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Abstract: In this study, Ti/SnO2-Sb2Ox-TiO2 electrodes were produced using a sol-enhanced elec-
trodeposition technique from methanesulfonate electrolytes. The surface microstructures of Ti/SnO2-
Sb2Ox-TiO2 were observed, and their phase constituents were determined. The surface features
were analyzed by X-ray photoelectron spectroscopy. Linear sweep voltammetry and degradation
tests were also conducted to determine the degradation performance. The results show that the
addition of TiO2 sol affects the microstructures of Ti/SnO2-Sb2Ox-TiO2 electrodes, while a uniform
coating surface can be obtained at a proper sol concentration in electrolytes. Adding TiO2 sol also
causes deep oxidation of Sb and generates more adsorbed oxygen on the electrode surface. The
favorable surface features and the well-dispersed TiO2 in the coatings of 10 mL/L TiO2 modified
Ti/SnO2-Sb2Ox-TiO2 electrodes award them the best electrocatalytic performance, and their uniform
coating surface prolongs the electrode service life.

Keywords: SnO2-Sb2Ox; sol-enhanced electrodeposition; organic degradation

1. Introduction

The demand for effective effluents treatment technology has raised increasing re-
search interests under growing public concern in environmental issues. The treatment of
poorly biodegradable organics is essential in the effluents treatment industry. Advanced
electrochemical oxidation technology (AEOT) is considered to be a promising method to
deal with this issue, owing to its advantages in efficiency and flexibility [1–3]. Organic
degradation reactions mostly occur on the anode surface, which plays a crucial role in
the electrochemical treatment process. The primary anode materials applied in effluent
treatment technology are precious metals (Pt, Au, etc.), carbon, boron-doped diamond
(BDD), and metal oxide electrodes [4–6].

Titanium-supported antimony-tin oxide (Ti/SnO2-Sb2Ox) is a type of metal oxide
electrode that can suppress the oxygen evolution reaction (OER) in order to allow for the
effective degradation of organics by hydroxyl radicals. Originally, SnO2-Sb2Ox was utilized
as a catalyst for organic conversion, whereas this mixed oxide was recently employed as
an anode coating due to its adequate conductivity and chemical resistance. Moreover,
SnO2-Sb2Ox can be efficiently and economically coated on a Ti substrate, making it into
large areas for industrial applications. The inert Ti/SnO2-Sb2Ox electrodes, therefore, show
unique advantages in effluent treatment technology due to their low preparation cost
compared to precious metal and BDD, high OER potential, and solid electrocatalytic ability.

The conventional fabrication route for the Ti/SnO2-Sb2Ox electrode is thermal decompo-
sition, in which, the precursor solution is transformed into SnO2-Sb2Ox after calcination [7].
However, the inferior stability and inadequate electrocatalytic ability limit the scale-up appli-
cation of Ti/SnO2-Sb2Ox electrodes made from thermal decomposition. The electrodeposition
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fabrication route was recently proposed to manufacture Ti/SnO2-Sb2Ox-TiO2 electrodes. How-
ever, despite an enhanced stability, the electrodeposited Ti/SnO2-Sb2Ox-TiO2 electrode suffers
from a relatively low electrocatalytic performance.

Previous literature has investigated various modification methods for electrode per-
formance enhancement. Venkatesha et al. [8] and Wang et al. [9] constructed a porous
SnO2-Sb2Ox coating based on anodized TiO2 nanotubes, boosting the electrode electrocat-
alytic performance and long-term stability. Chen et al. [10] synthesized the dense spheri-
cal Ti/Sb–SnO2 with a superior electrocatalytic performance using colloidal electrodepo-
sition. Moreover, doping other elements and nanoparticles could effectively modify the
electrodeposited Ti/SnO2-Sb2Ox [11]. Liu et al. [12] and Qiao et al. [13] fabricated the
Ti/SnO2-Sb2Ox–Ce electrodes for efficient electrocatalytic oxidation. Wu et al. [14] prepared
a high-performance duplex-structured Ti/SnO2-Sb2Ox-CNT composite anode using the elec-
trodeposition method. In our recent studies, a sol-enhanced electrodeposition method has
been proposed to efficiently dope inert nanoparticles and achieve their well-dispersion into
the coating [15–18], which can serve as a promising method for Ti/SnO2-Sb2Ox modification.

