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Abstract: Thermal barrier coatings (TBCs) are usually used in high temperature and harsh environ-
ment, resulting in thinning or even spalling off. Hence, it is vital to detect the thickness of the TBCs.
In this study, a hybrid machine learning model combined with terahertz time-domain spectroscopy
technology was designed to predict the thickness of TBCs. The terahertz signals were obtained from
the samples prepared in laboratory and actual turbine blade. The principal component analysis
(PCA) method was used to decrease the data dimensions. Finally, an extreme learning machine (ELM)
was proposed to establish the thickness of TBCs prediction model. Genetic algorithm (GA) was
selected to optimize the model to make it more accurate. The results showed that the root correlation
coefficient (R2) exceeded 0.97 and the errors (root mean square error and mean absolute percentage
error) were less than 2.57. This study proposes that terahertz time-domain technology combined with
PCA–GA–ELM model is accurate and feasible for evaluating the thickness of the TBCs.

Keywords: TBCs; terahertz time-domain spectroscopy; thickness; PCA–GA–ELM

1. Introduction

The increasing thrust-weight-ratio of an aeroengine increases the demand for the high
temperature resistance of the hot-section components of aero-engines. Thermal barrier
coatings (TBCs) have become an important means to protect the hot-end components of
aero-engines from high temperature because of their good high temperature resistance,
low thermal conductivity, and good corrosion resistance. The typical TBCs systems pre-
pared by atmospheric-plasma-sprayed (APS) consist of four layers: a ceramic top coat
(TC)—the material is usually 6–8 wt% Y2O3-stabilized-ZrO2 (YSZ)—acting as thermal
insulator; a metallic bond coat (BC)—the material is usually MCrAlY—providing the ox-
idation protection; and a superalloy substrate and thermal grown oxides (TGO), which
are generated owing to the high temperature oxidation of the metal in BC at the interface
of BC/TC [1–5]. The hot-section components are used in high temperature and severe
environment for a long time. The factors of high temperature oxidation, high thermal
fatigue, erosion impact, CMAS (calcium–magnesium–aluminum–silicate) attack, and the
difference of thermal expansion coefficient between alloy substrate and ceramic top coat
weaken the performance of TBCs, eventually leading to coatings spallation. The TBCs
thickness has a great influence on thermal insulation performance. The premature failure of
the coating directly exposes the superalloy to the high temperature environment, resulting
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in a detrimental effect on the performances of aero-engine [6–11]. Therefore, in order
to guarantee the structural integrity and service performance of aero-engine blades, it is
necessary to effectively monitor the structural integrity of TBCs.

At present, there are many different nondestructive testing (NDT) techniques, includ-
ing ultrasonic waves, eddy current, X-rays, thermography, and infrared—used to assess
the structural integrity of TBCs. All these methods and technologies have their own ad-
vantages and disadvantages. For example, due to the requirement of liquid couplants and
the existence of edge effects, ultrasound waves are limited by sample size and volume;
eddy current cannot act on dielectric materials; X-ray can do harm to human body and
may cause defects inside TBCs; thermography technology is greatly affected by the depth
and size of defects, which makes it unable to be applied in near surface defect; and the
accuracy of the infrared thermal imaging technology changes with the change of coating
thickness and the thermal conductivity [12–17]. Recently, terahertz (THz) NDT techniques
have achieved remarkable things in the nondestructive testing field, such as integrated
circuit packages, glass-fiber-reinforced plastic materials, composite materials, biomedicine,
and biopharmaceuticals [18–25]. Compared with traditional DNT methods, terahertz
time-domain spectroscopy (THz–TDS) technology has the advantages of having strong
penetrability and high accuracy while being non-contact, without coupling, and having
low radiation impact on the human body and materials [26]. In terms of thermal barrier
coatings, the research of THz–TDS technology focuses on TC thickness evaluation [27–29],
TGO inspection [30,31], porosity estimation [32,33], interface delamination [34], and erosion
morphology characterization [35]. In previous research, White et al. [29] measured the
thickness of TBCs by reflective terahertz time domain spectroscopy, when the refractive
index of ceramic layer was 3.73. However, the TBCs have a porous microstructure, and the
refractive index changes with the spraying process and service time. Fukuchi et al. [27,28]
proposed to extract the first three reflection peaks, respectively, for Fourier transform and
calculate the refractive index combined with Fresnel formula and Lambert Beer theorem.
However, it is found in our study that with the thinning of the coating thickness, the overlap
of reflection peaks would occur, resulting in the inability to extract the three reflection
peaks alone. Thus, it makes this method ineffective. Dook van Mechelen et al. modeled
the structure as a stratified system through the physical process of light–matter interaction,
which improved the measurement accuracy of multilayer materials [36,37].

