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Abstract: In this study, we present the results of the effect of duplex surface modification of 304-L
stainless steel substrates by an electron-beam treatment (EBT) and subsequent deposition of diamond-
like carbon coatings on the surface roughness and corrosion behavior. During the EBT process, the
beam power was varied from 1000 to 1500 W. The successful deposition of the DLC coatings was
confirmed by FTIR and Raman spectroscopy experiments. The results showed a presence of C–O,
C=N, graphite-like sp2, and mixed sp2-sp3 C–C bond vibrations. The surface topography was studied
by atomic force microscopy. The rise in the beam power leads to a decrease in the surface roughness
of the deposited DLC coatings. The studies on the corrosion resistance of the samples have been
performed using three electrochemical techniques: open circuit potential (OCP), cyclic voltammetry
(polarization measurements), and non-destructive electrochemical impedance spectroscopy (EIS). The
measured corrosion potentials suggest that these samples are corrosion-resistant even in a medium,
containing corrosive agents such as chloride ions. It can be concluded that the most corrosion-resistant
specimen is DLC coating deposited on electron-beam-treated 304-L SS substrate by a beam power of
1500 W.

Keywords: diamond-like carbon coating; surface modification; electron-beam treatment; electron-beam
physical vapor deposition; surface topography; corrosion properties

1. Introduction

Metallic materials have been commonly used in biomedicine for a century owing to
their desirable properties, which include high strength and toughness, fatigue resistance,
and inertness [1,2]. Stainless steels, in particular 304-L, are very promising in modern
biomedical engineering due to their biocompatibility, malleability, high heat stability, and
excellent resistance to corrosion [3]. Because of these properties, 304-L stainless steel is
widely used for producing dental and orthopedic implants as well as for specific biomedical
applications. Despite its good properties, this material exhibits poor tribological properties
and weak chemical bonds with human bones [4]. These drawbacks appear mostly on the
surface of the implant materials, which can be overcome by an appropriate technique for
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surface treatment. Surface modifications of biomaterials play a vital role in matching the
complexities of the biological system and enhancing the performance of bio-implants.

A lot of methods for surface modification of materials exist. Currently, surface modi-
fication by high energy fluxes, such as electron, ion, and laser beams are widely used [5].
Electron-beam surface treatment technology has developed rapidly in recent decades due
to its advantages over conventional methods, such as high efficiency and accuracy, very
small size of the zones treated, high density of the input energy, high heating and cooling
rates, good reproducibility and hardly any chemical pollution [6–8]. The author of [9]
investigated the possibility of hardening carbon steels by electron-beam surface modifi-
cation, and a numerical model was developed. The results showed that the heating and
cooling rates depend weakly on the electron-beam power and are strongly influenced by
the treated sample speed of motion. Higher values of the speed of motion of the specimen
lead to increased cooling rate and microhardness, respectively. Proskurovsky et al. [10]
investigated technology for the surface modification of metallic materials based on the use
of low-energy, high-current pulsed electron beams. The results showed that this technique
enhanced the strength and electrochemical properties of the modified materials.

Another method for surface modification of materials is the deposition of coatings on
their surfaces [11]. The authors of [12] synthesized carbon nanostructures on H18 steel by
the chemical vapor deposition (CVD) method. The results showed that the electrochemical
behavior of the carbon structures strongly depends on the technological conditions, where
the best corrosion properties were obtained at 700 ◦C.

Diamond-like carbon (DLC) films possess unique characteristics such as corrosion
resistance, low friction coefficient, chemical inertness, and excellent smoothness [13]. Addi-
tionally, DLC coatings demonstrate high biocompatibility, which makes them suitable for
implementation in orthopedic and dental medicine. According to the literature, DLC coat-
ings [14] are hard and amorphous-like structures with a mixture of sp2/sp3 and hydrogen,
where the amount of sp3 bonds is significant. It is well known that the sp2 hybridization
represents one s orbital and two p orbitals, creating three new hybrid sp2 orbitals with
equal energy, and correspond to a graphitic structure. Similarly, in sp3 hybridization, one
s and three p orbitals form four new hybrid sp3 orbitals and correspond to a diamond
structure [15].

