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Abstract: Facile preparation of YVO4 films was hydrothermally achieved within 1 h by using layered
yttrium hydroxide (Y2(OH)5NO3·nH2O) films as the sacrificial precursor in the presence of excess
NaVO3 at pH~8, without subsequent heat treatment. Detailed structures and optical properties of
the products were obtained by using a combination of XRD, FT-IR, FE-SEM, HR-TEM, and PLE/PL
techniques. The phase and morphological evolution from Y2(OH)5NO3·nH2O to YVO4 was unveiled
by varying the reaction time. Photoluminescence spectra showed that the Eu3+ doped YVO4 films
exhibited the characteristic emission of Eu3+, with the transition 5D0–7F2 (614 nm, red) being the
dominant; while Dy3+ activator doped YVO4 films exhibited the characteristic emission of Dy3+, with
the transition 4F9/2–6H13/2 (575 nm, green) being the most dominant.

Keywords: YVO4 film; layered yttrium hydroxide film; sacrificial precursor; anion exchange;
photoluminescence

1. Introduction

In recent years, lanthanide compounds have received widespread attention as ex-
cellent luminescent materials useful in the development of new lighting/visualization
technologies [1,2]. Among them, the rare-earth orthovanadate (YVO4: RE) is considered
an attractive compound since it displays high quantum yield caused by the efficient en-
ergy transfer from the VO4

3− ligand to RE3+. Because of the continuous development of
optoelectronic devices, the design and fabrication of luminescent films have become more
and more important. In the present research, we proposed a methodology to produce
red-emitting and green-emitting YVO4: RE films, which may find wide applications in
various lighting and display areas including fluorescent lamps, white LEDs, FEDs, PDPs,
FDPs and CRTs, among others [3,4].

At present, a variety of techniques for the preparation of the vanadate films are
available. They include the calcination of the MOF (metal-organic framework) precur-
sor [5], pulsed-laser deposition [6], microwave-assisted chemical deposition [7] and sol-
gel/electrospinning process [8], among others. The chemical deposition and pulsed-laser
deposition are convenient when thin films are prepared from powder. However, these
methods require expensive equipment. Calcination of the MOF (metal-organic framework)
precursor and the sol-gel/electrospinning process require complex steps and/or high
heat treatment temperatures, which may cause the film to crack. In the present work, a
low-temperature method was used to synthesize YVO4: RE films from Layered Yttrium
Hydroxide (LYH) film as sacrificial template and NaVO3 as an anion source. The phase
and morphological evolution during the transformation of LYH to YVO4 and photolumi-
nescence properties of activated (Eu3+ and Dy3+) doped YVO4 films were investigated
in detail.
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The layered rare earth hydroxides (LRHs) are a new type of inorganic functional lay-
ered compounds, and the general formula of “251” typed LRH is RE2(OH)5(Am−)1/m·nH2O
(RE = Rare-earth elements; A = Cl or NO3). The structure of “251” typed LRH is con-
structed via alternative stacking of the hydroxide main layers composed of [Ln(OH)7H2O]
and [Ln(OH)8H2O] coordination polyhedral and interlayer NO3

