrade the aquatic environment and bring adverse impacts for ecosystems [1,2]. Dye
wastewater, as one of the representative organic wastewaters, contains many refractory
compounds with high color and high concentration [3,4]. Because the traditional biological
technologies are insufficient to treat the refractory organic contaminants in water, many
physical and chemical methods have been developed over recent decades [5–7]. Advanced
oxidation technologies (AOTs) can generate powerful reactive species—for example, the
strong oxidative and nonselective hydroxyl radicals (·OH, E0 = 1.9–2.7 V) [8], which can
transform the macromolecular substances into small molecular substances and eventually
mineralize them into CO2 and H2O [9]. Therefore, the application of AOTs in the treatment
of organic dye wastewater has attracted widespread attention [10].

Peracetic acid (PAA) is a typical disinfector during water purification [11], which is a
mixture of four ingredients, such as H2O, PAA, H2O2, and acetic acid. As an electrophilic
agent, PAA can attack electron-rich parts or functional groups in pollutants, so it can oxidize
some organic substances, such as amino acids [12] and β-lactam antibiotics [13]. Owing
to the mediocre redox potential of 1.76 V, PAA cannot directly degrade organic pollutants
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that are resistant and persistent [14]. However, the peroxide bond of PAA is easily broken
and activated due to the lower bond energy (38 kcal mol−1) compared with that of H2O2
(51 kcal mol−1) [15]. Therefore, researchers are becoming increasingly concerned about
PAA activation methods [16]. The activated PAA could generate nonselective ·OH and
selective organic free radicals (R-C·) including CH3CO2·, CH3CO3·, CH3O2·, and ·CH3,
etc., which could be effective for the elimination of organics in aqueous circumstances [17].

Previous research has shown that PAA can be activated by heat [18], ultraviolet [19],
ultrasound [20,21], and cobalt metal ions and oxides (Co2+, Co3O4, and CoFe2O4) [22–25].
Nevertheless, the above activation methods may have respective limitations—for example,
high energy consumption and potential leaching toxicity [16]. Apart from these, Fe2+-
activating PAA is the most promising method, because iron species are eco-friendly and
omnipresent in nature [26]. The inherent shortcomings of Fe2+-activating PAA systems have
hindered their development, such as the slow regeneration of Fe2+ and easy generation
of iron precipitation, which is also the restrictive factor affecting the traditional Fenton
process [27].

A number of studies have shown that EC can effectively promote Fe2+/Fe3+ conver-
sion through the cathode reaction for Fe2+ regeneration [28,29], forming the electro-Fenton
process. The electro-Fenton process can generate H2O2 in situ and then enhance the produc-
tion of ·OH radicals [30], thereby tremendously improving the degradation of pollutants.
Moreover, many scientists have found that adding various peroxides (peroxydisulfate
and peroxymonosulfate) into the electrolysis system could form a cooperative effect for
removing organics in water [31–33]. Our previous study proved that electrolysis (EC)
could effectively excite PAA for dye removal, but the activation efficiency still has room
for improvement [34]. Hence, we propose the coupling of EC and Fe2+-activating PAA
(EC/Fe2+/PAA) processes in this work.

The ternary synergistic system was expected to realize the efficient Fe2+/Fe3+ cycle and
PAA activation simultaneously. Methylene blue (MB), as a typical cationic dye, has complex
and stable structures, which was selected to verify the performance of the synergistic system.
The systematical study had the following aims: firstly, to research the enhancement of MB
removal in the EC/Fe2+/PAA process; secondly, to assess the effects of operation conditions
and water constituents on the MB decolorization in the synergistic system; thirdly, to affirm
the dominant reactive species for MB elimination; lastly, to propose a possible reaction
mechanism of MB degradation in the EC/Fe2+/PAA process.

2. Experimental
2.1. Materials and Reagents

Details of materials and reagents are introduced in Text S1 in the Supplementary
Materials (SM).