Recently, physical vapor deposition (PVD) technologies have been one of the main
methods for the formation of coatings for biomedical applications. The authors in [16]
deposited DLC films by plasma immersion and investigated the corrosion behavior and
mechanical properties of the obtained coatings. The results indicated good resistance to
corrosion and good tissue response of the DLC coatings proving the high biocompatibility
of these materials. Similarly, the authors of [17] applied diamond-like carbon films on
an Si substrate with different silver contents by radio frequency magnetron sputtering.
It was proved that the presence of silver in the DLC films increased the conductivity
and antimicrobial characteristics of the deposited coatings, but the hardness was reduced
significantly. In [4], the PVD deposition of DLC films on the AISI 316L stainless steel
substrate and their structural properties were investigated under different substrate bias
voltages by using molecular dynamics simulations. The results showed that the presence of
the sp3 fraction in the DLC films increased when the substrate bias voltage was increased
from 0 V to 120 V. The highest magnitude of sp3 fraction (48.5%) was found out at the 120 V
bias voltage [4].

In the previous works of our research team [18–20], coatings based on carbon nitrides
were deposited by electron-beam physical vapor deposition. The presence of sp2 and
sp3 bonds was observed in the formed films. The quantity of C–N bonds increased with
the substrate temperature. Nano-clusters consisting of β–C3N4 bonds were detected and
related to carbon with sp2 coordination.

It is obvious that both techniques for surface modification, namely electron-beam
treatment and the formation of coatings, are viable methods for improving the properties of
the materials. However, the combination of both methods, including electron-beam surface
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modification, and deposition of DLC films has not been studied yet. As already mentioned,
the electron-beam surface modification procedure leads to the formation of a significantly
finer microstructure and improved mechanical properties [9,10]. In this case, the problem
related to the large difference in the hardness between the substrate and subsequently
deposited coating is overcome, leading to an improvement in the adhesion and functional
properties of the deposited film [21].

In the present study, we investigated the possibility for surface modification of 304-L
stainless steel by electron-beam treatment and followed deposition of DLC film at different
technological conditions. This development is expected to provide knowledge for a better
understanding of the influence of electron-beam treatment on the properties of the obtained
films and their application in biomedicine.

2. Materials and Methods

304-L SS with the chemical composition 0.029% C, 0.3% Si, 1.6% Mn, 0.026% P, 0.001% S,
0.065% N, 18.06% Cr; 8.0% Ni in wt.%, with a diameter of 20 mm and thickness of 4 mm
was used as a substrate material in the present work. Before the deposition of the coatings,
the surface of the samples was modified using an electron beam. The experiments were
carried out using Leybold Heraeus electron-beam equipment. During the electron-beam
treatment process, the working pressure was 2 × 10−4 Pa; the accelerating voltage was
50 kV; the electron beam current was 20 mA and 30 mA, corresponding to a beam power of
1000 W and 1500 W; the speed of the specimen motion was 20 mm/s; the electron beam
scanning frequency was 1 kHz. It should be noted that the experiments were realized using
a linear manner of scanning. During the experiments, the specimen moves horizontally
with a constant velocity in a perpendicular direction of the scanning of the electron beam.
The treatment process took place for one second. In this case, the beam trajectory does not
overlap, leading to an increase in the cooling rate. The scheme of the electron-beam setup
for surface modification is presented in Figure 1.
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Figure 1. A scheme of electron-beam equipment for surface modification.

DLC layers were deposited on already-modified surfaces of the substrate material by
electron-beam physical vapor deposition. During the deposition of the coatings, the accel-
erating voltage was 50 kV, the beam current was 17 mA, the focusing current was 460 mA,
the deposition time was 90 s, and the substrates were preheated to 500 ◦C, corresponding
to a thickness of about 1 µm in all cases. For comparison, DLC film was fabricated on an
untreated substrate.
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The vibrational properties of DLC films were analyzed by Fourier transform infrared
(FTIR) spectroscopy. The experiments were carried out with Shimadzu FTIR Spectropho-
tometer IRPrestige-21 in the spectral range 350–4000 cm−1. The spectra were taken in
reflectance mode using specular reflectance attachment SRM-8000. Al mirror or the cor-
responding bare substrate was used as background. The absorption spectrum can be
calculated from the measured reflection spectrum by the Kramers-Kronig transformation.