− free anions along the
c-axis ([001] direction) [9,10]. Because of their special layered structure and properties
of rare-earth elements, the “251” typed LRHs have attracted extensive attention since
they were first reported in 2006 [11]. In the past several years, different aspects of
the “251” typed LRHs have been studied including the interlayer anion exchange ca-
pacity [10–15], catalytic performance of intercalated products [11,14,15], exfoliation of
bulk crystals into nanosheets [16–18], photoluminescence [9,10,19–21], enhancement of
luminescence [22–29], and the self-assembly of functional films [29–34]. Also, because of
their composition and structure, a significant amount of research has been performed to
study, photoluminescence properties of the “251” typed LRH. However, poor photolumi-
nescence has been observed [9,10,19–21]. This low performance can be attributed to the
presence of hydroxyl, crystal water, and nitrate groups in the LRH structure, that provide
channels for nonradiative relaxation. The most common method used to achieve photo-
luminescence optimization, consists of inserting inorganic [21] or organic anions [25,26]
via interlayer anion exchange to sensitize activators in the host layer. However, this
method presents some limitations because the quenching groups are still present in the
structure. Another way to enhance photoluminescence by doping the LYH and LGdH
matrix with subsequent calcination to remove the quenching groups and form cubic
Y2O3:RE/Gd2O3:RE [16,19,22–24,31,32]. The heat treatment also requires high temper-
atures (>550 ◦C). Thus, in this optimization method, production of a flat film without
cracks is still a challenge. In 2016, (Y1−xEux)PO4 was successfully synthesized by us-
ing (Y1−xEux)2(OH)5NO3·nH2O as the sacrificial template and NaH2PO4 as an anion
source [35]. However, high temperatures (600–1000 ◦C) were also required to produce
the target (Y1−xEux)2PO4 phase. Still, it provides a theoretical basis for the design and
preparation of various rare-earth materials. To the best of our knowledge, electrodeposited
“251” typed LRH films have not been utilized as a precursor template to synthesize REVO4
films at low temperatures, and without the need of further heat treatment. We believe that
this strategy may attract wide research interest and result in the practical application of
“251” typed LRHs.

2. Experiment

Materials: The rare-earth source of Y(NO3)3·6H2O (99.5% pure), Eu(NO3)3·6H2O
(99.9% pure), Dy(NO3)3·6H2O (99.9% pure) and Sodium metavanadate (NaVO3, 99.9%
pure) were purchased from Shanghai Macklin Biochemical Co., Ltd., Shanghai, China. The
indium tin oxide (ITO) glass (sheet resistance: ≤5 Ω) were obtained from Xiang Cheng
Technology Ltd., Shenzhen, China. The platinum electrode and Ag/AgCl/saturated KCl
electrode were purchased from Tianjin Ida Technology Co. Ltd., Tianjin, China.

Synthesis: The three-electrode cell system was used to prepare the Y2(OH)5NO3·nH2O
film, in which the rare-earth nitrate solution as electrodeposition solution, ITO glass,
platinum foil, and Ag/AgCl/saturated KCl were used as the working, counter, and refer-
ence electrodes, respectively. After the deposition, all films were cleaned with deionized
water and dried at 60 ◦C for 30 min. For the synthesis of the activator doped system
(Y1−xRrepeatingH)5NO3·nH2O (RE = Eu and Dy), the RE/(Y + RE) atomic ratio was tuned
according to the doping amounts of activators, and then repeat the electrodeposition pro-
cess. For the synthesis of YVO4 films, 0.5 mol/L of NaVO3 solution with pH value of 8
was prepared; then the LYH films were placed in the NaVO3 solution, and the mixture was
subjected to hydrothermal reaction at 100 ◦C. Afterward, the prepared films were naturally
cooled, washed several times with distilled water and ethanol, and then dried at 60 ◦C for
30 min.
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Characterization techniques: Phase identification was made via X-ray diffractom-
etry (XRD, Model X’Pert PRO, PANalytical B.V., Almelo, The Netherlands) operated at
40 kV/40 mA nickel filtered using Cu-Kα radiation (λ = 0.15406 nm) and a scanning speed of
15.0◦ 2θ per minute. Fourier transform infrared spectroscopy (FT-IR, Model Spectrum RXI,
Perkin-Elmer, Shelton, Connecticut) was conducted via the standard KBr method. The
morphology and microstructure of the products were analyzed by field emission scanning
electron microscopy (FE-SEM, Model JSM6380-LV, JEOL, Tokyo, Japan) and transmission
electron microscopy (TEM, FEM-3000F, JEOL, Tokyo, Japan). The photoluminescence prop-
erties were measured on a FluoroMax-4 fluorescence spectrophotometer (HORIBA, Kyoto,
Japan) using a 150 W Xe-lamp as the excitation source at room temperature.