In this work, we propose a THz–TDS method for measuring the TC thickness with
higher accuracy and wider range than the traditional method. The terahertz time domain
spectral signals are obtained by engine blades and thermal barrier coatings with different
thicknesses prepared in the laboratory. The principal component analysis (PCA) is used to
extract signals features and decrease the dimension of these terahertz time-domain spectral
signals. The processed signals were used as the input variable of extreme learning machine
(ELM) to predict TC thickness. Genetic algorithm (GA) was selected to optimize the weight
and threshold to make the model more reliable.

2. Experimental Methods and Procedures
2.1. Sample Preparation and Microstructural Characteristics

In this work, all thermal barrier coatings were deposited by atmospheric plasma
spraying (F4-MB, Oerlikon Metco, Pfäffikon, Switzerland). Prior to deposition, carbon
steel substrate with the thickness of 3 mm were subject to sand blasting and ultrasonic
cleaning by alcohol. Commercially available 8 wt.%Y2O3-stabilized ZrO2 (8YSZ) powders
with particle sizes in the ranges of 15–45 µm were used to deposit the TC. Argon and
hydrogen were used as the main plasma gas and auxiliary gas in the spraying process,
respectively. The gas flow rates of argon and hydrogen were maintained at 40 l/min
and 9 l/min, respectively. Argon was also used as the powder feed gas, and the powder
feeding rate was 1.5 r/min. The plasma power was controlled at 41.6 kW during coating
deposition. The spray gun was controlled by the manipulator at a speed of 500 mm/s,
and spray distance was 100 mm. The mental bonding layer was prepared with metallic
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NiCrAlY powder (45–106 µm). Since the terahertz wave cannot pass through the bond
layer, we do not explain the process parameters of the bonding layer. The plasma spraying
parameters of TBCs are summarized in Table 1. The TC thicknesses are between 30 and
330 µm (per-interval thickness was about 30 µm).

Table 1. Process parameters of TBC preparation.

Parameters YSZ Layer Bond Coat

Current, A 600 550
Power, kW 41.6 36.0

Argon flow rate, slpm 40 50
Hydrogen flow rate, slpm 9 7

Spray distance, mm 100 120
Moving speed of spray gun, mm/s 500 900

Powder feeding rate, % 20 10

The true TC thicknesses were obtained by scanning electron microscopy (SEM) after
a metallographic polishing procedure was employed.

2.2. Terahertz Experimental Setup and Sample Testing Method

In this research, the terahertz signals of all samples are obtained by THz time-domain
system (TeraPulse 4000, TeraView, Cambridge, UK). This system is mainly composed of
a femtosecond laser module, delay line module, emitter, and receiver module. Figure 1.
shows the composition of this system. Terahertz pulses are generated by a photoconductive
antenna excited by a femtosecond laser. The laser provides a pulse with a wavelength of
780 nm and an average power of 1.1 W. The repetition frequency of the pulse is 76 MHz,
and the duration time is 80 fs. The spectrum range is 0.06~4.5 THz. Off-axis paraboloid
mirror is used to focus, collimate, and collect the THz radiation. Step size of the delay unit
is 100 ps/s. Frequency resolution is 1.2 cm−1. The total acquisition time of each point is
33.18 ps. Herein, the THz–TDS system adopts 15◦ incidence in the reflection mode. To
avoid the influence of polar molecules such as water vapor in the air, nitrogen with relative
humidity of less than 1% will be filled into the system before the experiment. The ambient
temperature during the test was 20 ◦C. Each sample point will be measured three times,
and the average value will be taken to eliminate the influence of environmental noise.
Before measuring the coating sample, a metal sheet will be measured to obtain the complete
reference reflection signal.

Figure 1. Schematic diagram of reflective terahertz TDS system module and optical path.

As shown in Figure 2, when the incident terahertz wave reaches the coating surface,
some will be reflected at the Air–TC interface, and the other will pass through the Air–TC
interface and be reflected multiple times at the TC–BC interface. Since the terahertz wave
cannot pass through the metal bond layer, we can obtain the relevant information of the
top coat from the reflected wave. The frequency domain signal of the samples Esample(ω)
can be obtained by fast Fourier transform (FFT) of the time domain signal. Accordingly, the
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refractive index of YSZ coating and the thickness of TC can be deduced from the frequency
domain information using the methods proposed in references [27,28]. However, as shown
in Figure 3, when we measure the TBC on high-pressure turbine, we found that with the
decrease of the thickness, the time delay (∆t) between multiple reflection peaks will be
reduced and the signals of multiple reflection peaks will overlap, so it is difficult to extract
the reflection peaks, respectively.