Jobin Yvon Labram spectrometer with a CCD detector was used for the Raman mea-
surements. The wavelength of the laser radiation was 632.8 nm, where the absolute accuracy
was about 1 cm−1. The laser beam was focused on a spot with a diameter of about 1–2 µm
on the surface of the sample by microscope optics. The Raman spectra were measured from
400 to 2500 cm−1.

An Atomic Force Microscope (AFM) MFP-3D, Asylum Research, Oxford Instruments
with a silicon tip Si-AC160TS-R3 with a 10 nm curvature and an elasticity coefficient of
k = 26 N/m was used to scan an area of 400 µm2. Final data regarding the nanoroughness
of the samples, along with a 3D image of the scanned area was obtained using the Igor Pro
9 software.

The corrosion resistance of the samples was probed as described previously [22]. In
brief: the corrosion potential was measured in phosphate-buffered saline, containing 0.9%
potassium chloride under equilibrium conditions, i.e., at zero current flowing through
the electrochemical cell. The ability of the DLC coatings to protect the steel surface from
oxidation has been judged by the impedance spectra, acquired over the frequency range
from 100 kHz to 1 Hz with 15 frequencies per decade (electrochemical impedance spec-
troscopy, EIS). Measurements were performed in a 0.1 M KCl aqueous solution containing
5 mM ferri/ferro hexacyano ferrates. Polarization characteristics of the samples were deter-
mined under conditions, mimicking the physiological ones, in 0.1 M phosphate buffer with
pH = 7.4 and were recorded over the potential region from −0.2 V to 0.8 V vs. Ag/AgCl, sat.
KCl reference system. Before measurements, each sample was connected to a Pt wire, then
the contact and the sides of each sample that have not been coated with DLC layer were
sealed with an insulating layer of epoxy resins. For corrosion studies, a 1 cm2 geometric
surface area of DLC coated sample was chosen, the rest was sealed with an insulating
coating (epoxy resin). Before sealing, a Pt wire was attached to the sample, so that the
electrical characteristics can be measured. The electrochemical measurements have been
performed in a single compartment electrochemical cell with a working volume of 20 mL
in a three-electrode configuration. The samples were connected as working, an Ag/AgCl,
sat. KCl was used as a reference, and a Pt foil as an auxiliary electrode, respectively. All
electrochemical measurements have been done with a potentiostat-galvanostat Autolab
302 N (Metrohm, Switzerland). The solutions were prepared with ultrapure water (Adrona
B30 Bio, Adrona, Lithuania) and ACS reagent grade chemicals.

3. Results and Discussion

FTIR spectroscopy is a method for the determination of functional groups and indicates
different vibrational modes of various bonds which are present in the films. Figure 2 shows
the FTIR spectra of the DLC film deposited on an untreated substrate and electron-beam-
treated material in the range of 400–4000 cm−1 as a function of electron beam power. For all
DLC films, it was observed a clear peak at 672 cm−1 corresponding to symmetrical valence
oscillations of carbon–carbon bonds [23], and according to the other authors [24], this is a
torsional vibration originating from the C–O bond. At the low wavenumber region, there
is one characteristic peak for all DLC films at 1515 cm−1, which can be assigned to sp2 C
vibration mode [25] or attributed to the mixed C–C bonds in sp2 and sp3 hybridization,
which evidences the presence of graphite-like and diamond-like phases in the obtained
DLC films [26]. On the other hand, this infrared absorption can be assigned to CC and CN
triple bond stretching [27]. The peak positioned at a wavelength of 1540 cm−1 is related to
C=N bonds [28] or graphite-like sp2 bonded carbon [29], but other researchers [26] have
reported that this band corresponds to mixed sp2-sp3 C–C bond vibrations.
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Figure 2. FTIR spectra of DLC films deposited on untreated and electron beam treated substrates.

