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Abstract: The modeling efficiency, matching, and biocompatibility are key factors affecting the
surgical success of a personalized thyroid cartilage prosthesis. We performed three-dimensional
reconstruction of a thyroid cartilage prosthesis by combining reverse and forward methods, and then
completed the prosthesis design with total or partial resection using a parametric modeling method.
Direct manufacturing was performed using selective laser melting (SLM) molding equipment and
TC4 material. The structure of the completed implant unit was optimized. The results show good
modeling effects for the thyroid cartilage prosthesis with either total or partial resection by the
parametric modeling method. Good matching performance was achieved, with overlap suspension
between the pillars that meets the requirements of SLM manufacturing. Additionally, the use of
SLM molding to produce the thyroid cartilage prosthesis resulted in less powder adhesion on
the surface and no obvious nodulation between the porous pillars, allowing the direct use of the
prothesis after simple post-treatment. Overall, these results should facilitate the direct application of
personalized implants.

Keywords: selective laser melting; parametric modeling; truss structure; pore structure; layout

1. Introduction

Patients with laryngeal carcinoma or larynx injury will inevitably require the surgi-cal
removal of part or all of the thyroid cartilage. Because the thyroid cartilage is non-renewable
tissue, a defect will seriously affect patient swallowing, phonation, and respiration, reduc-
ing the quality of life after surgery and potentially resulting in death. With the development
of human bone repair and replacement surgery, thyroid cartilage repair can be performed
as a strategy to relieve patient pain, restore the function of thyroid cartilage, and improve
patient quality of life [1]. In traditional surgery to repair thyroid cartilage, a prosthesis is
usually prepared by manual shaping of flat metal mesh. The ability to effectively shape the
implant completely depends on the skills and experience of the doctor, and the resulting
implant may exhibit a variable degree of matching with the remaining part of the patient’s
natural thyroid cartilage. Although the side effects caused by cartilage loss are effectively
overcome after the surgery, the appearance of the cartilage cannot be restored, and biocom-
patibility may be poor. A personalized prosthesis that is partially or completely porous
is lightweight and offers good biocompatibility, but there are challenges for its design
and manufacture.

The structural parameters such as porosity, surface-volume ratio, and average pore
diameter can be adjusted by adjusting the input parameters of the porous structure designed
by parametric modeling technology. Additive manufacturing technology (3D printing)
uses special data processing software to slice and layer a 3D model, obtain section data,
import the data to the 3D printing equipment, and then manufacture the solid parts by layer
manufacturing. With layer manufacturing, 3D printing technology can produce nearly
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any geometric part, with advantages of single piece work, small batch, complex geometry
structure, and dense tissue after processing [2], allowing its use for the direct manufacturing
of a thyroid cartilage prosthesis with biological fixation. In particular, selective laser melting
(SLM) technology is a 3D printing technology based on laser-melted metal powder [3–5].

Wang et al. [6] compared use of transplanted tissue repair and wound repair methods
for treatment of thyroid cartilage defects, and found no significant differences between
the two groups for long-term effects, survival rate, and the rate of casing withdrawal.
Liu et al. [7] used bone morphogenetic protein complex to repair defects of laryngeal
thyroid cartilage in situ using CAD and CAM technology, with good repair effect and
good osteoinduction and biocompatibility. Feng et al. [8] examined the therapeutic effect
and application value of two kinds of repair methods for the reconstruction of laryngeal
function after partial laryngectomy for laryngeal carcinoma, finding that relay muscle
thyroid cartilage outer perichondrium flaps and ventricular zone downward approaches
could well reconstruct the shape of the laryngeal cavity and restore the function of the
thyroid cartilage. Wang et al. [9] prepared HA foam ceramics with a foaming method to
repair thyroid cartilage injury. Microscopic observation showed new bone growth and
good pronunciation and eating behaviors for patients with the repaired thyroid cartilage.
Tian et al. [10] applied digital combined 3D printing technology as an auxiliary approach
for the excision of lesions and reconstruction of residual larynxes, which significantly
reduced patient hospital stays, shortened the recovery cycle, and improved the quality of
life compared with CHEP surgery. Zhang et al. [11] prepared a thyroid cartilage scaffold
with different hydroxyapatite (HA) contents (volume fraction of 60%, 50%, 40%) through
foam gel injection molding, which provided a new scaffold material for the repair and
reconstruction of thyroid cartilage defects. Bhavana et al. [12] used the Crista iliaca as
a graft to repair defects of the laryngotracheal cartilage and restore function. However,
there is limited autogenous cartilage, and this approach will present new trauma to the
patient during transplantation, with potential postoperative complications, leading to the
failure of the surgery. Hallak et al. [13] reported the case of thyroid cartilage fracture under
mini bone fracture plate repair and dislocation.