3. Results and Discussion
3.1. Characterization of Y2(OH)5NO3·nH2O (LYH) Film and YVO4 Film

Figure 1a shows the XRD patterns of the precursor film and the anion-exchange
film, respectively. The precursor film presents a series of (00l) and (220) diffraction pat-
terns characteristic of Y2(OH)5NO3·nH2O compounds [10,12,13], In addition, the diffrac-
tion peaks of the anion-exchange film can be assigned to pure tetragonal YVO4 (PDF
No.17-0341) [36]. Figure 1b shows the FT-IR spectra of the precursor and the anion-
exchange films. In the precursor film spectrum, the absorption peak at ~1384 cm−1 corre-
sponds to uncoordinated NO3

− (v3) stretching [19–21,23,24], while the absorption band at
~3600 cm−1 indicates OH− vibration [19–21,23,24]. Additionally, the absorption bands at
~3438 and ~1634 cm−1 are attributable to the O-H stretching (v1 and v3) and H-O-H bending
(v2) vibrations of hydration water, respectively [19–21,23,24]. The FT-IR analysis confirmed
the existence of all the functional groups present in LYH. In the case of the anion-exchange
film, the vibration peak of NO3

− and hydroxyl disappeared, while a strong absorption peak
at 820 cm−1 appeared. This peak can be assigned to stretch vibration (v3) originating from
the V-O stretching vibration in VO4

3− [8,37]. However, the absorptions of H2O were still
observable at 3412 cm−1 and 1640 cm−1, which indicated the presence of some hydration or
surface-absorbed water molecules in the anion-exchange film rather than the coordinated
H2O from the precursor LYH film [36]. These results demonstrated that the YVO4 film was
successfully synthesized by using Y2(OH)5NO3·nH2O film as a precursor template and
NaVO3 as an anion source.
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Figure 1. XRD patterns (a), FT-IR spectra (b) of the precursor film and anion-exchange film. The
diffraction peaks of ITO glass were marked with *.

As shown in Figure 2a, the FE-SEM image indicated that the LYH precursor film
crystallized as flower-like aggregates, which were assembled in nanosheets with different
lateral and vertical arrangements and angles. As observed from the FE-SEM image in
Figure 2b and the TEM image in Figure 2c, the YVO4 film crystallized in structures like rice
grains, which were totally different from those observed in the precursor template. Selected
area electron diffraction (SAED, the inset of Figure 2c) yielded diffraction spots that corre-
spond to the (200), (301) and (202) planes of tetragonal structured YVO4, indicating that
the anion exchange film under observation is a well-crystallized single crystal. The iden-
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tified (200), (301) and (202) diffractions displayed values of d200 = 3.559 Å, d301 = 2.220 Å
and d202 = 2.357 Å, respectively. These results were close to the values of d200 = 3.574 Å,
d301 = 2.228 Å and d202 = 2.361 Å calculated from the XRD results, respectively. The (202)
and (200) planes observed in the SAED pattern presented a dihedral angle of ~48.7◦, which
was also close to the calculated value of ~48.5◦. High-resolution TEM (HR-TEM) analysis
clearly resolved the lattice fringes of the LRH crystal, and a spacing of 0.354 nm properly
corresponded to the (200) plane of the host layer (Figure 2d).
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(c), and HR-TEM image (d) of the YVO4 film. The inset in (a) is the digital photograph of the
Y2(OH)5NO3·nH2O film, The inset in (b) is the digital photograph of the YVO4 film and the inset in
(c) is the selected area electron.