Figure 2. Schematic diagram of terahertz wave reflection when measuring TBCs.

Figure 3. Overlapping terahertz time domain spectral signals.

3. Modeling Methods

Machine learning methods have strong data-processing and regression ability, and
are widely used in the field of nondestructive testing [32,38,39]. In this study, PCA was
used to compress data and extract the characteristics of terahertz signals. ELM algorithm
was used to establish models. Three evaluation indicators—root correlation coefficient (R2),
mean absolute percentage error (MAPE) and root mean square error (RMSE)—were used
to evaluate the prediction results [34,40]. They can be estimated as follows:

R2 = (
a

∑
i=1

(
Ŷi − Ŷ

)(
Yi − Y

)
/

√
a

∑
i=1

(
Ŷi − Ŷ

)2
√

a

∑
i=1

(
Yi − Y

)2
)

2

(1)

RMSE =

√
a

∑
i=1

∣∣Yi − Ŷi
∣∣2/a (2)

MAPE =
a

∑
i=1

∣∣Yi − Ŷi
∣∣

Yi
/a (3)

Here, a is the number of TC thickness signals used in this experiment, Y represented
the average of Yi, and Yi and Ŷi represent the true thickness and predicted thickness of the
ai sample.
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3.1. Principal Component Analysis

Since the dimension of the unprocessed single terahertz signal is 4096, if they are
directly modeled as input parameters, the model will become too complex and consume
more time. At the same time, simplifying the redundant terahertz data is conducive to
improving the accuracy of model prediction. Principal component analysis is a general
statistical analysis approach to decrease the dimension of data. It can replace the original
signals with fewer principal components (PCs) on the basis of retaining as much original
information as possible, to reduce the data dimension and simplify the model [41,42].

Firstly, there are a samples to be tested, and the observed data of each sample has b
values. So, the original data of the samples could be expressed as

X =


X11 X12 · · · X1b
X21 X22 · · · X2b

...
...

...
...

Xa1 Xa2 · · · Xab

 = (x1, x2, · · · , xb) (4)

Standardize the original data matrix X to eliminate the influence of dimension according to

x̃ij =
xij − x̃j

τj
(i = 1, 2, · · · , a; j = 1, 2, · · · b) (5)

here, τj represents standard deviation and x̃j represents the average.
The correlation coefficient matrix of the variables can be calculated by the standardized

data matrix according to

rij =
∑a

m=1(xmi − xi)
(
xmj − xj

)√
∑a

m=1(xmi − xi)
2 ∑a

m=1
(

xmj − xj
)2

(6)

The standardized correlation coefficient matrix can be expressed as

Rij =
(
rij
)

b×b (7)

Secondly, the characteristic roots λj (λ1, λ2, · · · , λj), and the corresponding feature
vector l (l1, l2, · · · , lj) of Rij can be obtained.

Thirdly, the principal component can be expressed as

Zi = Xli =
b

∑
j=1

lijxj (i = 1, 2, · · · b) (8)

Calculate the contribution ratio of each principal component (PC) separately:

Pn = λn/ ∑b
k=1 λk (n = 1, 2, · · · , b) (9)

Calculate the cumulative contribution rate of the first n PCs:{
∑n

i=1 λi

}
/
{
∑b

i=1 λi

}
(n = 1, 2, · · · , b) (10)

The contribution rate of principal components will decrease in turn, so the top n (n ≤ b)
data with the highest contribution rate and cumulative contribution rate of more than 85%
will be selected.

3.2. Extreme Learning Machine

Extreme learning machine (ELM) is a new type of feedforward network. Compared
with conventional back-propagation (BP) neural network, ELM has the advantage of the
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faster training rate and stronger generalization ability. The principle of the algorithm are as
follows [43,44].

Suppose that there are n training samples with input vector xi and output vector ti,
where xi = (xi1, xi2, · · · , xik)

T and ti =
(
ti1, ti2, · · · , tij

)T , i = 1, 2, · · · , n. When there are
m hidden layers, the weight connecting the input layers to hidden layers, and the weight
connecting hidden layers to output layers, can be expressed as follows:

w =


w1
w2
...

wl

 =


w11 w12 · · · w1k
w21 w22 · · · w2k

...
...