Autogenous bone grafting and foaming methods are the main technologies applied
for the repair of thyroid cartilage. However, limitations include the source of autogenous
cartilage and the difficulty of controlling the pores in foam ceramics by foaming methods.
The development of SLM molding technology and parametric modeling technology has
provided the possibility for solving the above problems.

2. Materials and Methods
2.1. Implant Design Requirements

The design goal of personalized implants is to meet the requirements of implantation
and allow the repair and reconstruction of human tissues or organs. Therefore, mechanical
properties, biocompatibility, manufacturability, and matching with peripheral bone tissues
must be considered in the design of a prosthesis.

The biological performance requirements of a thyroid cartilage prosthesis are as
follows [14–18]: the optimal pore size range of porous structure for the growth of bone cells
is about 100–1000 mm, and a porosity of 50–90% can simulate cancellous bone structure,
which is most conducive to the growth of new bone. The larger the surface area volume
ratio of the porous implant, the larger the contact area between the porous implant surface
and the bone, so the greater the mechanical stimulation of new bone.

There are several mechanical requirements of a thyroid cartilage prosthesis [19,20]. The
thyroid cartilage prosthesis should not deform and damage after implantation, so it should
have good stiffness and strength. The elastic modulus of the thyroid cartilage prosthesis
should be equivalent to the peripheral bone tissue to avoid “stress shielding,” which can
prevent stimulation of growth of the peripheral tissue. Finally, to improve the impact
resistance of the thyroid cartilage, the prosthesis should have energy absorptive capacity.
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The thyroid cartilage prosthesis must match the peripheral bone tissue. An implant
with good matching can better stimulate the growth of peripheral bone tissue and avoid
osteolysis. Additionally, an implant with good matching can reduce the possibility of
loosening, making the force of the implant more uniform and improving the service life of
the implant.

There are several requirements for prosthesis machinability. The prosthesis should
meet the design criteria of parts prepared by SLM molding, such as avoiding sharp corners
and thin walls, and having the suspension between parts and the molding datum plane
greater than 45◦. Additionally, the minimum aperture size should be greater than the limit
of laser molding.

2.2. Materials and Methods

Based on its high specific strength and good biocompatibility, Ti6Al4V alloy was selected
as the raw material to prepare the thyroid cartilage prosthesis. The Ti6Al4V alloy metal pow-
der was produced by Jiangsu Wuxi Falcontech Manufacturing Technology Co., Ltd. (Wuxi,
China), and its composition met the requirements of ASTM F136 and GB/T 13810-2007,
as listed in Table 1. The powder was prepared by gas atomization and was spherical, as
shown in Figure 1. The apparent density ρs is 2.55 g/cm3, and the particle size distribution
shows a concentrated distribution, with 90% approximately 22 µm, and D50 approximately
28.50 µm.

Table 1. The comparison of powder materials manufactured by SLM and ASTM F136 standards.

Element Ti6Al4V
Powder

ASTM F75
Standard Element Ti6Al4V

Powder
ASTM F75
Standard

Al 5.5–6.5% 5.5–6.5% N 0.03% <0.05%
V 3.5–4.5% 3.5–4.5% H 0.012% <0.012%
Fe 0.25% <0.3% O <0.08% <0.13%
C 0.08% <0.08% Ti Balance Balance
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Figure 1. Microstructure of Ti6Al4V alloy powder: (a) 100×microstructure; (b) 1000×microstructure.

GYD 150 molding equipment produced by Shenzhen Sunshine Laser & Electronics
Technology Co., Ltd. (Shenzhen, China) was used as the molding equipment. N2 was used
as the protective gas, and the oxygen content was controlled below 0.03%. The processing
laser power was 180 W, scanning speed was 500 mm/s, the hatch spacing was 80 µm,
the processing layer thickness was 25 µm, and X-Y interlaminar scanning strategy was
adopted [21]. Three thyroid cartilage prostheses were processed, designed, and completed.