This work explores the sol-enhanced electrodeposition route for the Ti/SnO2-Sb2Ox-TiO2
electrodes in methanesulfonate electrolytes. Compared to the traditional oxidizing sulfuric
sources, the methanesulfonate electrolyte better reveals the advantages of a low toxicity,
excellent chemical stability, and outstanding biodegradability [19–21]. The influence of TiO2
sol addition on the electrode’s properties and performance is systematically investigated. We
propose a novel modification procedure for Ti/SnO2-Sb2Ox, which will benefit the scale-up
application for Ti/SnO2-Sb2Ox in the effluent treatment industry. We also aim to thoroughly
unveil the underlying mechanism and potential of its electrodeposition fabrication route.

2. Materials and Methods
2.1. Preparation of Ti/SnO2-Sb2Ox-TiO2

The analytical grade chemicals were bought from Aladdin Reagent, Shanghai, China.
A pure titanium (99.9%) plate was used in our work. The titanium substrate was pretreated
as described in the procedures below: (1) grinding and polishing; (2) soaking into 15% wt
sodium hydroxide (NaOH) solution for 2 h; and (3) soaking in 12% wt oxalic acid solution
for 3 h. The TiO2 sol was prepared as reported in the previous papers [22,23].

The proposed Ti/SnO2-Sb2Ox-TiO2 electrodes were fabricated from the electrodepo-
sition method. The electrodeposition fabrication route consists of the electrodeposition
process and the following heat-treatment process.

In the electrodeposition process, the electrolyte consisted of 60 mL/L tin methane-
sulfonate (C2H6O6S2Sn, 50% wt in H2O), 50 mL/L methane sulfonic acid (CH4O3S, 99%),
antimony trichloride (SbCl3, 99%), 2 g/L gelatin, and 2 g/L hydroquinone. The electrodes
were prepared in an electrolytic cell as follows: the tin plate (40 mm × 40 mm) was used as
the anode and the pretreated titanium substrate (20 mm × 30 mm × 0.1 mm) was used as
the cathode. TiO2 sol was prepared following the procedures in previous work [24–26]. A
certain amount (5, 10, 15 mL/L) of as-prepared TiO2 sol was slowly dropped into the stirring
electrolytes. The electrodeposition was carried out at a current density of 30 mA/cm2 for 20
min at 30 ◦C, and the electrolyte was stirred at 300 rpm. Then, in the heat treatment process,
the samples were heat-treated in a muffle furnace at temperatures of 600 ◦C for 10 h to obtain
the Ti/SnO2-Sb2Ox-TiO2 electrodes. The thickness of electrodeposited SnO2-Sb2Ox coating
was ~26 µm, whereas TiO2 sol addition hardly modified the coating thickness.

The Ti/SnO2-Sb2Ox was also made by the traditional dip-coating method for com-
parison. Firstly, the pretreated titanium substrate was dipped into a mixture of 1.8 g of
tin tetrachloride (SnCl4), 2 mL of antimony oxide (Sb2O3), and 8 mL of isopropyl alcohol
for 15 s, followed by a drying treatment at 100 ◦C for 10 min and then a heating treatment
in a muffle furnace for 10 min at 600 ◦C. The drying and heating treatment process was
repeated six times, and, finally, the titanium substrate was placed in a muffle furnace for
ten hours at 600 ◦C to acquire the Ti/SnO2-Sb2Ox.



Coatings 2022, 12, 366 3 of 12

2.2. Structural and Elemental Characterization

X-ray diffraction (XRD-6000X, Shimazu, Kyoto, Japan) identified the phase con-
stituents at a step size of 0.1◦/s. The surface morphology was observed by a scanning
electron microscope (SEM, Phenom ProX, Eindhoven, The Netherlands) with an energy
dispersive spectroscopy (EDS) detector, and the embedded simulation program completed
the 3D surface imaging. The X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi,
Thermo Fisher, Waltham, MA, USA) was utilized to analyze elemental details, during
which, Al Kα radiation at 1486.6 eV was used.