. . .
...

wl1 wl2 · · · wlk

 (11)

β =
[

β
j
1, β

j
2, · · · , β

j
m

]T
(12)

Here, l = 1, 2, · · · , m. The ELM regression model can be expressed as follows:

Dβ = C (13)

D =


f (w1x1 + b1) f (w2x1 + b2) · · · f (wmx1 + bm)
f (w1x2 + b1) f (w2x2 + b2) · · · f (wmx2 + bm)

...
...

. . .
...

f (w1xn + b1) f (w2xn + b2) · · · f (wmxn + bm)


n×m

(14)

Herein, D represents the output matrix of the hidden layer of the modeling; C is the
output vector; bm is the hidden layer threshold; and f (x) is the activation function. So, the
output weights β can be calculated according to β̂ = D+C, where D+ is Moore–Penrose
generalized inverse of the matrix D. The β solved based on Moore–Penrose is one of the
least-square solutions of the general linear system Dβ = C; thus, the ELM model will not
fall into local minimum such as gradient descent algorithm. However, ELM model also has
some disadvantages, for example, the input weights and the thresholds of the model are
generated randomly, which leads to the lack of adjustment ability of hidden layer neurons.
Therefore, genetic algorithm (GA) is selected to find the best weights and thresholds of the
model. GA is a method to search the optimal result by imitating the process of chromosome
gene crossover and mutation in the process of biological evolution [45–47]. The ELM model
optimized by GA has both the global optimization ability of GA and the powerful learning
capacity of ELM. Therefore, GA–ELM has high accuracy and stability. The flow chart and
specific working steps of the algorithm are shown in Figure 4 [48,49]:

1. Parameter setting. Set the number of neurons of ELM model according to the dimen-
sion of input and output data, generate a batch of weights and thresholds randomly;
set the maximum evolutionary iterations G, the population size, the crossover proba-
bility, the mutation probability, and the generation gap of GA and generate the initial
population; and use D to represent the length of individual, where D = (n + 1)L,
n represents the input vector dimension and L represents the number of hidden
layer nodes.

2. Calculate the fitness of the population. The root mean square error between the
actual output and the expected output is used to measure the merit degree. In each
generation of the population, the chromosomes will continue to crossover and mutate
to form new populations until restraint conditions are met or the maximum number
of iterations is met.

3. ELM model training, prediction, and verification. Decode the optimal population
and get the input weights and thresholds. Train the ELM model and then use the test
samples to verify the accuracy of the prediction.

In this study, parameter settings of the GA–ELM model are shown in Table 2. To avoid
over fitting, K-fold cross-validation is also applied to verify the accuracy and robustness of
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the PCA–GA–ELM model. According to the number of samples in this study, all the data
were divided into eight folds, with each fold having 10 data. Among them, seven folds
were for training and one fold was for verification. Each subset was used as a verification
set for verification once, taking the average accuracy as the overall prediction accuracy of
the PCA–GA–ELM model after eight verifications [50–52].

Figure 4. Algorithm flow chart of GA–ELM model.

Table 2. Parameter settings of the GA–ELM model.

Parameter Value

Hidden layer neurons 40
Maximum genetic generation number 1000

Crossover probability 0.7
Mutation probability 0.01

Generation gap 0.95

4. Result and Discussion
4.1. THz Signals and Thickness of TBCs

Figure 5 shows the terahertz time-domain signals of different TC thicknesses. The
time interval (∆t) decreases with the decrease of coating thickness. Due to the change of
phase caused by multiple reflections, the second and third reflection peaks overlap with
the thinning of thickness. The smaller the thickness of the coating, the more serious the
signals overlap. When the thickness continues to decrease, the first and second reflection
peaks also overlap. Therefore, the method of calculating thickness by separating reflection
peaks fails. We propose PCA–GA–ELM model to predict the TC thickness.

Figure 5. Terahertz signals of TBCs with different TC thicknesses.
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Figure 6a,b shows the SEM morphology of the TBCs with different TC thicknesses.
Through the SEM, we can accurately obtain the real thickness of the coating, which can be
used to train and verify the model. Because the coating is not completely uniform, we can
obtain different THz thickness signals at different positions of an engine blade. Therefore,
these terahertz signals containing coating thickness information can be used to characterize
the thickness of YSZ ceramic layer, to obtain the model input.

Figure 6. SEM morphology of different top coat thickness: (a) TBC on high pressure turbine; (b) TBC
produced in the lab.