2.3. Analysis Methods

A VHX-5000 three-dimensional hyperfocal microscope produced by Japan Keyemce
Company (Osaka, Japan) was used to observe the surface morphology of porous parts
prepared by SLM molding. A 3D printer Z-603S produced by Aurora Technology Co., Ltd.



Coatings 2022, 12, 336 4 of 10

(Singapore) was used to print the unresected part of the thyroid cartilage, and then the
unresected part of the thyroid cartilage and the resected part of the implant made by SLM
molding were assembled to assess matching.

3. Results and Discussion

The schematic diagram of the components of the thyroid cartilage is shown in Figure 2.
The prominentia laryngea is the most common site of laryngeal carcinoma or larynx injury.
According to the amount of prominentia laryngea resection, total resection or partial
resection may be required for thyroid cartilage repair. According to the needed thyroid
cartilage repair, solid or porous cartilage implants can be designed.
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3.1. Design of Solid Thyroid Cartilage Prosthesis

In the design process, achieving good matching between the thyroid cartilage prosthe-
sis and the unaffected sites is a significant challenge. The thyroid cartilage has a complex
geometric shape. A high degree of fit between the thyroid cartilage prosthesis and the
peripheral bone tissue is required to reduce the possibility of loosening after implantation
and improve biocompatibility. The best way to obtain a thyroid cartilage prosthesis with
good matching to peripheral bone tissue is to obtain an image of the affected sites and then
carry out reverse reconstruction and simulation of osteotomy.

The specific modeling steps are as follows:
(1) First, CT or NMR imaging technologies are used to scan the affected sites of patients

with thyroid chondropathy to obtain the image of the affected sites, as shown in Figure 3a.
Then, slice images completed by CT scanning are imported into Mimics. During the import
process, the correct orientation can be selected in the change orientation window using the
right button.

(2) In Mimics, threshold segmentation is applied to the slice image of patients with
thyroid chondropathy, and then areas of segmentation that are not connected with each
other on the initial threshold segmentation mask are further subdivided into subgroups to
generate a new mask. The soft tissue is marked as the starting point, and the end point is
marked after the line passes through the bone, creating a strong interface. The raised part
represents the threshold value.

(3) After threshold segmentation, the slice image is processed by morphology manipu-
lation, and small burrs on the boundary of the segmentation mask are removed by the open
operation (first corrosion and then expansion). The binary image is segmented to remove
floating pixels. The 3D reconstruction of the CT model is completed using Calculate 3D
models, as shown in Figure 3b. Finally, an optimized thyroid cartilage model is obtained
by smoothing and denoising the model of the reconstructed thyroid cartilage prosthesis, as
shown in Figure 3c.

(4) The optimized thyroid cartilage model after three-dimensional reconstruction is
then imported into Geomagic Studio 2020 for repair, and the reconstructed thyroid cartilage
repair model is obtained after griddoctor repair, denoising, smoothing, and substantiation,
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as shown in Figure 3d. As shown in Figure 3d, the model of thyroid cartilage prosthesis
established by the reverse design method has good modeling effects and can achieve a good
fit with the peripheral bone tissue.
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after surface treatment; (d) materialized model.

3.2. Parametric Modeling of Total Resection of Thyroid Cartilage Prosthesis

During use of a solid prosthesis, “stress shielding” often occurs because the hardness
is greater than the peripheral bone tissue, so growth of the peripheral tissue is not stim-
ulated. In addition, a solid prosthesis is unable to grow into the peripheral bone tissue
due to its lack of pores, which can cause loosening. Therefore, lower requirements of
mechanical properties and wear resistance of the repaired parts would allow some parts
to be made as porous structures. According to the structural characteristics, a single-layer
grid structure or a multi-layer grid structure could be used for the total resection of thyroid
cartilage prosthesis.

3.2.1. Single-Layer Grid Structure of Thyroid Cartilage

Single-layer grid structure is widely used because of its simple structure, simple
modeling process, and the lightweight nature of the material for implantation. The specific
modeling process is as follows:

(1) The 3D reconstructed thyroid cartilage implant model was imported into Rhinoceros
v5 software to reconstruct a solid model based on the original model. Fixed pores were
established at the edges of both sides, and the outer surface of the model was extracted and
reconstructed, as shown in Figure 4a.