3.2. Evolution of Phase and Morphology from LYH to YVO4 upon Anion Exchange

Through a series of exploratory experiments, it was found that the concentration
of NaVO3 in the solution is the key factor affecting the phase and morphology of the
exchanged products, and high concentrations of the anion source facilitated the reaction.
To determine the phase and morphological evolution during the transformation from
LYH to YVO4, different hydrothermal reactions were performed. For this purpose, we
used 0.05 M NaVO3 (with a fixed volume of 50 mL) as the anion source and LYH film
as the precursor template. In addition, different reaction times were tested at pH of ~7.3.
Figure 3a compares the XRD patterns of the original LYH template and anion-exchange
films at different reaction times. Data indicated that at a reaction time of 5 min, a mixture
of phases was present. Herein, the peaks at 9.95◦and 29.25◦ correspond to the characteristic
diffraction of the (220) plane present in the LYH template. In addition, the diffraction
peaks at 24.46◦, 35.69◦ and 50.24◦ were well correlated with the (200), (112) and (312)
planes of the YVO4 phase, respectively. Obviously, LYH phase is the main phase in the
mixture product. FT-IR (Figure 3b) showed that the absorption of uncoordinated NO3

− at
1384 cm−1 and the absorption of VO4

3− at 820 cm−1 were simultaneously observed when
the reaction time was 5 min. With the increase in reaction time, the diffraction peaks of LYH
became weaker, and the final YVO4 anion exchange product was obtained until the reaction
time reached 1h. The corresponding FT-IR spectra of the exchanged products showed
the weakened absorptions of hydroxyl and NO3

−, and enhanced absorptions of VO4
3−.

Until the reaction time reached 1 h, the absorptions of hydroxyls and NO3
− disappeared.

According to the synthesis used in the present research, the phase conversion process from



Coatings 2022, 12, 461 5 of 9

LYH to YVO4 may be described as follows: VO3
−(aq) + 2OH−(aq)→ VO4

3−(aq) + H2O(aq).
Subsequently, the coordinated hydroxyl and water present in [Y2(OH)5(H2O)n]+ host layer
were completely exchanged by VO4

3−.
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The morphological evolution from LYH to YVO4 can be observed in Figure 4. The
sample with the reaction time of 5 min largely retained the LYH nanoplate-like morphology,
among which some YVO4 particles were found. The FE-SEM data showed that, with
increasing reaction time, more LYH nanosheets were converted into YVO4 spindle-shaped
particles. When the reaction proceeded for 1 h, all the LYH nanosheets were completely
transformed into YVO4 spindle-shaped particles. This indicated that phase transition
occurred a dissolution–reprecipitation mechanism.
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3.3. Structure Characterization and Photoluminescence of Activators Doped YVO4 Films

In the present research, two types of activated ion doped YVO4 films (Eu3+ doped
and Dy3+ doped) were prepared. Figure 5a shows the XRD results of the films obtained
when reactions proceeded with different molar contents of Eu3+. Data indicated that all the
diffraction peaks can be well indexed to the tetragonal YVO4 (PDF No.17-0341). As shown
in Figure 5b, the body-centered tetragonal unit cell of YVO4 consists of four units, where
two sets of oxygen atoms, differing in the Y-O bond length, are coordinated to Y3+ to form
the YO8 dodecahedron. The derived cell parameters are summarized in Table 1. Compared
with the standard YVO4 film, the YVO4: Eu film presented a larger cell volume, which
was ascribed to the increase in the RE-O bond length. This resulted from the replacement
of smaller ionic radius of Y3+ with the larger Eu3+ (eight-fold coordination, 0.1019 nm
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for Y3+, 0.1066 nm for Eu3+) and caused the direct crystallization of solid solution. The
crystallite size assayed from the Scherrer equation via profile broadening analysis of the
(200) diffraction, and the calculated values of the crystallite size are summarized in Table 1.
Data shows that the crystalline size of YVO4: Eu nanoparticles gradually decreased with
the increased doping amount of RE3+ ions.

Coatings 2022, 12, x FOR PEER REVIEW 6 of 9 
 

 

smaller ionic radius of Y3+ with the larger Eu3+ (eight-fold coordination, 0.1019 nm for Y3+, 
0.1066 nm for Eu3+) and caused the direct crystallization of solid solution. The crystallite 
size assayed from the Scherrer equation via profile broadening analysis of the (200) dif-
fraction, and the calculated values of the crystallite size are summarized in Table 1. Data 
shows that the crystalline size of YVO4: Eu nanoparticles gradually decreased with the 
increased doping amount of RE3+ ions. 