2.2. Equipment and Procedure

A power source output a direct current to drive the EC system. The anode and cathode
were platinum and graphite plates, separately, which were spaced 2 cm apart. The detailed
information about the EC system is provided in Text S2 of Supplementary Materials. A
beaker (100 mL) was applied as the reactor for the batch test. The designated concentrations
of PAA and Fe2+ were introduced simultaneously to the reactor, which contained the target
pollutant. The reaction was conducted at a temperature of 25 ◦C, with stable stirring. The
initial pH was regulated through the addition of NaOH and H2SO4. The EC reaction started
after switching on the power. Sampling was performed at a fixed time node, and 1 mL
Na2S2O3 solution was added for quenching active species before the concentration was
determined. Different reactive species scavengers were added to the reactor separately to
investigate the reaction mechanism in the masking tests.
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2.3. Analytical Methods

The concentrations of MB, methyl orange (MO), and rhodamine B (RhB) were de-
termined by the spectrophotometric method at 664, 465, and 554, nm, respectively. The
metronidazole (MTZ) and tetracycline (TCH) concentrations were measured by High-
Performance Liquid Chromatography (HPLC). The degradation byproducts of MB were
investigated by HPLC combined with mass spectrum (MS). The amounts of iron ions were
determined by the phenanthroline spectrophotometric method [35]. The change in PAA was
measured by the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method [36]. The
H2O2 concentration was quantified through titanium potassium oxalate colorimetry [35].

2.4. Energy Efficiency

The calculated electrical energy per order (EE/O) was denoted as electrical energy
consumption by the following equation [37]:

EE
O

=
U × I × T

V × 60× log(C 0 /C)
(1)

where EE/O represents the electrical energy (kWh) consumed for removing the pollutant
by an order of magnitude in a significant volume (V, L) of wastewater and a certain time
(T, min); U and I stand for the voltage (V) and current (A), respectively; C0 and C indicate
the beginning and ending contaminant concentrations, respectively.

3. Results and Discussion

3.1. Performance of EC/Fe2+/PAA Process

The decolorizations of MB in the PAA, Fe2+, Fe2+/PAA, EC/Fe2+, EC, EC/PAA, and
EC/Fe2+/PAA systems are comprehensively compared in Figure 1a. After 60 min of
reaction, the decolorization ratios of MB in the PAA alone and sole Fe2+ systems were
only 5.13% and 7.26%, respectively. In the Fe2+/PAA system, the decolorization of MB
reached 35.15%. The removals of MB in the EC, EC/Fe2+, and EC/PAA systems were
54.55%, 52.24%, and 66.64%, respectively. However, the decoloring performance was
greatly improved for the EC/Fe2+/PAA process, and the elimination efficiency of MB
increased to 98.97%, showing a significant synergistic effect. In Figure 1b, the kinetic fitting
results indicate that the reaction rate constant of EC/Fe2+/PAA reached 0.06992 min−1,
which was obviously higher than other processes (the PAA and Fe2+ were both fitted by a
zero-order kinetic model, and other systems were all fitted through a pseudo-first-order
kinetic model). The above results demonstrate that the ternary synergistic process could
remarkably promote the decolorization efficiency and rate of MB.

Figure 1. Decolorization ratio (a) and reaction rate constant (b) of MB in various systems. (c) Di-
verse organic pollutant removal in EC/Fe2+/PAA system. Experimental conditions: [MB]0 =
[MO]0 = [RhB]0 = [TCH]0 = [MTZ]0 = 20 mg L−1, [Fe2+]0 = 30 µmol L−1, [PAA]0 = 5.4 mmol L−1,
[H2O2]0 = 11.25 mmol L−1, [NaNO3] = 30 mmol L−1, pH = 2.9, j = 15 mA cm−2.
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In the EC/PAA system, the electron-donating condition for the cathode could acti-
vate PAA (Equations (2) and (3)) [38]. Furthermore, the ·OH produced by the electron
loss reaction on the anode not only could remove the MB (Equation (4)) [39], but also
activate PAA to generate CH3CO3· and CH3CO2· for the oxidation of organic pollutants
(Equations (5)–(7)) [20]. Meanwhile, the electron transfer on the surface of the electrode
could directly oxidize MB. However, the main drawback of this system is that the reac-
tions of PAA activation and radical generation are confined to the electrode surface. In
the Fe2+/PAA process, the transition metal ions of Fe2+ were often used as an activator,
which could activate PAA to generate organic free radicals and ·OH (Equations (8) and
(9)) [24]. However, the generated Fe3+ was difficult to reduce and easily produced iron
sludge, leading to insufficient oxidation for MB removal.