Besides, the peak at 1540 cm−1 can be identified as C=C stretching in aromatic sp2

mode [30]. Although this band should not be infrared active, its appearance is probably due
to polarization from nearby oxygen atoms. Embedded in the broad absorption background
induced by C≡N stretching vibration [30] or environmental CO2 [31], a strong absorption
band due to stretching was found at a wavelength of 2362 cm−1 attributed to C=N bonds. At
the high wavenumber region (Figure 3), four peaks appeared at wavelengths of 2750 cm−1,
2848 cm−1, 2917 cm−1, and 2953 cm−1, respectively. The band at 2750 cm−1 indicates the
presence of ethyl group [32] and the other peaks correspond to sp3–CH3 configuration [33],
sp3–CH2 (asymmetrical) [34], and sp3–CH3 (asymmetrical) bonds [35]. The asymmetrical
vibration sp3–CH2 is due to the sp3-hybridized carbon to hydrogen and tetrahedral carbon
structure [36], and is the highest absorption band at 1000 W. Additionally, it has been
reported as a result of hydrogen bonds in the form of sp3–CH2 and sp3 CH3 groups [37].
The broad absorption between 3600 cm−1 and 3800 cm−1 might be contributed by free
OH bonds [38] and O–H stretching vibrations of unassociated OH groups [30,31] owing
to the presence of a small amount of carboxylic acids. Based on the performed analysis, it
can be concluded that the peaks around 1515 cm−1,1540 cm−1, 2848 cm−1, 917 cm−1, and
2953 cm−1 represent the vibration of the sp2 and sp3 C–C bonds and indicate a presence of
graphite and diamond-like phases in the deposited films.
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The experimentally obtained Raman spectra of the DLC films deposited on untreated
and electron-beam-treated 304-L stainless steel substrates are shown in Figure 4. The results
reveal the existence of D and G bands that are typical for DLC-based coatings and are
located at about 1350 cm−1 and 1560 cm−1, respectively [39]. The existence of the G peak is
attributed to the C–C bonds, while the breathing mode of carbon rings is the reason for the
appearance of the D band [34]. Therefore, the bond structure within the DLC coating can
be studied by a characterization of the above-discussed bands. The precise determination
of the G-band position and the full width at a half maximum (FWHM) is directly related to
the carbon bonding structure. The increase in the peak position of the G-band corresponds
to an increase in the sp2/sp3 ratio, while higher values of the FWHM are associated with a
lower number and dimension of sp2 clusters [40]. The experimentally obtained data for the
peak position and FWHM of the G-band are summarized in Table 1.
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substrates at 1000 W, and (c) electron-beam-treated substrates at 1500 W.

Table 1. Peak position and FWHM of the G-band.

Parameters of the G-Band- Untreated Substrate 1000 W 1500 W

Peak position, cm−1
- - -

1578 1596 1587
- - -

FWHM, cm−1 167 93 106

Considering the peak position of the G-band of the coating deposited on an untreated
substrate, it is about 1578 cm−1, and it increases to 1596 cm−1 and 1587 cm−1 in the case
of deposition of DLC on electron-beam-treated substrate by a beam power of 1000 W and
1500 W, respectively. This means that the preliminary electron-beam modification of the
304-L stainless steel substrate leads to an increase in the sp2/sp3 ratio, where in the case of
EBT with lower beam power, it is higher in comparison with the treatment by 1500 W. This
means that the amount of diamond-like structure (i.e., sp3 bonds) is lower in the case of the
substrate treatment by a higher power. However, the peak position of the G-band has the
lowest value at the coating deposited on untreated substrate, meaning that the discussed
ratio is the lowest, i.e., the amount sp3 is the highest. Nevertheless, the difference in the
position is in the range of 10 cm−1, meaning that the amount of the sp3 is very similar in all
considered cases.

Similar conclusions can be drawn by considering the FWHM of the G-band. It was
found that the width of the peak in the case of an untreated substrate is 167 cm−1. After
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the application of the electron-beam treatment procedure, the FWHM decreases to 93 cm−1,
at a beam power of 1000 W, and 106 cm−1 at 1500 W. This means that in the case of an
untreated substrate, the number of the clusters of sp2 bonds and their size is much smaller
in comparison with the DLC films deposited on previously treated one. It should be noted
that the change in the number and dimension of sp2 clusters does not always lead to
transformation in the sp2/sp3 ratio and some sp2 bonds would not form clusters.