Table 1. The results of structure refinement and the crystalline sizes for YVO4:Eu3+. 

Samples A = b (Å) c (Å) V (Å3) Crystalline Sizes (nm) 
YVO4: Eu (2%) 7.100 6.259 315.516 24.51 
YVO4: Eu (5%) 7.121 6.288 318.856 23.20 
YVO4: Eu (10%) 7.137 6.304 321.105 21.73 
YVO4: Eu (15%) 7.160 6.295 322.717 21.01 
YVO4: Eu (30%) 7.163 6.315 324.014 20.46 

 
Figure 5. XRD patterns of the YVO4:Eu films with different molar doping concentration (a) and the 
schematic crystal structure of tetragonal REVO4 (b). The Y3+ ligands of YVO4 crystal structure are 
shown in the insets. 

The photoluminescence excitation (PLE) spectra of the YVO4: Eu3+ films observed by 
monitoring the red emission of Eu3+ at 614 nm consisted of a strong and broad excitation 
band ranging from ~280 to 320 nm (Figure 6a), which was attributed to the energy transfer 
from VO43− to Eu3+ [38]. The molecular orbital theory suggests that the absorption band 
was overlapped by the charge electron transitions of VO43− ion from the 1A2(1T1) ground 
state to the 1E(1T2) excited state at 290 nm and 1A1(1E) excited state at 308 nm [36]. Negligi-
ble peaks located at 396 nm and 466 nm were observed, which resulted from the general 
7F0,1-5L6 and 7F0,1-5D2 transitions of Eu3+, respectively. Upon UV excitation at 290 nm, the 
photoluminescence (PL) spectra of the YVO4: Eu3+ films (Figure 6b) exhibited transitions 
from the 5D0 excited state to the 7FJ (J = 1, 2, and 3) ground states of Eu3+ ranging from 500 
to 650 nm, with the transition 5D0–7F2 (614 nm, red emission) being the most dominant 
[39,40]. According to the Judd-Ofelt parity rule [41,42], the relative intensity of emission 
peaks is closely related to the transition of excited electrons to different energy levels and 
the coordination environment of Eu3+. The intensity of the 5D0 → 7F2 electric dipole transi-
tion is greater than that of the 5D0 → 7F1 magnetic dipole transition, indicating the activator 
Eu3+ occupies a low-symmetry site in the lattice. As shown in Figure 6b, the optimal con-
centration of doped Eu3+ was 10 mol (%); over-doping led to the concentration quenching 
of luminescence via cross-relaxation mechanism. Figures 6c and 6d show the excitation 
and emission spectra of YVO4: Dy3+, respectively. By monitoring the emission of Dy3+ at 
573 nm, it was observed that the PLE spectra of the YVO4: Dy3+ films exhibited a strong 
and broad band ranging from 280-310 nm, which was also associated with the efficient 
energy transfer from VO43− to Dy3+. Moreover, the peaks located at 350–500 nm were at-
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schematic crystal structure of tetragonal REVO4 (b). The Y3+ ligands of YVO4 crystal structure are
shown in the insets.

Table 1. The results of structure refinement and the crystalline sizes for YVO4:Eu3+.

Samples A = b (Å) c (Å) V (Å3) Crystalline Sizes (nm)

YVO4: Eu (2%) 7.100 6.259 315.516 24.51
YVO4: Eu (5%) 7.121 6.288 318.856 23.20
YVO4: Eu (10%) 7.137 6.304 321.105 21.73
YVO4: Eu (15%) 7.160 6.295 322.717 21.01
YVO4: Eu (30%) 7.163 6.315 324.014 20.46

The photoluminescence excitation (PLE) spectra of the YVO4: Eu3+ films observed by
monitoring the red emission of Eu3+ at 614 nm consisted of a strong and broad excitation
band ranging from ~280 to 320 nm (Figure 6a), which was attributed to the energy trans-
fer from VO4