CH3CO3H + e− → CH3CO2·+ OH− (2)

CH3CO3H + e− → CH3CO−2 + ·OH (3)

H2O→ ·OH + H+ + e− (4)

CH3CO3H + ·OH→ CH3CO3·+ H2O (5)

CH3CO3·+CH3CO3· → 2CH3CO2·+ O2 (6)

CH3CO3H + CH3CO2· → CH3CO3·+ CH3CO2H (7)

CH3CO3H + Fe2+ → CH3CO2·+Fe3+ + OH− (8)

CH3CO3H + Fe2+ → CH3CO−2 + Fe3+ + ·OH (9)

Nevertheless, after adding the Fe2+ to the EC/PAA system, the combined effect of
the electro-Fenton and PAA activation reactions could promote the oxidative radicals’
generation and then enhance the dye elimination. Furthermore, the synergistic effect could
extend the oxidation and activation reactions from the electrode surfaces to the entire
solution, greatly improving the capability of this system. In addition, the generated Fe3+

could be reduced to Fe2+ by obtaining electrons at the cathode (Equation (10)) [32], realizing
the reuse of Fe2+ for sustainable PAA activation.

Fe3+ + e− → Fe2+ (10)

To prove that the EC/Fe2+/PAA system is effective in removing diverse organic
pollutants, three reactive dyes (MB, MO, and RhB) and two antibiotics (TCH and MTZ)
were selected for the elimination tests [40]. As illustrated in Figure 1c, the significant
abatement of MB, MO, RhB, TCH, and MTZ by the EC/Fe2+/PAA process was observed,
and their removal efficiencies reached 98.89%, 84.33%, 88.88%, 74.53%, and 86.15% during
60 min, respectively, certifying the effectiveness of the synergy process for the common
organic contaminants’ decontamination. These organic compounds contain methyl and
hydroxyl groups, and these electro-rich functional groups could be susceptible to reaction
with R-C· via electron transferring [41].

3.2. Influencing Factors for EC/Fe2+/PAA Process
3.2.1. PAA Dosage

The effect of different PAA dosages for MB decolorization during the EC/Fe2+/PAA
process was researched (Figure 2a). The MB removal was enhanced from 61.26% to 91.80%
at 60 min with the PAA dosage augmented from 0.9 to 5.4 mmol L−1. Boosting the PAA
dose could supply the substrate of active species generation for removing MB. Nevertheless,
while the PAA amount was raised to 9.0 mmol L−1, the MB elimination was inhibited
slightly, demonstrating that the superfluous PAA could not continuously improve the MB
oxidation. This is because the H2O2 in PAA has a negative impact on the ·OH radical
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through scavenging effects [18], which could impact the PAA activation and then inhibit
the dye elimination. Therefore, the optimal concentration of PAA was set at 5.4 mmol L−1.

Figure 2. Decolorization ratio of MB under different reaction conditions: (a) PAA dosage, (b) Fe2+

dosage, (c) current density, and (d) solution pH. Experimental conditions: [MB]0 = 20 mg L−1,
[Fe2+]0 = 30 µmol L−1, [PAA]0 = 5.4 mmol L−1, [H2O2]0 = 11.25 mmol L−1, [NaNO3] = 30 mmol L−1,
pH = 2.9, j = 15 mA cm−2.

3.2.2. Fe2+ Dosage

The effect of Fe2+ dosage on MB decolorization was evaluated (Figure 2b). With
the Fe2+ concentration increasing from 3 to 30 µmol L−1, the decolorization efficiency
of MB was enhanced from 72.48% to 91.80% within 60 min, which indicated that an
appropriate increase in Fe2+ dosage could catalyze PAA more efficiently and rapidly, hence
strengthening the reactive radicals’ formation and the MB removal. When the Fe2+ dosage
was raised to 50 µmol L−1, the MB removal ratio was not enhanced at 60 min, but the
decolorization rate was improved obviously. Considering the cost saving, the suitable
concentration of Fe2+ was chosen as 30 µmol·L−1.