2.3. Electrochemical and Degradation Tests

The electrochemical performance of the electrode was tested by linear sweep voltam-
metry (LSV) using an electrochemical workstation (CH660E, Chenhua Instrument, Shang-
hai, China). A three-electrode system was used in the tests. Ti/SnO2-Sb2Ox-TiO2 electrode
(10 mm × 10 mm) was the working electrode. Platinum plate (20 mm × 20 mm) was the
counter electrode, and saturated calomel electrode (SCE) was the reference electrode. A
0.25 mol/L Na2SO4 solution was used as the electrolyte solution. The scan range was from
0 to 4 V, at a scanning rate of 20 mV/s.

The benzoic acid degradation experiment was carried out in 100 mg/L benzoic acid
solution at a volume of 200 mL. We used the Ti/SnO2-Sb2Ox-TiO2 electrode (20 mm ×30 mm)
as the anode and the same-sized titanium sheet as the cathode. A direct current power was
employed to control the current density at 40 mA/cm2, and the 300-rpm magnetic stirring was
applied. The target solution sample was taken for detection after a certain degradation period.
The degradation process was monitored using high-performance liquid chromatography
(HPLC, Nexera, Shimadzu, Kyoto, Japan) equipped with a TC-C18 column. The mobile phase
consisted of 90% water (0.1% trifluoroacetic acid) and 10% acetonitrile. The accelerated life
was tested in 0.25 mol/L Na2SO4 at room temperature at 100 mA/cm2. The prepared sample
was the anode, and a titanium sheet was the cathode. The accelerated lifetime was calculated
when the potential steeply raised and exceeded 5.0 V.

3. Results and Discussion
3.1. Structural Characterizations

Figure 1 presents the XRD profiles of Ti/SnO2-Sb2Ox and Ti/SnO2-Sb2Ox-TiO2 elec-
trodes. The electrode prepared by the conventional dip-coating method reveals broad SnO2
peaks, which indicates a large extent of the amorphous phase. In addition, the sharp Ti
peaks imply the exposure of underneath titanium substrate. Such an observation is in
good agreement with previous literature [7,27]. In contrast, distinct phase constituents are
attained for these samples from the electrodeposition fabrication route. The crystallinity
substantially increases, and several intense peaks of tetragonal rutile SnO2 (JCPDS 99-0024)
are discovered. Similar phenomena have also been reported in some earlier literature [7].

The incorporation of TiO2 addition affects the phase composition significantly. When
the TiO2 addition was ≤10 mL/L, the SnO2 peak intensity sharply decreases, which
indicates a refinement for the prepared SnO2 crystallites. As summarized in Table 1, the
grain size of SnO2 is estimated according to the Scherrer equation through full width at half
maximum (FWHM) [28]. The results show that adding 10 mL/L sol leads to a significantly
decreased grain size, whereas larger grains form when further increasing the TiO2 sol
concertation to 15 mL/L. During the electrodeposition process, the TiO2 nanoparticles
are in situ generated and then co-deposited to generate SnO2-Sb2Ox-TiO2. These well-
dispersed nanoparticles can serve as active sites for crystallite nucleation, thereby providing
a driving force for nucleation and forming smaller SnO2 crystallites [29]. However, the
sharp SnO2 peaks show an opposite phase variation at a 15 mL/L TiO2 concentration.
Under this condition, the generated TiO2 nanoparticles tend to aggregate and decrease the
active sites in the electrodeposition. It is noted that no TiO2 diffraction peak is detected in
the composite coatings due to the limited amount of embedded TiO2 nanoparticles.
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sol, and (b) the EDS results recorded on the electrodeposited Ti/SnO2-Sb2Ox.

Table 1. Estimated grain size of SnO2-Sb2Ox-TiO2 prepared at different TiO2 sol additions.

TiO2 Sol Addition 0 mL/L 10 mL/L 15 mL/L

Grain size (nm) 60 28 45

Figure 1b presents the elemental analysis recorded on the electrodeposited
Ti/SnO2-Sb2Ox, proving the existence of antimony in the deposited coatings. The ratio of
Sn/Sb is ~8 wt.% in SnO2-Sb2Ox, which is in good agreement with previous reports [7,30].
Such antimony content in the lattice provides good conductivity for the prepared electrode.