(2) In the Rhinoceros software, the surface battery of the grasshopper plug-in was
used to read the external surface of the reconstructed model, the battery chart program was
written, the grid lines were generated by the Braced Grid 1-D structure plug-in, the grid
line density was adjusted to meet the implant implantation requirements, and the point
cloud information was deleted, as shown in Figure 4b.

(3) The gridlines were read in by the Curve parameter battery of the Grasshopper plug-
in, and then surface tubes were generated as lines through the pipe battery. The diameter
of the surface tubes was adjusted to meet the implantation requirements. The surface tubes
were generated in the solid model through the BREP join battery, and then incorporated
into the Rhinoceros software, as shown in Figure 4c. It can be seen from Figure 4c that
the parametric modeling method can effectively realize joint modeling of truss porous
structure and solid structure, with good modeling effects, uniform pore distribution, good
connectivity, good overlapping between pillars and pore size that meets the requirements
of biocompatibility, and an amount of overlap suspension between pillars that meets the
requirements of SLM manufacturing, with high bearing capacity.
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3.2.2. Multi-Layer Thyroid Cartilage Structure

The truss structure is not only light in weight but also has good mechanical properties
of tension and compression, allowing its use in the design of thyroid cartilage prosthesis.
To further improve the biocompatibility and mechanical properties of the thyroid cartilage
prosthesis, the truss network can be appropriately thickened to make a double-layer or
multi-layer truss network. The specific modeling process is as follows:

(1) The 3D-reconstructed thyroid cartilage implant model was imported into Rhinoceros
5 software to reconstruct a solid model based on the original model, fixed pores were es-
tablished at the edges of both sides, and the outer surface of the model was extracted and
reconstructed, as shown in Figure 5a.

(2) In the Rhinoceros software, the surface battery of the grasshopper plug-in was
used to read the external surface of the reconstructed model, the battery chart program
was written, the truss structure lines were generated by the Space Truss Structure plug-in,
and the grid line density and the distance between upper and lower chords was adjusted
to meet the implant implantation requirements, and baked into the software to delete the
point cloud information, as shown in Figure 5b.

(3) The gridlines were read in by the Curve parameter battery of the Grasshopper
plug-in, and then the surface tubes were generated as lines through the pipe battery.
The diameter of the surface tubes was adjusted to meet the implantation requirements.
The surface tubes were generated in the solid model through the Brep join battery, and
baked into the Rhinoceros software, as shown in Figure 5c. It can be seen from Figure 5c
that in addition to the better mechanical properties of the single-layer grid structure, the
multi-layer grid structure of thyroid cartilage with parametric modeling method is more
conducive for growth of bone tissue and offers better biocompatibility due to the gradient
change in the top grid and bottom layer of the truss structure.
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3.3. Parametric Modeling of Prosthesis of Thyroid Cartilage with Partial Resection

The implant was constructed by a parametric modeling method of the total excision of
the thyroid cartilage with partial resection. If the affected site is small, partial resection can
be used to manufacture the parametric thyroid cartilage prosthesis. The specific process is
as follows:

(1) The doctor images the affected site, as shown in Figure 6a, and then performs three-
dimensional reconstruction of the thyroid cartilage prosthesis as described in Section 3.1.
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(2) According to the size of the area diagnosed and the condition of the patient, the
doctor determines the scope of the osteotomy, draws the osteotomy line, and carries out
simulated osteotomy, as shown in Figure 6b.

(3) To facilitate fixation, reduce weight, and improve matching, the Rhinoceros soft-
ware is used to fix the contact parts of the thyroid cartilage and unaffected parts using
a circular arc-shaped clamping groove. The interface is limited to five degrees of freedom,
and upward movement can be limited by screws, which will greatly reduce the number
of screws and fixed plates. To further reduce weight, pores can be made on the circular
arc-shaped clamping groove, as shown in Figure 6c.

(4) According to the requirements of biocompatibility and the mechanical properties
of porous implants, the truss line is established using the grasshopper plug-in of the
Rhinoceros software; then, the curved surface flows to the site where the thyroid cartilage
is removed, and the redundant curved surface is deleted, as shown in Figure 6d.

(5) The gridlines are read in by the Curve parameter battery of the Grasshopper plug-
in, and then the surface tubes are generated as lines through the pipe battery. The diameter
of the surface tubes is adjusted to meet the implantation requirements. The surface tubes
are generated into the solid model through the Brep join battery, and baked into Rhinoceros
software, as shown in Figure 6e. It can be seen from Figure 6e that partial resection of the
thyroid cartilage prosthesis completed by the parametric modeling method shows good
modeling effects, but because the solid truss structure is generated by a truss line, there
will be convex points formed on the concave arc groove and the external surface of the
prosthesis. This will affect the surface quality of the prosthesis and the degree of matching
after implantation, so further improvement is needed.