3.2.3. Current Intensity

As can be seen from Figure 2c, with the current intensity rising from 5 to 15 mA cm−2,
the decolorization ratio of MB was augmented from 84.74% to 93.73%. The stronger
current is a benefit for the ·OH formation on the anode surface and Fe3+ reduction on the
cathode surface [42,43], which could promote PAA activation and the oxidation of organics.
Nevertheless, as the current was enhanced to 20 mA cm−2, the decolorization of MB
incurred a slight drop. This phenomenon reflects the fact that the exorbitant current density
would improve the electrolysis of water, and the generated O2 at the anode would accelerate
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the oxidation of Fe2+ to Fe3+ (Equation (11)) [44], then suppressing the PAA activation and
dye removal. Hence, the suitable current density value was set to be 15 mA cm−2.

2H2O→ 4H+ + O2 + 4e− (11)

3.2.4. Initial pH

The pH condition could impact the form and redox potential of PAA. Thus, the effects
of different solution pH on the MB removal were explored (Figure 2d). The result showed
that acidic conditions were more conducive to the decolorization of MB. Under the alkaline
condition (pH = 8.2), the removal of MB was only 56.03%. Nevertheless, the decolorization
reached 98.97% at pH 2.9. The pKa value of PAA is approximately 8.2 [15]. The lower
the pH, the more protonated PAA (PAA0) was the dominant form in solution [16]. When
the pH was near to 8.2, the PAA was prone to self-decomposition and hydrolysis, and
the proportion of deprotonated PAA (PAA−) would be enhanced in solution [16]. The
oxidizing ability of PAA0 is higher than that of PAA− [12]. Moreover, compared to PAA−,
the PAA0 more easily accepts electrons, and is more liable to be activated by Fe2+ [45]. In
addition, the Fe3+/Fe2+ cycle becomes more difficult as the pH increases [46]. Therefore,
the acidic environment was conducive to the removal of MB in the EC/Fe2+/PAA process.

3.3. Mechanism of EC/Fe2+/PAA Process
3.3.1. Scavenging Test

Radical quenching experiments were employed to distinguish the various active
substances in the EC/Fe2+/PAA process. Five scavengers were employed, namely tert-
butyl alcohol (TBA), methanol (MeOH), phenol, P-benzoquinone (p-BQ), and L-Histidine
(L-His). TBA is a common scavenging agent for ·OH on account of the fast reaction rate
(5 × 108 M−1 s−1) with ·OH [36]. MeOH is a hydrophilic agent, which can quench ·OH,
CH3CO2, and CH3CO3 at the same time [41]. Phenol is a hydrophobic chemical, which can
react quickly with OH, CH3CO2·, and CH3CO3· near the electrode [39]. p-BQ is an excellent
masking agent for superoxide anions (O2

·−) [47]. L-Histidine is a typical inhibiting agent
for singlet oxygen (1O2) [47].

A summary of the scavenging results is given in Figure 3a. Overall, 98.97% of MB
was removed in the absence of a scavenger. The MB decay declined by approximately
6.04% with the addition of p-BQ, proving the inappreciable role of O2

·− in this system. The
suppression of MB decolorization was more prominent with the existence of L-His and the
removal ratio of MB dropped to 80%, which proved that the 1O2 plays a non-negligible role
in MB elimination (Equations (12) and (13)) [48,49]. Adding excess MeOH and TBA cannot
entirely restrain the MB decolorization, and the decolorization was reduced to 72.70% and
60.15%, respectively. However, when 50 mol L−1 of phenol was added, the inhibition effect
on the MB removal became acute, and the decolorization was reduced to 28.49%. This
result indicated that the free radicals on the electrode surface could play an important role
in MB elimination. Hence, the major active species for MB removal were ·OH, CH3CO2·,
CH3CO3·, and 1O2 in the EC/Fe2+/PAA system. Moreover, the presence of phenol had a
more obvious suppression influence than TBA and MeOH, demonstrating that the PAA
activation and related radicals’ reactions for MB elimination mostly originated from the
electrode surface. In addition, the above results confirmed that the PAA was primarily
activated by the EC system, as observed in Figure 1a.

O·−2 + ·OH→ HO− + 1O2 (12)

O·−2 + 2H+ → H2O2 +
1O2 (13)
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Figure 3. MB removal under various radical quenching agents in EC/Fe2+/PAA (a). Remain-
ing amount of PAA under different systems (b). Experimental conditions: [MB]0 = 20 mg L−1,
[Fe2+]0 = 30 µmol L−1, [PAA]0 = 5.4 mmol L−1, [H2O2]0 = 11.25 mmol L−1, TBA = 6 mol L−1,
MeOH = 10 mol L−1, phenol = 50 mmol L−1, p-BQ = 200 µmol L−1, L-His = 200 µmol L−1,
[NaNO3] = 30 mmol L−1, pH = 2.9, j = 15 mA cm−2.