The surface microstructures of prepared Ti/SnO2-Sb2Ox-TiO2 are presented in Figure 2.
A typical mud-like coating surface is obtained using the conventional dip-coating method,
as shown in Figure 2a. The cracks and holes in such coating surfaces could damage the elec-
trode stability due to the oxide generation in the electrolysis process [7]. In the meantime,
the electrodeposited Ti/SnO2-Sb2Ox-TiO2 demonstrates a different surface morphology,
showing a relatively compact coating surface with a much-improved uniformity. An in-
creased addition of TiO2 sol (≤10 mL/L) gives rise to a more compact surface, whereas an
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addition of 15 mL/L TiO2 sol causes a relatively non-uniform surface morphology due to
the nanoparticle’s aggregation.
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Figure 2. The surface morphologies of (a) Ti/SnO2-Sb2Ox made by traditional dip-coating, and Ti/SnO2-
Sb2Ox-TiO2 electrodeposited with different additions of TiO2 sol: (b) 0 mL/L (c) 5 mL/L, (d) 10 mL/L,
and (e) 15 mL/L (insets are the corresponding Sn-Sb-TiO2 coatings before the heat treatment process).

A similar morphologic variation can be seen for the Sn-Sb-TiO2 layers before the heat-
treatment process, as shown in the inset images. The TiO2 addition refines the surface morphology
of Sn-Sb-TiO2 at a TiO2 sol concentration≤ 10 mL/L, whereas an excessive sol concentration
caused relatively non-uniform morphology. The surface structures of Ti/SnO2-Sb2Ox-TiO2
electrodes are highly associated with the early electrodeposited Sn-Sb-TiO2 layers, with some
features remaining after the oxidation reactions during heat treatment.

The surface features were further characterized by a 3D imaging technique, as shown
in Figure 3. These images show the surface roughness and uniformity for the electrode-
posited samples. The proper addition of TiO2 sol brings a more uniform and compact
surface, depicted in Figure 3b,c. The observation corresponds with our earlier XRD and
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SEM findings, which proves that the 10 mL/L TiO2 sol addition refines the surface with
a decreased crystallite size and leads to a relatively open surface morphology with an
improved uniformity. Nevertheless, the 15 mL/L TiO2 addition causes a non-uniform
coating surface, depicted in Figure 3d.
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3.2. Elemental and LSV Analysis

The elemental analysis characterizes the electrodeposited samples, as shown in
Figure 4. Figure 4a shows the overall spectra of the electrodeposited Ti/SnO2-Sb2Ox
and Ti/SnO2-Sb2Ox-TiO2 samples, where prominent peaks of Sb and Sn are detected. The
presence of Ti peaks in Figure 4b proves the successful incorporation of TiO2 into the pre-
pared SnO2-Sb2Ox-TiO2 coatings, whereas the SnO2-Sb2Ox sample shows no Ti peak. The
weak Ti peaks correlate with the limited content of TiO2 existing on the electrode surface.
During the sol-enhanced electrodeposition, the TiO2 nanoparticles are in situ generated in
electrolytes. The attached organic chains avoid the agglomeration of nanoparticles, which
are then co-deposited in the coating with excellent dispersion.