(6) After closure and reconstruction of the surface pores of the thyroid cartilage
prosthesis, the convex points on the surface were eliminated by Boolean operation. The
results after elimination of the convex points are shown in Figure 7. The surfaces of the
concave arc groove and the concha cartilage were smooth after eliminating the external
convex points, which greatly improved the fit between the implant and the unaffected site.
After using the Rhinoceros software to design and complete the three-dimensional model
of thyroid cartilage prosthesis, before printing, a series of model checks was performed for
the designed model. The thyroid cartilage repair model and the thyroid cartilage model
of the unaffected part were then imported into the SolidWorks software for a solid check
as follows: click Tools → evaluation → check option, select all the entities and curved
surfaces, and then select the invalid surface and invalid sideline in the search to optimize
and improve the design.
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(7) A matching check of thyroid cartilage prosthesis model was performed in the Solid-
Works 2019 software. This was done as follows: click Tools→ evaluation→ interference
check option; select the combination of thyroid cartilage prosthesis in the selected parts,
and then conduct interference calculation. The result shows good matching of the two
models without interference, suggesting good matching of the printed model.

3.4. Research on the Technology of SLM Molding Thyroid Cartilage Prosthesis

Based on a previous report of the use of SLM for the molding of parts [22], the
prominentia laryngea of the thyroid cartilage prosthesis was positioned vertically to the
basal plate, and the external contour of the prominentia laryngea was supported by a block
and a heat conducting column in the thyroid cartilage prosthesis model, as shown in
Figure 8. This placement and support adding method can avoid the requirement for the
addition of support to the arc-shaped groove and the warping deformation of the parts,
and thus improve the matching and molding quality of the prosthesis.
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Figure 8. Thyroid cartilage prosthesis with data processing.

The designed thyroid cartilage prosthesis formed by SLM is shown in Figure 9a. The
thyroid cartilage prosthesis formed by SLM lacks warping deformation, and has a high
surface finish and less powder adhesion, suggesting high shape accuracy and internal
quality sufficient to meet the use requirements. As shown in Figure 9b, the microstructure
of the SLM molding thyroid cartilage prosthesis reveals good overlap between the porous
pillars of the thyroid cartilage, good connectivity between pores, less powder adhesion on
the surface, and no obvious nodulation between the porous pillars.

3.5. Matching Test of SLM Molding Thyroid Cartilage Prosthesis

To evaluate the effects of potential errors in the size and shape accuracy, we assembled
the thyroid cartilage prosthesis and the Z-603S 3D printed parts of the unresected part
to check the matching. The assembly results are shown in Figure 10. The corrected SLM
molding thyroid cartilage prosthesis fits well with the arc-shaped groove of the unresected
part of the thyroid cartilage and the convex part of the thyroid cartilage, realizing a smooth
transition between the prosthesis model and the unresected part. Thus, the resulting
thyroid cartilage prosthesis can be used directly after heat treatment and anodization.
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4. Conclusions

1. A thyroid cartilage prosthesis was designed using a parameterized method with
total or partial resection. The modeling effect was good, with good matching to
unaffected sites, good overlap between pillars, appropriate pore size that meets the
requirements of biocompatibility, and good overlap suspension between pillars to
meet the requirements of SLM manufacturing.

2. The thyroid cartilage prosthesis prepared by SLM molding has better overlap between
porous pillars, better connectivity between pores, less powder adhesion on the surface,
and no obvious nodulation between porous pillars. The resulting prosthesis can be
directly used after simple sandblasting and polishing.

3. The resulting thyroid cartilage prosthesis fits well with the arc-shaped groove of the
unresected part of the thyroid cartilage and the convex part of the thyroid cartilage,
providing a smooth transition between the prosthesis model and the unresected part
so that the prosthesis can be directly used after heat treatment and anodizing.

Subsequent studies should further explore the design and molding of thyroid cartilage
prosthesis, such as the influence of the method on adding support and the effects of the SLM
molding process parameters on the molding quality of the implant. This work provides the
foundation for the direct manufacture of a thyroid cartilage prosthesis by SLM.
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