3.3.2. PAA Utilization Rate

As the major precursor of active radicals in the EC/Fe2+/PAA is PAA, monitoring the
residual PAA concentration can reflect its activation efficiency. As presented in Figure 3b,
the remaining proportion of PAA (the remaining PAA to initial PAA) in the three systems
(Fe2+/PAA, EC/PAA, and EC/Fe2+/PAA) decreased with the increase in time and the
downward trend was enhanced significantly. After 60 min of reaction, only 13.87% of
PAA was consumed in the Fe2+/PAA process, and 59.62% of PAA was decomposed in the
EC/PAA system, revealing that the PAA’s activation ability for the EC process was stronger
than that for the Fe2+ system. The highest decomposition ratio of PAA was significantly
increased to 78.23% for the EC/Fe2+/PAA process, which was higher than that for the other
two systems. This result clearly shows that the EC/Fe2+/PAA system yields an excellent
synergistic effect for PAA activation. In summary, the above phenomena were in agreement
with the outcomes of MB removal and radical quenching tests.

3.3.3. Trend of Fe Irons

Fe2+ is a crucial element in EC/Fe2+/PAA, which could not excite PAA, but also
plays the role of catalyst in the electro-Fenton process. The changes in the Fe2+ and Fe3+

concentration were compared in the Fe2+/PAA and EC/Fe2+/PAA systems (Figure 4). As
displayed in Figure 4a, the Fe2+ content decreased rapidly with the increase in Fe3+ within
5 min in the Fe2+/PAA process, and the trend tended towards becoming stable after 10 min.
At the same time, the total Fe amount only fell by 2% during the 60 min reaction. The
results were mainly ascribed to the fast depletion of Fe2+, the activation of PAA, and the
ineffective conversion of Fe3+ to Fe2+, once again verifying the outcome of MB removal
shown in Figure 1a. However, as illustrated in Figure 4b, in the EC/Fe2+/PAA process, the
concentration of Fe2+ remained at a higher level than that in Fe2+/PAA, and the amount of
Fe3+ also maintained a lower level than that of Fe2+/PAA. These results prove that Fe3+

could be continuously converted into Fe2+ under the effect of cathode electron transfer,
resulting in a higher concentration of Fe2+ in the system. Moreover, the total Fe content in
the EC/Fe2+/PAA process was decreased to 80%, which was more remarkable compared
with the Fe2+/PAA. In the electrolysis system, the Fe ions could undergo a reduction
reaction by receiving electrons from the cathode, and then be deposited on the surface of
the cathode, resulting in a decline in the total Fe concentration [39].
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Figure 4. Changes in Fe content in Fe2+/PAA process (a) and EC/Fe2+/PAA (b). Experimental condi-
tions: [MB]0 = 20 mg L−1, [Fe2+]0 = 30 µmol L−1, [PAA]0 = 5.4 mmol L−1, [H2O2]0 = 11.25 mmol L−1,
[NaNO3] = 30 mmol L−1, pH = 2.9, j = 15 mA cm−2.

3.4. MB Degradation Mechanism

The UV–visible spectrum was used to confirm the decolorization of MB in the EC/Fe2+/
PAA. As can be seen from Figure S1 of Supplementary Materials, the absorption peak at
664 nm gradually disappeared within 60 min [50], indicating that the chromogenic group
of sulfhydryl (-S-) of MB was destroyed by the free radicals of EC/Fe2+/PAA [51].

The TOC removal for MB was determined during the collaborative process. As seen in
Figure S2 in Supplementary Materials, the TOC almost remained unchanged in the 120 min
treatment. This result indicated that the application of activated PAA could increase the
TOC, which is derived from the residual PAA and acetic acid [34]. Hence, the PAA-related
process combined with the biological treatment could be a promising option because the
increased TOC is a good carbon source for microorganisms [22,52].