Figure 4c,d compare the spectra of Sb and O on the electrodeposited Ti/SnO2-Sb2Ox
and Ti/SnO2-Sb2Ox-TiO2. The results elaborate in detail on the state of antinomy oxide
and absorbed oxygen with and without TiO2 sol addition. Both Sb3+ and Sb5+ exist in the
prepared coatings, indicating that there are two oxidation states for antinomy after the
heat treatment process. In addition, the detected oxygen can be categorized as Olat (i.e.,
lattice oxygen species) and Oads (hydroxyl oxygen species), which matches with previous
studies [13,31].
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Table 2 summarizes the comparison between the Ti/SnO2-Sb2Ox and Ti/SnO2-Sb2Ox-TiO2
in XPS analysis. The listed atom ratios of Oads/Olat and Sb5+/Sb3+ provide a qualitative judgment
for the element variation. The atom ratio of Oads/Olat is higher in Ti/SnO2-Sb2Ox-TiO2. It is
noted that adsorbed oxygen is a potent oxidizing agent. In the meantime, the Sb 3d3/2 is split
into two oxidation states, Sb5+ and Sb3+, respectively. The higher ratio of Sb5+/Sb3+ implies
that deeper surface oxidation occurs in the heat treatment process. The higher valence of Sb
generally offers more excessive electrons and functions as dominant donors for the SnO2-Sb
semiconductor, improving the conductivity of the prepared electrode [32]. The natural donors of
oxygen vacancies are inhibited simultaneously, and the lattice oxygen is reduced. To conclude,
the results imply that the addition of TiO2 sol can help to generate favorable surface features of
the chemical composition and oxygen state for the improved electrocatalytic performance.

Table 2. Calculated atom ratios for Ti/SnO2-Sb2Ox and Ti/SnO2-Sb2Ox-TiO2.

Samples
Atom Ratio

Sb5+:Sb3+ Oads:Olat

0 mL TiO2 sol sample 1.13 0.49
10 mL TiO2 sol sample 1.34 0.78
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Figure 5 presents the linear sweep voltammetry recorded on the Ti/SnO2-Sb2Ox and
Ti/SnO2-Sb2Ox-TiO2. The oxygen evolution reaction (OER) potential decreases in the
order below: 10 mL/L TiO2 modified sample (2.34 V) > 5 mL/L TiO2 modified sample
(2.27 V) > 15 mL/L TiO2 modified sample (2.19 V) > 0 mL/L TiO2 modified sample (2.15 V).
The picture indicates that adding a certain TiO2 sol increases the electrode’s OER potential.
When the amount of TiO2 sol increases to 15 mL/L, the OER potential shows a downward
tendency, resulting from the nanoparticle aggregation in the coating [33]. In general, the
effective organic degradation process favors a high OER potential, which avoids the OER
(i.e., the side-reaction) in the electrolysis process.
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3.3. The Degradation Performance of Ti/SnO2-Sb2Ox-TiO2 Electrodes

The electrocatalytic performance of the prepared electrode was studied by degrada-
tion tests, as demonstrated in Figure 6. Benzoic acid (BA) is a typical organic pollutant
used as a target in degradation tests. The results show that adding TiO2 sol influences
the electrocatalytic ability. The degradation performance decreases following the order
below: 10 mL/L TiO2 modified sample > 5 mL/L TiO2 modified sample > 15 mL/L TiO2
modified sample > 0 mL/L TiO2 modified sample. After the 10 h electrolysis, 98% BA is
electrochemically combusted by the 10 mL/L TiO2 modified SnO2-Sb electrodes, whereas
only 79% BA is degraded on the non-doped sample in the same duration.

Figure 6b shows the kinetic fitting curve of benzoic acid concentration with degrada-
tion time. The logarithm of benzoic acid concentration and degradation time showed a
good linear relationship during the degradation process, which proved that the degradation
process of benzoic acid follows the primary reaction kinetic model:

ln
(

C0

Ct

)
= kt (1)

where C0 represents the initial concentration of benzoic acid, Ct represents the concentration
of benzoic acid at a specific moment, and k is the reaction rate constant. Table 3 lists the
calculated k value for the degradation process on different electrodes. The larger k value of
the 10 mL/L TiO2 modified sample represents the electrode’s faster degradation rate of
benzoic acid.
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Table 3. Degradation ability of Ti/SnO2-Sb2Ox-TiO2 electrodes with different concentrations of TiO2

sol in electrolytes, where k is kinetics coefficients.