It can be concluded that the DLC coating deposited on an electron-beam-treated
substrate by a beam power of 1500 W consists of a higher amount of sp3, followed by
a small decrease in the case of a substrate treatment by a beam power of 1000 W. The
DLC coating deposited on untreated substrate represents the highest concentration of sp3

bonds. However, the shift in the peak position of the G-band is insignificant, meaning
that the relative contribution of the sp3 bonds in the deposited DLC coatings is relatively
unchanged in all cases.

The results obtained by FTIR and Raman experiments confirm the presence of DLC
coatings deposited on the steel substrate. As already mentioned, according to the definition,
DLC coatings [14] are hard and amorphous-like structures with a mixture of sp2/sp3 and
hydrogen, where the amount of sp3 bonds is significant. It was found that the structure of
the coatings deposited on treated and untreated stainless-steel substrates exhibits a mixture
of sp2/sp3 bonds, as well as CH2 groups in the sp3 hybridization.

The surface topography of the considered DLC films is shown in Figure 5. The films
were deposited on previously polished and electron-beam-treated 304-L stainless steel
substrates by a beam power of 1000 and 1500 W, at a temperature of 500 ◦C by electron
beam physical vapor deposition. For comparison, DLC film was fabricated on an untreated
substrate to follow the influence of the material surface modification on the nano-roughness
of the as-deposited films. It was found that the surface nano-roughness of the coating on
an untreated substrate is only 15 nm. The surface roughness of the DLC films on treated
substrates was 101 nm for the treated substrate by a beam power of 1000 W, and 48 nm at a
beam power of 1500 W, respectively. Therefore, with an increase in the beam power, the
surface roughness decreases in the present particular case. Thus, it can be concluded that
the electron-beam treatment of the substrate leads to an increase in surface roughness.
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Figure 5. Three-dimensional AFM micrographs of the surface topography of the deposited DLC
coatings on (a) untreated substrate; (b) treated substrate with a beam power of 1000 W; (c) treated
substrate with a beam power of 1500 W.

According to the literature, the application of treatment with an electron beam has
a different influence on the resultant surface roughness [41]. In the case of treatment of
flat surfaces, during the EBT process, some amount of the treated material is evaporated
and subsequently condensed, which is capable to form protrusions, and increasing the
roughness. On the other hand, the electron-beam treatment procedure of rough surfaces
leads to melting of the peaks. The molten material flows to the valleys and increases in
smoothness [41]. These statements are in agreement with the results of our study, where
the EBT of the base material leads to an increase in its roughness, and therefore, to the
coatings since they follow the topography of the substrate.
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The results obtained show that in both cases of electron-beam treatment of the substrate
leads to an increase in the roughness, where this effect is more pronounced in the case of a
lower value of the beam power of 1000 W. In this case, the initial surface roughness of the
substrate was replaced by a wave-like topography. The electron-beam treatment procedure
leads to melting the surface, where fluid flows, acting from the surface to the depth of the
molten material, are formed due to the high-temperature gradient and are responsible for
the formation of the observed surface topography. With an increase in the beam power to
1500 W, it is obvious that the surface of the specimen is significantly smoother, which could
be attributed to the significantly longer lifetime of the molten material.

It should be noted that these results have significant importance and can be directly im-
plemented in modern biomedicine and implant manufacturing. Higher surface roughness
corresponds to a larger contact surface area. This is accepted to be of major importance for
cell adhesion, proteins adsorption, biomineralization phenomenon, etc. [42]. The authors
of [43] showed that the increased roughness of 13 nm leads to a higher amount of attached
cells and cell density after 16 h of incubation in comparison with the 5 nm rough surface.