The HPLC-MS spectra of MB before and after synergistic oxidation are presented in
Figure S3 of Supplementary Materials. The peak of m/z = 284 was attributed to the MB,
which was evidently decreased after 60 min reaction, corroborating the decomposition of
MB. Based on the results of MS analyses, the possible degradation pathway of MB was
suggested (Figure 5). Initially, the cation of MB (MB+) could be formed via the electron
transfer between MB and CH3CO2· or CH3CO3·. Next, the MB+ would rapidly react with
H2O or O2 to produce hydroxylated byproduct No. 1 through the reactions of hydroxyl
extraction or addition [53]. The MB could be demethylated to generate byproduct No. 2
under the action of ·OH. In addition, the central aromatic ring of MB could also be opened
by ·OH to produce byproduct No. 3, which contained amino (-NH2) and sulfoxide (C-S
(=O)-C) functional groups [54]. The methylated byproduct No. 2 could also be further
demethylated to form byproduct No. 4 after losing four methyl groups. After this, the N = C
bond and sulfhydryl group of byproduct No. 4 could be broken down to form byproducts
No. 5 and No. 6. The byproduct No. 4 could generate the hydroxylated byproduct No. 7
via the attack of ·OH. The benzene ring of byproduct No. 6 was cleaved to produce small-
molecule byproduct No. 8, which was further split into small-molecule fragment byproduct
No. 9. The hydroxylated byproduct No. 1 also could be broken to form byproducts No. 5
and No. 10 through the ring opening reaction under the function of ·OH. The byproduct
No. 3 could be hydroxylated to form byproduct No. 11, and then demethylated to produce
byproduct No. 12, and the sulfoxide was cracked to generate byproduct No. 13 [49,55].
Finally, these degradation intermediates could be further oxidized and converted to CO2,
H2O, SO4

2−, and NO3
− [56].
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Figure 5. Possible degradation pathway in EC/Fe2+/PAA.

3.5. Water Matrices Effects

The effect of Cl− on the MB removal in the EC/Fe2+/PAA was explored. As seen in
Figure 6a, the existence of Cl− (1–20 mmol L−1) had a certain passive effect on the MB
elimination, and the removal efficiency decreased from 98.97% to 83.47%. Chloride ions
can scavenge free radicals, resulting in the generation of reactive chlorine species (Cl·,
Cl2·−, and HClO·−, Equations (14)–(18)) [36,57], whose oxidation capacities were lower
than those of reactive species generated in the PAA activation. In addition, the coexisting
iron and chloride ions could oxidize Fe2+ to Fe3+ and form Fe(Cl)2+ and FeCl2+ complexes
(Equation (19)) [14], harming the reaction of Fe2+ activating PAA.

CH3CO3·+ Cl− + H+ → Cl·+ CH3CO3H (14)

Cl− + ·OH→ HClO·− (15)

HClO·− + H+ → Cl·+ H2O (16)

Cl− + Cl· → Cl−2 (17)

Cl·+ Cl· → Cl2 (18)

Fe2+ + Cl· → Fe3+ + Cl− (19)
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Figure 6. Effects of presence of (a) Cl−, (b) HCO3
−, (c) SO4

2−, and (d) HA (0–10 mg L−1)
on MB decolorization in EC/Fe2+/PAA process. Experimental conditions: [MB]0 = 20 mg L−1,
[Fe2+]0 = 30 µmol L−1, [PAA]0 = 5.4 mmol L−1, [H2O2]0 = 11.25 mmol L−1, [NaNO3] = 30 mmol L−1,
pH = 2.9, j = 15 mA cm−2.

The effect of bicarbonate ions on MB removal in the EC/Fe2+/PAA was investigated
(Figure 6b). Increasing bicarbonate ions amount led to the strong inhibition of the MB
removal, and when the HCO3

− was increased to 20 mmol L−1, the decolorization ratio
was reduced to 57.51%. This inhibitory effect is due to the scavenging effect of HCO3

− on
·OH. Moreover, the masking product is a carbonate radical (Equation (20) [27,58], which is
a weak oxidant compared with ·OH. Meanwhile, the presence of HCO3

− would increase
the solution’s pH [57], which is harmful to the activation of PAA by Fe2+.

HCO−3 + ·OH→ CO·−3 + H2O (20)

Figure 6c shows that the MB elimination in the EC/Fe2+/PAA was restrained through
the existence of SO4

2−. When the SO4
2− concentration was augmented from 1 to 20 mmol

L−1, the MB removal ratio dropped from 98.97% to 80.79%. SO4
2− would react with ·OH

in the acidic environment following the production of SO4
.− (Equation (21)) [59,60]. SO4

.−

is also a strongly oxidizing radical, so MB removal could only be restrained to a certain
extent.