0 mL/L TiO2 5 mL/L TiO2 10 mL/L TiO2 15 mL/L TiO2

K (min−1) 2.87 × 10−3 4.64 × 10−3 5.75 × 10−3 3.09 × 10−3

The results prove that the proper addition of TiO2 sol enhances the electrocatalytic
performance of Ti/SnO2-Sb2Ox-TiO2 electrodes. In general, the electrochemical combustion
of organics is achieved by the hydroxyl radicals—a robust oxidizing agent that breaks the
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chemical bonds and finally turns the organic into H2O and CO2. The organic degradation
pathway is proposed as follows in Equations (2) and (3) [13,34]:

SnO2 + H2O→ SnO2 (OH)ads + H+ + e (2)

R + SnO2 (OH)ads → SnO2 + H+ + e + Oxidation products (such as CO2) (3)

where R stands for the organic and (OH)ads stands for the physic-adsorbed hydroxyl
radicals. The higher content of Sb5+ increases the electrode conductivity and helps to
generate surface adsorbed oxygen species. Besides, the uniform electrode surface with
numerous peaks and valleys could provide many active sites for degradation reactions
for the 5 and 10 mL/L TiO2 modified electrodes. The well-dispersed TiO2 nanoparticles
also offer additional reaction sites, further improving the degradation ability for the TiO2
sol-enhanced electrodes. As for the 10 mL/L TiO2 modified Ti/SnO2-Sb2Ox-TiO2 electrode,
both the superior surface feature and well-dispersed TiO2 award it the best electrocatalytic
performance in the examined samples.

Accelerated life tests were also conducted to investigate the electrode performance, as
shown in Figure 7, comprehensively. The dip-coated Ti/SnO2-Sb2Ox electrode was tested
for comparison, which shows an inferior long-term stability due to its open surface structure
being vulnerable to corrosion attack. During the degradation process, the corrosion attack
results in the generation of titanium oxide, a non-conductive inert material that inhibits the
degradation process and causes coating defoliation.
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Figure 7. The accelerated service life results, (a) the tested accelerated service life for samples
preprepared by dip-coating and sol-enhanced electrodeposition with different TiO2 sol concentrations,
(b) surface morphology of electrodeposited Ti/SnO2-Sb2Ox after 2 h test, and (c) surface morphology
of Ti/SnO2-Sb2Ox-TiO2 (10 mL/L TiO2 sol doped) after 2 h test.
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The electrodeposited Ti/SnO2-Sb2Ox-TiO2 shows a much-improved stability in the
accelerated life tests. A relatively compact coating fully covers underneath the Ti substrate
for these samples. An increasing TiO2 addition gradually prolongs the accelerated life at a
concentration less than 10 mL/L. Figure 7b,c demonstrate the surface morphology of the
undoped sample and 10 mL/L TiO2 sol modified samples after 2 h accelerated life tests. The
undoped SnO2-Sb2Ox coating is almost peeled off from the substrate, whereas the electrolysis
process only slightly changes the surface morphology of the Ti/SnO2-Sb2Ox-TiO2 electrode.

The electrode stability is highly correlated to the different morphologic features. The
proper addition of TiO2 sol leads to a uniform surface with fewer cracks and holes, thereby
improving the electrode stability. Moreover, well-dispersed nanoparticles in the coating
can prevent corrosion penetration and enhance the corrosion resistance for electrodes. In
contrast, excessive TiO2 addition harms the coating uniformity due to the nanoparticle
aggregation, negatively affecting the electrode stability.

4. Conclusions

This study develops the Ti/SnO2-Sb2Ox-TiO2 electrodes by applying sol-enhanced
electrodeposition from methanesulfonate electrolytes. The results show that adding TiO2
sol affects the surface morphologies of Ti/SnO2-Sb2Ox-TiO2 electrodes. A uniform coating
surface can be obtained at a suitable sol addition. Furthermore, the addition of TiO2 sol
leads to deep oxidation of Sb and helps to generate more adsorbed oxygen. The organic
degradation performance decreases in the following order: 10 mL/L TiO2 sol modified
sample > 5 mL/L TiO2 modified sample > 15 mL/L TiO2 modified sample > 0 mL/L TiO2
modified sample. The favored surface feature and well-dispersed TiO2 in the 10 mL/L TiO2
modified Ti/SnO2-Sb2Ox-TiO2 electrode results in the best electrocatalytic performance in
the examined samples, and its uniform coating surface with fewer cracks and holes prolong
the electrode service life.
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