Corrosion potentials of the samples were determined at open circuit, i.e., at no current
flowing through the cell, until an equilibrium potential was established. The authentic
records of the samples’ potentials vs. time are depicted in Figure 6. As can be seen, the
equilibrium potentials of the three specimens have positive values that increase with the
rise of the beam power from 1000 to 1500 W, with the one of the thermally pretreated sample
(untreated sample) laying above them, most probably due to structural surface changes
resulting from the thermal treatment during the deposition, i.e., the differences between
them are not so substantial, but the 1000 W sample has the lowest one. The potential range
is exactly 1 V, starting at −0.2 V and reaching an upper limit of +0.8 V. Usually, the tendency
of iron alloys to corrode is electrochemically detectable within this region. It should be
noted that all the potentials are given vs. Ag|AgCl, KCl sat. reference system, the potential
of which is +0.199 V vs. normal hydrogen electrode (i.e the studied potential range is
from −0.001 to +0.999 V vs. NHE). Depending on the pH of the background electrolyte, at
slightly higher applied potentials, electrolysis of the electrolyte solution would start. The
corrosion potential of the DLC-coated samples is 0.5–0.6 V more positive than the corrosion
potential of bare stainless steel (~−0.4 V vs Ag|AgCl, sat. KCl), which means that the
bare steel sample will start to dissolve spontaneously in an aqueous environment, while
the DLC-coated samples would not corrode under equivalent conditions. The measured
corrosion potentials suggest that these samples are corrosion-resistant even in a medium,
containing corrosive agents such as chloride ions.