3− to Eu3+ [38]. The molecular orbital theory suggests that the absorption
band was overlapped by the charge electron transitions of VO4

3− ion from the 1A2(1T1)
ground state to the 1E(1T2) excited state at 290 nm and 1A1(1E) excited state at 308 nm [36].
Negligible peaks located at 396 nm and 466 nm were observed, which resulted from the
general 7F0,1–5L6 and 7F0,1–5D2 transitions of Eu3+, respectively. Upon UV excitation at
290 nm, the photoluminescence (PL) spectra of the YVO4: Eu3+ films (Figure 6b) exhibited
transitions from the 5D0 excited state to the 7FJ (J = 1, 2, and 3) ground states of Eu3+ ranging
from 500 to 650 nm, with the transition 5D0–7F2 (614 nm, red emission) being the most
dominant [39,40]. According to the Judd-Ofelt parity rule [41,42], the relative intensity of
emission peaks is closely related to the transition of excited electrons to different energy
levels and the coordination environment of Eu3+. The intensity of the 5D0 → 7F2 electric
dipole transition is greater than that of the 5D0→ 7F1 magnetic dipole transition, indicating
the activator Eu3+ occupies a low-symmetry site in the lattice. As shown in Figure 6b, the
optimal concentration of doped Eu3+ was 10 mol (%); over-doping led to the concentration
quenching of luminescence via cross-relaxation mechanism. Figure 6c,d show the excitation
and emission spectra of YVO4: Dy3+, respectively. By monitoring the emission of Dy3+ at
573 nm, it was observed that the PLE spectra of the YVO4: Dy3+ films exhibited a strong
and broad band ranging from 280-310 nm, which was also associated with the efficient
energy transfer from VO4

3− to Dy3+. Moreover, the peaks located at 350–500 nm were
attributed to the 4F9/2–6H15/2 and 4F9/2–6H13/2 intra-transitions of Dy3+ (Figure 6c). Upon
the excitation at 290 nm, the emission spectra of the YVO4: Dy3+ films were composed of
two bands centered at ~483 nm (blue emission) and 573 nm (green emission, dominant),



Coatings 2022, 12, 461 7 of 9

which corresponded to the 4F9/2–6H15/2 and 4F9/2–6H13/2 intra-transitions of Dy3+, respec-
tively. Data in Figure 6d indicated that the optimal doped Dy3+ concentration was 5 mol
(%). Additionally, the (Y0.90Eu0.05)VO4 and (Y0.95Dy0.05)VO4 films exhibited vivid red and
bright green emissions under UV excitation at 254 nm.
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Figure 6. The excitation spectra (a) and emission spectra (b) of Y1−xEuxVO4 films prepared for 1 h,
excitation spectra (c) and emission spectra (d) of Y1−xDyxVO4 films prepared for 1 h. Insets in (b,d)
show red emission and green emission of the (Y0.90Eu0.10)VO4 film and (Y0.95Dy0.05)VO4 film under
the UV excitation at 254 nm, respectively.

4. Conclusions

The rapid preparation of YVO4 films was successfully performed via anion exchange
reaction by using the electrodeposited LYH films as a precursor template and NaVO3 as
anion source at pH ~7.3, without further heat treatment. The phase evolution from LYH to
YVO4 was systematically studied, and the morphological evolution from flower-like LYH
nanosheets to YVO4 spindle-shaped particles indicated that a dissolution-reprecipitation
mechanism occurred. Photoluminescence showed that YVO4:Eu3+ films and YVO4:Dy3+

films exhibited characteristic emissions depending on the RE3+. In addition, the optimal
concentrations of doped Eu3+ and Dy3+ were determined as 10 mol (%) and 5 mol (%),
respectively. Moreover, the (Y0.90Eu0.10)VO4 and (Y0.95Dy0.05)VO4 film exhibit vivid red
color and bright green color under UV excitation at 254 nm.
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