4.2. Comparison of the Prediction Performance

In this study, to avoid over fitting caused by too little data, we tested the terahertz
data of 80 TBCs with different thicknesses, of which 70 were from the laboratory and
10 were from actual blades. In order to decrease the dimension of terahertz signals and
redundant data, principal component analysis method was used to decrease the size of
original data. As show in Figure 7, the contribution rate of each principal component
decreases gradually. By accumulating the contribution rate, we can know that the first
28 data can reach the cumulative contribution rate of 99.9%, therefore, these data are picked
as the input parameters of the model. Eventually, the size of the original data was reduced
from 80 × 4096 to 80 × 28.

Figure 7. Contribution proportion of each principal component and their cumulative sum.

The ELM and GA–ELM model were trained by selecting 70 random data from the
time-domain data after dimensionally reduction. As shown in Figure 8, the fitness evolution
curves indicate that when the models evolved to 538 generations, the training error reached
to the smallest values and fulfilled the requirement.

The remaining ten samples were used to compare and verify the prediction accuracy
of the models. In Figure 9, the blue, red, and black marks indicate the ELM predicted, GA–
ELM predicted, and actual values of the TC thickness of TBCs, respectively. The predicted
and actual values are recorded in Table 3. The weights and thresholds of PCA–ELM model
are randomly generated, so its prediction results are not optimal. The prediction results of
the PCA–GA–ELM optimized by genetic algorithm are more accurate and more reliable
than PCA–ELM.
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Figure 8. Relationship curve between fitness and evolution generation.

Figure 9. The prediction results of TC thickness of the ELM and GA–ELM model.

Table 3. The actual value of SEM observation of TC layer and the predicted value of the two models.

No. Actual Value (µm) Predicted Value by
PCA–ELM (µm)

Predicted Value by
PCA–GA–ELM (µm)

1 90.9 89.4 87.8
2 68.7 123.8 69.3
3 68.1 57.8 66.4
4 189.5 190.9 188.4
5 91.5 87.9 89.8
6 21.4 53.9 20.4
7 146.5 198.3 143.1
8 220.2 233.3 220.9
9 144.7 202.3 144.5
10 108.1 79.7 105.9

To further test and compare the accuracy and robustness of the models, the prediction
results of 8-fold CV were compared. As can be seem from Table 4, the prediction error of
PCA–GA–ELM works well, where the value of R2 has reached over 0.98, which is greater
than PCA–ELM model; the values of other error performance indicators (RMSE, MAPE) of
PCA–GA–ELM were kept low (≤2.57), while the various errors of the PCA–ELM model
were relatively large (≥15.01). All these indicated that the PCA–GA–ELM model can
accurately predict the thickness of TBCs. Therefore, the hybrid PAC–GA–ELM model could
meet the evaluation requirements of different coatings thickness. In this study, we discussed
the single-layer structural ceramic layer. With the gradual complexity of coating structure
and materials, different samples are needed to train the model. In our next research, we
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will discuss multi-layer coatings and coatings of other materials, as well as coatings with
different applications.

Table 4. Prediction error of the PCA–ELM and PCA–GA–ELM models.

Prediction Results R2 RMSE MAPE

PCA–ELM 0.6076 15.0080 0.0957
PCA–GA–ELM 0.9871 2.5673 0.0205

5. Conclusions

In this study, a hybrid machine learning algorithm based on terahertz time domain
spectroscopy was proposed to predict the thickness of TC layer of thermal barrier coatings.
Firstly, the research showed that with the thinning of the coating, the terahertz signals
would overlap. The degree of signal overlap is related to the coating thickness. Therefore,
a hybrid machine learning model was proposed because the reflection peak cannot be
extracted separately and completely. Secondly, the terahertz signals of 80 TBCs with
different thicknesses were used to train the model. To improve training speed, the principal
component analysis approach was used to decrease the original signals dimension form
80 × 4096 to 80 × 28 since these 28 PCs contribute 99.9% of the information of the original
signal. Thirdly, three indications R2, MAPE, and RMSE, were used to evaluate the predict
results of the models, and 8-fold cross validation was also used to detect the accuracy
and robustness of the models. The results indicate that the optimized PCA–GA–ELM
model has higher R2 (>0.98) and lower error values (≤2.57) than PCA–ELM model and
the PCA–GA–ELM model, showing excellent accuracy and dependability in predicting
the thickness of TC layer of TBCs. Therefore, the PCA–GA–ELM model could meet the
accuracy requirements in actual testing.
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