These findings were confirmed by the EIS studies, shown in Figure 7. The impedance
spectra of the samples indicate the formation of a homogeneous protective layer over the
metallic surface, as it can be deduced from the large semicircle observed for DLC film
obtained at 1500 W. EIS is an alternating current electrochemical technique that is used
to study the sample’s behavior at the surface-solution interface in the presence of redox
species. The EIS spectra were subjected to simulations, aiming at revealing the reasons for
exhibited impedance behavior. The modeling gave analogous equivalent electrical circuits
for 1000W and 1500W specimens (semicircle corresponding to charge transfer resistance,
without diffusion region). For the untreated sample, the simulation of the EIS spectrum
resulted in a circuit consisting of some very large number of constant-phase elements: a
similar picture is usually observed for electrode surfaces with nanoformations (which are
well visible on the AFM surface topography image) [44]. The EIS spectra represent either a
straight line with a slope greater than 45◦ (a slope of 45◦ is indicative for the diffusional
region, known also as Warburg impedance) or a slightly curved line, albeit without a clearly
expressed semicircle. This means that we cannot define Rct for the untreated sample so
that to compare it with the corresponding values of the other two samples. The appearance
of semicircles points toward the inability of redox species to reach the conductive surface
so as to reduce or oxidize over it, and the semicircle’s diameter increases with the density
of the protective layer. Thus, the diameters of the semicircles of the impedance spectra of
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the samples under study sharply increase as the intensity of the beam power is increased
from 1000 W to 1500 W, indicating that the firmness of the protective diamond-like carbon
layer increases. A much smaller charge transfer resistance of the DLC layer at 1000 W is
indicative of unprotected zones on the metal surface.
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In support of this finding, the cyclic voltammograms of the sample at 1000 W reveal a
broad peak at 0.2 V that might result from the oxidation of an unprotected metal surface
(Figure 8). Cyclic voltammetry is a direct current potentiodynamic electrochemical tech-
nique that records the current value as a function of the applied potential and is usually
applied to diagnose the existence of oxidative or reductive processes at the electrode-
solution interface. Since no redox-active species were present during the voltammetric
studies, performed in phosphate buffer with pH = 7.4, the peak is obviously due to the
corrosion of the metal surface, i.e., to the oxidation of iron. The DLC coating deposited
on an electron-beam-treated substrate by a beam power of 1000 W is not continuous due
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to, most probably, the observed picture caused by a tiny crack (mechanical injury) on the
studied surface, which gives the hump appearing in Figure 8 around the potential of Fe
dissolution; however only if the sample is under polarization. If the surface was coated
without breaks, the hump would not appear, and the Rct would appear much greater
since electrochemical studies give an overall surface characterization. According to the
authors of [45,46], the surface topography of the film deposited on rough substrates is
attributed to the growth defects, caused mostly by the roughness of the base material. The
existence of these growth defects can be considered as the main reason for the deterioration
in the corrosion properties of the considered specimen (i.e., the DLC film deposited on an
electron-beam modified substrate by a beam power of 1000 W). The other two samples
behave as inert conductive surfaces that are not prone to corrosion. The DLC film on
the untreated substrate shows a slight tendency to dissolution at polarization potentials
exceeding 0.5 V that is due to lack of a protective coating. The DLC film deposited on
an electron-beam-modified substrate with a beam power of 1500 W shows no signs of
destruction despite the large current passing through the interface. As mentioned above,
the preliminary electron-beam modification leads to the formation of a significantly finer
microstructure and rise in the hardness [9,10], where this effect is much more pronounced
in the case where the cooling rate is higher, i.e., at a higher beam power. This means that the
treatment of the substrate by the higher beam power is capable to overcome the problem
related to the difference in the hardness between the film and the substrate improving the
adhesion of the coating. Furthermore, the treatment procedure by a beam power of 1500 W
leads to the formation of a smoother surface than that obtained by 1000 W, meaning that
the amount of growth defects, which are responsible for the deterioration of the corrosion
properties, will be lower. These statements are consistent with the results obtained in
the present study, where a DLC coating deposited on an electron-beam-treated substrate
with a beam power of 1500 W did not exhibit signs of destruction. The slight tendency
of dissolution of the film deposited on an untreated substrate could be attributed to the
significant mismatch of the hardness between the substrate and coating. In this case, the
adhesion is deteriorated, leading to worsening of the corrosion resistance.
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The results obtained in the present study show the possibility for modification of
the surface properties of 304-L stainless steel by a duplex surface modification approach
including electron-beam treatment and subsequent deposition of the diamond-like coating.
It was found that the preliminary modification of the substrate material by electron beam
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leads to an increase in surface roughness. Generally, this could have some benefits from
a practical point of view. Higher values of the surface roughness correspond to a larger
amount of the contact surface area. This could be appropriate for cell growth and adhesion,
proteins adsorption, biomineralization phenomenon, etc., which is of major importance
for implant manufacturing and implementation of the materials in modern biomedicine.
On the other hand, higher surface roughness corresponds to deterioration in the corrosion
resistance, which is one of the main problems for modern biomedical materials. In this case,
separations of metallic ions occur, which leads to implant failure and disadvantageous
reactions [47]. Therefore, the technological conditions of the treatment technologies have
to be optimized very precisely in order to form a surface with sufficient roughness for
cell growth and adhesion support and at the same time, appropriate corrosion properties.
In the present study, we demonstrated that the electron-beam surface treatment of the
304-L stainless steel substrate by a beam power of 1000 W leads to a significant increase
in the surface roughness (more than six times), but also to deterioration in the corrosion
properties of the deposited DLC film. Higher beam power of 1500 W leads to the formation
of a smoother surface than that of the specimen subjected to an electron-beam treatment by
a beam power of 1000 W (to about three times) and improvement in the corrosion resistance.
In this case, the adhesion between the coating and the substrate is greatly improved, leading
to an enhancement in the corrosion properties. The specimens are studied with a further
aim to be tested as suitable materials for implants, where many other specifics such as
protein adsorption, biocorrosion, etc., will be investigated.

4. Conclusions

In the present study, we present the possibility of modifying the surface topography
and corrosion properties of 304-L stainless steel through the application of duplex sur-
face modification approach by electron-beam treatment and subsequent deposition of the
diamond-like carbon (DLC) coatings. The results obtained showed that the preliminary
electron-beam treatment procedure does not significantly influence the amount of sp3

bonds, as well as on the sp2/sp3 ratio at the deposited DLC coatings. The application of the
electron-beam treatment procedure leads to an increase in the surface roughness in both
cases, where the highest values were measured at the specimen treated by a beam power of
1000 W. The higher nano-roughness leads to an increase in the contact surface area, which
is of major importance and has a significant advantage in the support of cell growth and
adhesion. The investigated corrosion properties exhibit that the samples considered in the
present study are corrosion resistant even in a medium containing corrosive agents such
as chloride ions. It can be concluded that the most corrosion-resistant specimen is DLC
coating deposited on electron-beam-treated 304-L SS substrate by a beam power of 1500 W.
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