·OH + SO2−
4 → SO·−4 + OH− (21)

Figure 6d reveals the effect of the addition of HA on the MB removal. As expected,
the MB removal efficiency was obviously reduced with the increase in HA amount. The
HA could rapidly react with ·OH and R-C·, with rate constants of 2.5 × 104 L mg−1 s−1

and 5.76 × 104 L mg−1 s−1, respectively [36], which would consume reactive species in the
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EC/Fe2+/PAA. Moreover, the presence of HA would impede the Fe2+ catalytic activity by
the complexation of HA and Fe2+ [45,61], thus affecting the PAA activation for removing
the MB.

3.6. Electrical Energy Analysis

Table 1 illustrates the electrical energy consumption of the EC, EC/PAA, and EC/Fe2+/
PAA processes for removing MB, and the calculated EE/O values for the three systems
were 5.601, 3.345, and 0.851 kWh/m3, respectively. The EE/O of EC/Fe2+/PAA was
approximately 6.58 and 3.93 times lower than those of EC and EC/PAA, respectively,
which embodied an obvious decline for the power consumption, while the PAA and Fe2+

corresponded with the EC process. It can be deduced that the synergistic effect could not
only promote the dye removal, but also markedly improve the energy efficiency.

Table 1. Electrical energy consumption for different systems.

System E (V) I (A) t (min) V (L) Log (C0/C) EE/O (kWh/m3)

EC 7.4 0.06 60 0.1 4.585 5.601
EC/PAA 6.1 0.06 60 0.1 1.094 3.345

EC/Fe2+/PAA 6.5 0.06 60 0.1 0.739 0.851

3.7. Proposed Mechanism

Based on the aforesaid outcomes and discussion, the proposed mechanism of PAA
activation for the degradation of MB using electrochemical synergy with Fe2+ is summa-
rized in Figure 7. Firstly, the PAA could be activated by electron transfer on the cathode of
the EC system, generating ·OH, CH3CO2·, and CH3CO3·. Moreover, the ·OH generated
from hydrolysis on the anode could also promote PAA activation. Secondly, the Fe2+ could
activate PAA to produce ·OH, CH3CO2·, and CH3CO3·. Meanwhile, the Fe3+ could be
persistently transformed into Fe2+ through the cathode reaction to encourage the circula-
tion of Fe3+/Fe2+, which was conducive to the continuous activation of PAA. In addition,
the cathode could donate electrons to stimulate O2 molecules to produce O2

·−, and then
generate 1O2. On the other hand, the MB could lose electrons and be degraded through the
anode oxidation reaction. Finally, under these radical and non-radical pathways, the dye
was eliminated in the EC/Fe2+/PAA synergistic system.

Figure 7. Possible mechanism for EC/Fe2+/PAA system.
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4. Conclusions

A remarkable cooperative effect was generated in the electron-Fenton process for PAA
activation. The effects of the operational parameters on the MB removal were optimized,
and the MB decolorization efficiency reached 98.97% after 30 min under 5.4 mmol L−1

PAA, 30 µmol L−1 Fe2+, 15 mA cm−2 current intensity, and pH 2.9. The scavenging tests
proved that ·OH, CH3CO2·, CH3CO3·, and 1O2 were the main reactive species for MB
removal in the EC/Fe2+/PAA. The PAA decomposition was greatest in the EC/Fe2+/PAA
compared with that in the EC and EC/PAA, demonstrating the synergistic effect for PAA
activation. The circulation of Fe3+/Fe2+ can be maintained significantly with the assistance
of the electric field in the EC/Fe2+/PAA system. The calculated EE/O results indicated
that the ternary process could reduce the electrical energy consumption considerably
compared to that in the EC and EC/PAA. In addition, the EC/Fe2+/PAA process was
also used to test four other types of organic pollutants (MO, RhB, TCH, and MTZ), and
they all achieved good removal effects. Therefore, the above results indicate that the
EC/Fe2+/PAA synergistic system was a potent and dependable AOT. Furthermore, this
work provides a simple and practical collaborative process for improving electrochemical
oxidation technology for organic wastewater treatment.
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